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Abstract: Power supply is the cornerstone for the sustainable socio-economic development of any
country. In a developing country like Pakistan, shortage of power supply is the main obstacle to
its economic growth, making it a disputed and contested resource among different administrative
units/provinces and socio-economic sectors. A key challenge is allocating the limited available
power among provinces with conflicting and competing needs amid the supply-demand gap. In this
research, the allocation of energy during a shortage is considered as a game-theoretic bankruptcy
problem. Five bankruptcy rules namely the Proportional Rule, Constraint Equal Award Rule, Con-
straint Equal Loss Rule, Talmud Rule and Piniles Rule are used for power allocation among the
provinces of Pakistan. Each province is characterized by its power demand. A new framework is
also proposed for power allocation, which synthesizes the Nash bargaining solution concept with
bankruptcy theory to resolve power-related disputes among the four provinces within Pakistan. Ad-
ditionally, a new method is introduced in this study to compare and contrast the different allocation
rules. The results suggest that the basic power demands of the provinces can be satisfied by the
proposed disagreement points among the provinces, and the bargaining weights can highlight the
role of different levels of power claims, lengths of transmission lines, and variations in population
among provinces. The findings also suggest that, due to the lowest dispersion, the proportionate rule
is the most suitable method for power allocation among the provinces. The paper combines relevant
bankruptcy rules with Nash bargaining theory to propose an algorithm for addressing power sector
supply-demand mismatches in Pakistan.

Keywords: bankruptcy problem; power demand; power allocation; Nash bargaining theory

1. Introduction

The socio-economic development of any country is heavily dependent on power sup-
ply. Power distribution among socio-economic sectors in a fairer, efficient, and economical
way is critical, and the strategic and careful distribution of power during a power shortage
is vital to ensure that the allocation among users is equitable and reasonable.

During a power shortage, the power supply problem can be addressed using different
approaches. The game-theoretic approach is one that can be beneficial for the management
of electric power. This approach can impart strategic information to power management
experts, helping them make the right decision by analyzing the power demands of different
sectors and their strategic interaction.
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The bankruptcy concept is a game theoretic approach that allocates scarce resources
among various demanding sectors. Bankruptcy theory is a concept of economics in which
the available resources are not adequate to satisfy the claims of all agents. During a
shortage of power, the state is identical to the bankruptcy concept. Therefore, power
allocation in times of power shortage can be treated as a typical bankruptcy problem. This
resource sharing problem was described as the transferrable utility game by O’ Neill [1],
who approached this resource sharing problem as a coalition game. He determined the
worth of the coalition of clients who have their respective demands on scarce common
pool resources as the amount left after fully satisfying the claims of those who are not
members of the coalition. Various researchers have applied this theory to the allocation
of scarce resources. For example, in a study [2], the authors used the three bankruptcy
rules for the water reallocation in Cyprus. To determine a fair resource allocation based
on the legal status of the Caspian Sea, four bankruptcy rules were applied to reallocate
oil and gas resources among the five littoral states [3]. Similarly, in another study [4]
the authors applied ten bankruptcy methods to allocate the oil and natural gas reserves
among Azerbaijan, Iran, Kazakhstan, Russia and Turkmenistan. Jarkeh et al. [5] applied
seven bankruptcy rules for the water allocation among the three riparian countries of Iraq,
Syria, and Turkey. The bankruptcy theory has been applied in various instances, and its
application can be found in [5–9]. The most commonly used bankruptcy allocation rules
are proportional rule (PRO), constrained equal award rule (CEA), constrained equal losses
rule (CEL), Talmud rule, and Piniles rule. The aforementioned bankruptcy rules were
applied to the power management sector in this study.

When the total claims (C) exceed the total available resources (E), the bankruptcy the-
ory is applicable. This theory was used for multipurpose resource allocation situations [10],
whereas Ansink and Marchiori used it for water resource management [6]. Auman and
Maschler [11] and O’Neill [1] introduced bankruptcy theory, which was later studied by
various researchers [12–15] Several researchers have also used this theory for water allo-
cation among riparian countries [10,16–19]. Bozorg-Haddad et al. [20] used bankruptcy
theory for the allocation of water in Iran. In the previous studies, researchers solved the
load shedding and power allocation problems by using a game theoretic (Bankruptcy) ap-
proach. These include the studies conducted by [21–27]. In the present research, in addition
to applying simple bankruptcy rules, a synthesis of bankruptcy rules with a bargaining
solution process is used to effectively address the power supply–demand mismatch. Vari-
ous methods can solve the bargaining problems; however, much-desired properties, such
as flexibility, invariance under changes in scale, unanimity, and Pareto optimality can be
satisfied by the Nash bargaining solution [28,29]. Safari et al., [30], Houba [31], Sgobbi [32],
Degefu, Dagmawi Mulugeta [21], Degefu, Dagmawi Mulugeta [33], and Qin et al. [34] used
the Nash bargaining solution for the management and allocation of water resources. Five
classical bankruptcy rules and the Nash bargaining theory are applied in this study for
power allocation among the four provinces of Pakistan; then, a method is applied for the
“selection of the best rule”.

The remainder of this paper is organized as follows. The background of the current
condition of the power sector in Pakistan is described in Section 2. The bankruptcy
allocation rules and the Nash bargaining theory are discussed in Section 3, and Section 4
summarizes the results. Finally, Section 5 concludes the paper.

2. Current Conditions of the Power Sector in Pakistan

In the last 15 years, the demand for energy in Pakistan has increased significantly. The
supply has failed to cope with the growth, and as a result, the supply–demand gap has
increased. As of 2020, the population of Pakistan has reached approximately 200 million. The
country’s economic growth has also been affected by this energy crisis [35]. Pakistan’s power
sector is managed by the Pakistan Water and Power Development Authority (WAPDA). The
installed capacity of the WAPDA is approximately 20,921 megawatts (MW) [35].
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According to the Energy Report by the State Bank of Pakistan [36], the peak generation
of electricity was only 14,468 MW, while the demand was 18,511 MW, with an electricity
shortage of 4043 MW. This supply–demand gap increases with the increase in demand
and adversely affects the economy. In summer days, owing to poor load management, the
load shedding in urban areas is for approximately 10 to 12 h a day, whereas the rural areas
suffer around 12 to 18 h of load shedding. Of the total net energy generated, transmission
and distribution (T&D) losses are very high, ranging between 13% and 37% [35].

According to [37], in terms of total peak consumption, among the five administrative
units of the country, Punjab has the highest demand for electricity (11,347 MW), followed
by Sindh (3943 MW), Khyber Pakhtunkhwa (KPK) (2054 MW), Baluchistan (962 MW), and
Azad Jammu Kashmir (205 MW), respectively (Table 1). Due to its extremely low demand,
the province of Azad Jammu Kashmir is not included in the allocation process. Consequently,
the remaining peak power demand of 18,306 MW is divided among the remaining four
provinces, against a total peak power generation of 14,263 MW. Therefore, a power deficit of
4043 MW is shared among the four provinces of Pakistan. The peak power demand, peak
power generation, and total power deficit of the four provinces are listed in Table 1.

Table 1. Peak power demand, peak power generation and total power deficit of the four provinces of Pakistan.

Province Peak Power Demand
(MW)

Peak Power Demand
(Total) (MW)

Peak Power Generation
(MW)

Total Deficit
(MW)

Punjab 11,347

18,306 14,263 4043
Sindh 3943
KPK 2054

Baluchistan 962

3. Bankruptcy Rules and Nash Bargaining Theory: Methods for Managing the
Allocation of Resources
3.1. Classical Bankruptcy Rules

The power allocation among the provinces of Pakistan was first performed using the
five classical rules of bankruptcy, which are applied when the total resources or assets
are insufficient to satisfy the demands of all agents (provinces, in this case). There are
two reasons for using bankruptcy rules for power allocation among Pakistan’s provinces.
First, in real bankruptcy problems, the claims are also exceeded by total assets. Second,
the bankruptcy rules are simple, easy to understand, and can be used by policymakers
for power sharing [38]. In economics, bankruptcy rules are used when the total assets are
not sufficient to satisfy the demands of all creditors. In this study, based on the theory of
economics, we assume that the total power is insufficient to satisfy the power demands
of all the provinces; therefore, the rules of bankruptcy can be used for power allocation
among the provinces.

We assume that there are ‘n’ number of claimants. The number of claimants is n ≥ 2,
whereas their claims are C = (c1, . . . , cn). A bankruptcy problem for power allocation is
defined as F (N, E, C); i = 1, 2, . . . , n. Here, N is the number of agents, E is the total resources,
ci is the claim of agent i. The bankruptcy problem aims to determine the allocation of each
agent, denoted by F (N, E, C) = xi, where xi ≥ 0; x = (xi, . . . , xn). In addition, 0 ≤ xi ≤ ci,
where x is the allocation of an agent.

The five bankruptcy rules used to allocate power supply among the provinces during
the times of power shortage are given as follows:

3.1.1. Proportional Rule (PRO)

The proportional rule (PRO) is given by:

ppro
i = ρci where ρ =

E
C

(1)

where E is total assets and C is the total amount of claims.
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3.1.2. The Constrained Equal Award (CEA) Rule

This rule is given by:

xCEA
i = min(λ, ci) where ∑

i∈N
min(λ, ci) = E (2)

CEA assigns each agent an equal share λ of E, except that no creditor receives more
than his or her claim.

3.1.3. The Constrained Equal Losses (CEL) Rule

This rule is defined as:

xCEL
i = max(0, ci − λ) where ∑

i∈N
max(0, ci − λ) = E (3)

In this rule, the losses of all agents are equal compared with their claims (λ), and no
agent receives a negative allocation.

3.1.4. The Talmud Rule

The Talmud Rule is derived by combining the CEL and CEA rules, and is given by:

xTAL
i =

 CEA
{

1
2 ci, E

}
i f E ≤ 1

2 C
1
2 ci + CEL

{
1
2 ci, E− 1

2 C
}

otherwise
(4)

3.1.5. The Piniles Rule

For each ci, xi Pin is calculated as follows [39]:

xPin
i =

 xCEA
i

{
1
2 c, E

}
i f E ≤ D

2
1
2 c + xCEA

i

{
1
2 c, E− D

2

}
i f E ≥ D

2

(5)

3.2. Power Allocation Using a Combination of the Asymmetric Nash Bargaining Theory and Power
Bankruptcy Concept

Building on earlier work [31–36], we plan to use a power allocation framework that
combines the asymmetric Nash bargaining solution concept with the bankruptcy theory to
solve the power-sharing problem among the four provinces in Pakistan.

In the power bankruptcy case, the power allocation problem can be given as (N, E, c,
x−), where N is the number of agents involved in a power dispute, E is the total amount of
power available for sharing among the agents, c is the amount of power claimed by the
agents, and x− is the amount of power allocated to the agent. In this step, the asymmetric
Nash bargaining theory is combined with the bankruptcy concept and applied to allocate
power. While applying this methodology, the disagreement allocation points (m1, m2,
m3, . . . , mn) and bargaining weights (wi = w1, w2, w3, . . . , wn) of the agents were also
considered to ensure equity and self-enforceability in a closed and bounded space. Apart
from providing a unique solution, such an optimization solution also satisfies a set of
desirable properties. The solution maximizes the area between the disagreement point (mi)
and the Pareto-optimal frontier (x−).

The Nash equilibrium point can determine the disagreement points, the minimum
benefit of each riparian, the maximum and minimum points, and other methods. In our
case, the vector of disagreement points (d1, d2, . . . di, . . . , dn) are defined as the benefits
of minimum power allocation (I1, I2, . . . , In) to riparians. This represents the minimum
benefit that agents can accept. Therefore, the individual rationality requirements must be
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reflected before the cooperation of the followers, so that the maximal and minimal solutions
are satisfied. For each agent, the disagreement point formula is defined as follows:

di = ui(mi) (6)

To solve the problem of minimal power allocation to each riparian, bankruptcy theory
can be used when the total available power is less than the total power demand. The
minimal power allocation formula for each riparian is given by:

mi = max(0, E− ∑
k 6=i

(ci)) (7)

Subject to:

E <
n

∑
i=1

ci (8)

The minimum power allocation to any province, especially to the provinces with more
minor claims, may become zero if we use Equation (7) for the minimum power allocation.
However, each province can demand a minimum amount of power λi in the power alloca-
tion process. Using the above theory of bankruptcy, the minimum power allocation may
be less than the minimum power requirement for each province λi. Therefore, to avoid the
case of an unreasonable minimum power allocation by bankruptcy theory, we propose the
following formula, which determines the minimum power allocation and considers the
minimum requirement for each riparian:

Ii = max(λi, E− ∑
k 6=i

ci) (9)

where λi is the minimum power requirement of each riparian, which, in our study, is
considered half of the demand of any province.

For the optimization problem, the respective power claims of the provinces serve as
the upper-bound core. According to [40], the optimization problem for the allocation of
power under the bankruptcy scenario is given by:

Maximize Nwi =

(
x−1 −

(
E− ∑

i∈N/{1}
ci

))w1
(

x−2 −
(

E− ∑
i∈N/{2}

ci

))w2

(
x−3 −

(
E− ∑

i∈N/{3}
ci

))w3

. . .

(
x−n −

(
E− ∑

i ∈N / {n}
ci

))wn (10)

The model above is constrained by feasibility and individual rationality. The claims
and disagreement points serve as the upper and lower bounds, respectively. Therefore, the
power-sharing optimization problem can be formulated as:

Maximize Nwi =

(
x−p −

(
E− ∑

i∈N/{P}
ci

))wp(
x−S −

(
E− ∑

i∈N/{S}
ci

))wS

(
x−B −

(
E− ∑

i∈N/{B}
ci

))wB
(

x−K −
(

E− ∑
i ∈N / {K}

ci

))wK (11)

Here, ∑n
i=1 wi = 1.

In Equation (11),
x−P is the optimized power allocation for Punjab.
IP is the lower core bound for Punjab.
x−S is the optimized power allocation for Sindh.
IS is the lower core bound for Sindh.
x−B is the optimized power allocation for Baluchistan.
IB is the lower core bound for Baluchistan.
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x−K is the optimized power allocation for Khyber Pakhtunkhwa (KPK).
IK is the lower core bound for Khyber Pakhtunkhwa (KPK).
The following constraints should be set for this allocation model:
The allocation of power to each agent (province) should be equal to or greater than its

lower core bound.
x−i ≤ Ii i = 1, 2, . . . . . . . . . , n (12)

The power allocation to each agent (province) should be more than its lower core
bound and less than its claim.

Ii ≤ x−i ≤ ci (13)

The total power allocation should be less than or equal to the total available power.

n

∑
i=1

x−i ≤ E (14)

Determination of Bargaining Weights

The optimization model in Equation (11) was applied to the power-sharing problem in
Pakistan. Three cases were analyzed in this study. In the first case, the bargaining weights
of all provinces were assumed to be equal. According to [41], asymmetric Nash solutions
induce symmetric Nash solutions; the converse is also true. In reality, all the provinces
are different in terms of their socio-economic and power loss status; hence, they have
different population and transmission losses. In the second case, therefore, the bargaining
weights of the riparian provinces were taken according to their population, to demonstrate
the importance of using different bargaining weights. According to the population of
these provinces, the bargaining weights for the provinces of Punjab, Sindh, KPK, and
Baluchistan are 0.55, 0.24, 0.15, and 0.06, respectively. These bargaining weights are directly
proportional to the population; that is, the greater the population of the province, the
greater the bargaining weight of the province.

In the third case, the bargaining weights of the provinces were taken in terms of the
length of their transmission lines. In Pakistan, the improper maintenance of transmission
lines results in T&D losses. The lengths of the transmission lines in kilometers for different
provinces are listed in Table 2. The greater the length of transmission lines in the province,
the higher the losses. Consequently, a greater length of the transmission line in the province
will lead to a higher weight and hence more allocation. According to the length of the
transmission lines for the provinces of Punjab, Sindh, KPK, and Baluchistan, the bargaining
weights are 0.56. 0.16, 0.13, and 0.15, respectively. As noted above, these bargaining weights
are also proportional to the length; that is, the greater the length of the transmission lines
in any province, the more its bargaining weight will be. The length of the transmission
lines (in kilometers) and population (in a million) for the four provinces in Pakistan are
shown in Table 2.

Table 2. Length of transmission lines (in kilometers) and population (in a million) for the four provinces in Pakistan.

Province Punjab Sindh Khyber Pakhtunkhwa (KPK) Baluchistan Total

Length of transmission lines (km) 28,921 8364 6954 7470 51,709

Population (in millions) 110 48 30 12 200

4. Results and Discussion
4.1. Results of the Bankruptcy Rules

The power allocation among the four provinces was determined using the five rules
of bankruptcy. The results are shown in Table 3. A comparison of the results shows that
the CEL rule favors agents with large claims, whereas the CEA rule prefers agents with
small claims. The values of the power allocation using the PRO rule are located between
the CEL and CEA rules. It is evident from the results that it is the most populous province
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with the highest demand. The allocation received by Punjab is the highest, followed by
Sindh, KPK, and Baluchistan.

Table 3. Power allocation under five “bankruptcy rules”.

Province PRO (MW) CEA (MW) CEL (MW) Talmud (MW) Piniles (MW)

Punjab 8840 7304 10,321 10,079 7304
Sindh 3027 3943 2917 2675.5 3943
KPK 1600 2054 1025 1027 2054

Baluchistan 751 962 0 481 962

4.2. Results of the Nash Bargaining Theory

The results of the Nash bargaining theory are presented in Table 4. The Nash bar-
gaining solution was applied under the three scenarios. The provinces are assigned equal
weights in the first scenario, whereas in the second and third, the provinces are assigned
weights according to the length of their transmission lines (greater length of transmission
lines result in higher weights) and population (higher population results in higher weights),
respectively. Table 5 shows the power allocation among the provinces as a percentage
of the power demand under all rules. Table 5 shows that when power is allocated using
homogenous weights, Punjab and Sindh receive 77 percent and 87 percent of its claims
respectively, whereas KPK and Baluchistan receive 100 percent of their claims. However,
when the power is allocated using heterogeneous weights, Punjab receives a higher pro-
portion of its claims; this is because Punjab has the highest length of transmission lines and
the highest population; because the highest weight is assigned to Punjab, it gets a higher
percentage of its claims. Sindh and KPK have shorter transmission lines and a smaller
population than Punjab, and therefore, the percentage of their claims is reduced when
heterogeneous weights are applied.

Table 4. Power allocation using Nash bargaining theory.

Province
Power Allocation Using
Homogeneous Weights

(MW)

Power Allocation Using Heterogeneous Weights
(Based on the Length of Transmission Lines)

(MW)

Power Allocation Using
Heterogeneous Weights

(Based on the Population of the Province)
(MW)

Punjab 8771 9913 9621
Sindh 3438 2717 2983
KPK 2054 1633 1658

Baluchistan 962 962 962

Table 5. Power allocation among the provinces as a percentage of power demand under the five bankruptcy rules and Nash
bargaining solution.

Riparian PRO
(%)

CEA
(%)

CEL
(%)

Talmud
(%)

Piniles
(%)

Nash
Bargaining

(Homogenous
Weights)

(%)

Nash
Bargaining

Heterogenous Weights
(Based on the Length of

Transmission Lines)
(%)

Nash
Bargaining

Heterogenous Weights
(Based on the Population

of the Province)
(%)

Punjab 77 64 74 89 64 77 87 85
Sindh 77 100 50 68 74 87 69 75
KPK 77 100 50 50 100 100 79 80

Baluchistan 77 100 0 50 100 100 100 100

4.3. Selection of the Most Appropriate Rule

The selection of the most appropriate rule is essential, as it helps agents reach an
agreement. The definition of equity in the distribution of resources is not clear. To select
the most appropriate allocation rule, we apply the method proposed by [19]. This method
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chooses a rule in which all stakeholders have the lowest dispersion of their total preferences
on that rule. Therefore, the allocations are ranked in ascending order for each stakeholder
separately. The priority vectors Ω are set for this reason, with elements wi. Here, wi is a
vector with elements of ϑji, where wi is the preference vector, i is the number of rules, and j
is the number of stakeholders. In the current study, 1 ≤ i ≤ 8 and 1 ≤ j ≤ 4.

The priority vector set for our study was Ω = {w1 , w2 . . . . . . . wn} in which w1 = (4, 3,
4, 2), w2 = (7, 1, 1, 1), w3 = (6, 8, 6, 4), w4 = (1, 7, 5, 3), w5 = (7, 5, 1, 1), w6 = (5, 2, 1, 1), w7 = (2,
6, 3, 1) and w8 = (3, 4, 2, 1). The priority vector wi was used for each bankruptcy rule. The
priority vector with the lowest distance from the intermediate value is considered the best,
denoted by w. The dispersion around the mean of vector i, δi, is calculated using Equation
(15) as follows:

δi =
∑n

j=1
(
ϑji − w

)2

n
=

∑n
j=1

(
ϑji −

∑n
j=1 ϑji

n

)2

n
(15)

As an example, for the CEA rule, we have,

w2 =
7 + 1 + 1 + 1

4
= 2.5

δ2 =
(2.5− 7)2 + (2.5− 1)2 + (2.5− 1)2 + (2.5− 1)2

4
δ4 = 6.75

Values of δi for all rules is presented in Table 6. The rule with the lowest δi is considered
the best allocation rule. The allocated power among the provinces as a percentage of their
power demand is presented in Table 5. Table 6 shows that CEA and Piniles rules are
ranked last, whereas the Proportionate rule is ranked first. It should be noted that the
Proportionate rule is considered best here only according to the current scenario. Thus,
with a change in the supply–demand gap, the best rule will also change.

Table 6. Ranking of the power allocation rules (bankruptcy and Nash bargaining solution).

Province PRO CEA CEL Talmud Piniles

Nash
Bargaining

(Homogenous
Weights)

Nash
Bargaining

Heterogenous Weights
(Based on the Length of

Transmission Lines)

Nash
Bargaining

Heterogenous Weights
(Based on the Population

of the Province)

δi 0.68 6.75 2.00 5.00 6.75 2.68 3.50 1.25
Rank 1 7 3 6 7 4 5 2

5. Conclusions

The five rules of bankruptcy and the Nash bargaining theory were applied in this
study for power allocation among the provinces of Pakistan. The results demonstrate
that for each of the five bankruptcy rules and the Nash bargaining theory, the power
allocations are different. Therefore, different agents (provinces) may choose different
allocation rules. In addition, other factors, such as the population and the length of the
transmission lines in each province, are not taken into account using the simple bankruptcy
rules. Because different agents (provinces) have different risks of exposure, the resource
allocation rules should also take into account these factors so that allocation is deemed
“equitable and reasonable” by all agents (provinces). Hence, in the Nash bargaining theory,
power allocation is also accomplished using heterogeneous weights, which takes into
account the ”population of each province” and the “length of the transmission lines in
each province.” Although these allocation rules provide an appropriate vision for power
allocation, the distribution of power among the agents (provinces) is a complex task that
cannot be solved solely by applying mathematical methods. Negotiations between the
administrative units (provinces) of Pakistan are recommended, which would help the
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provinces reach an agreement. The method applied for the selection of the best rule would
help administrative units (provinces) reach a consensus. It is expected that the research
findings will help resolve the increasing power disputes between the administrative units
(provinces) of Pakistan.
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