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Abstract: Optimization problems and their solution by symbolic regression methods are considered.
The search is performed on non-Euclidean space. In such spaces it is impossible to determine a
distance between two potential solutions and, therefore, algorithms using arithmetic operations of
multiplication and addition are not used there. The search of optimal solution is performed on the
space of codes. It is proposed that the principle of small variations of basic solution be applied as a
universal approach to create search algorithms. Small variations cause a neighborhood of a potential
solution, and the solution is searched for within this neighborhood. The concept of inheritance
property is introduced. It is shown that for non-Euclidean search space, the application of evolution
and small variations of possible solutions is effective. Examples of using the principle of small
variation of basic solution for different symbolic regression methods are presented.

Keywords: symbolic regression; numerical measurement; small variation; control synthesis;
knapsack problem

1. Introduction

All optimization problems can be divided into two large classes. One class includes
the problems, where a target function is calculated on values of elements of search space.
In problems of another class, the calculation of target function is performed on elements
from one space, and the search for optimal solutions is done on the other space with
other metrics. These metrics do not coincide, although one-to-one mapping exists between
these spaces. The problems of the second class will be referred to as the optimization in
non-Euclidean space or, briefly, non-numerical optimization.

All NP-hard problems belong to non-numerical optimization. For solution of non-
numerical optimization problems, random search or complete enumeration algorithms
are usually used, or if the problem is of great importance then some special algorithms
are developed.

Recently, symbolic regression methods have appeared. They can be applied to a non-
numerical optimization. All methods of symbolic regression search for optimal solutions
on a space of codes. The first method of symbolic regression is genetic programming
(GP) [1]. The author of genetic programming applied a genetic algorithm to search for an
optimal program code. For this purpose, a program was presented in a universal form
with prefix notation. Each operator is the code of operator and codes of operands. The
codes of other operators may be operands as well. The entire structure can be presented as
a tree. Each node of the tree is associated with an operator. The number of branches from a
node equals the number of operands for the operator associated with the node. Variables
and constant parameters are placed on leaves of the tree.

One of main achievements of the author of GP is that he managed to apply genetic
algorithm (GA) to search for a solution encoded by a complex computational operator
tree. To do this, it was necessary to change the crossover operation of GA. In GP, the
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crossover operation is performed as an exchange of two branches of the trees, and it is not
like crossing genes of living organisms.

GA is one of the few optimization algorithms that does not use arithmetic operations
when constructing new possible solutions. Even when searching for solutions on a vector
space with a numerical metrics crossover, mutation operations are applied to Gray codes
of possible solutions.

Nowadays, there are many symbolic regression methods, such as grammatical
evolution [2], Cartesian GP [3], analytic programming [4], network operator method [5],
parser-matrix evolution [6], complete binary GP [7] including sparse regression [8–10], and
others [11–15], for finding solutions to various non-numerical optimization problems in which
it is necessary to find optimal structures, graphs, constructions, formulas, mathematical
expressions, schemes, etc.

Some known applications in different areas are robotics [16], code cracking [17], design
of antennas [18], Rubik’s cube solving [19], “deriving” partial differential equations [20],
control synthesis [21], extraction of explicit physical relations [22,23], etc.

The basic idea behind creating symbolic regression methods is to code possible solu-
tions in a computer-friendly way. Then, it is necessary to develop a crossover operation
so that it results in the correct codes for new possible solutions. To avoid the problem of
constructing rules for crossover of complex codes of symbolic regression methods, the
principle of small variations of the basic solution was formulated in [24].

The principle of small variations emerged as a result of the analysis of the work of
genetic algorithms. It was noticed that after many generations, a large number of the same
or similar codes had been produced. We concluded that with small changes in the Gray
code, part of the solutions had nearly the same values of quality criterion. Thus, it was
suggested to organize the search not on the space of all possible solutions but on the space
of variations of some solution.

Since authors have used symbolic regression methods mainly for control synthesis
problems, practitioners in this area can create rather good control systems by applying
known analytical methods, experience, and intuition. We propose to search for the optimal
solution in the neighborhood of good basic solutions.

This work continues the study of the principle of small variations of the basic solution.
The paper defines some additional properties that must be satisfied by small variations in
order to find the optimal solution using the GA more effectively than a random search.

The rest of the paper is organized as follows. The optimization problem in non-
Euclidean space is described in Section 2. The principle of small variations and its properties
are discussed in Section 3. In Section 4, small variations for different symbolic regression
methods are presented. Two case studies are given in Section 5: a control synthesis problem
for mobile robot and a knapsack problem, both solved using universal approach of small
variations. Results and Discussion are given in Sections 6 and 7.

2. Optimization Problem in Non-Euclidean Space

Let us start from some basic definitions.

Definition 1. Optimization in a non-numerical space is an optimization when a target function is
calculated for elements in a space with one metrics, and the search of optimal solution is performed
in a space with other metrics, and these two metrics do not coincide.

In many optimization problems, a target function is calculated for elements in the
space of real vectors or functions. Metrics in these spaces are Euclidean distance or the
maximal distance between functions for one value of argument

dR(x1, x2) = ‖x1 − x2‖2 =

√
n

∑
i=1

(x1
i − x2

i ), (1)
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dC(y1(·), y2(·)) = max
a6t6b

|y1(t)− y2(t)|, (2)

dC(y1(·), y2(·)) = max
a6t6b

‖y1(t)− y2(t)‖2, (3)

where x1, x2 ∈ Rn, y1(·), y2(·) ∈ C[a, b], y1(·), y2(·) ∈ C[a, b].

f0(x) : Rn → R1, (4)

J(y(·)) : C[a, b]→ R1, (5)

J(y(·)) : C[a, b]→ R1, (6)

When calculating the target function, arithmetic operations are performed on the
components of possible solutions.

The search for the optimal solution consists of performing certain actions on the
elements of spaces, for example, calculating the gradient, addition, multiplication by scalars,
etc., which also includes arithmetic operations on the components of possible solutions in
order to obtain new possible solutions with the optimal value of the target function.

There are optimization problems in which the target function is calculated over the
elements of possible solutions presented in spaces with metrics (1)–(3), but the possible
solutions and the actions performed on them to obtain new solutions are presented in a
different space, with different metrics. Let us call this generalized space the code space

s ∈ S, (7)

where s is a code of possible solution from space with numerical metrics (1)–(3), S is a
code space.

There is a one-to-one correspondence between the code space and the spaces with
numerical metrics

x = ΩR(s) : S→ Rn, (8)

y(·) = ΩC(s) : S→ C[a, b], (9)

y(·) = ΩC(s) : S→ C[a, b]. (10)

It is also possible to define metrics in the code space, for example, the Levenshtein [25]
or Hamming distance or some other, but these metrics will not be the same for the corre-
sponding elements from the spaces with distances (1)–(3). It means that if the inequality
is satisfied

dS(s1, s2) < dS(s1, s3), (11)

where s1, s2, s3 ∈ S, then the inequality

dG(ΩG(s1), ΩG(s2)) < dG(ΩG(s1), ΩG(s3)), (12)

G ∈ {R, C, C}, may not be satisfied.
Typical optimization problems in a space with a non-numerical metrics are NP-hard

problems. For example, the traveling salesman problem (TSP), when you need to visit
all towns once minimizing some criterion (route). In the problem, the target function is
calculated in a space with Euclidean metrics. Each possible route is given by the order
of towns. A possible solution code is a combinatorial permutation of indices of towns.
It is believed that the problem of solving many NP-hard problems is that the search for
the optimal solution is performed in one space, and the value of the target function is
calculated in another space.

In the second half of the 20th century, a genetic algorithm appeared [26]. The algorithm
was designed to find the optimal solution in the vector space. The search for the optimal
solution is done on the space of Gray codes, i.e., possible solutions are transformed from
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the vector space into the space of Gray codes. Genetic operations are performed on the
Grey codes. Then, to evaluate the new codes of possible solutions they are decoded into
real vectors. Such complications in the search are most likely associated with the fact that
the problem of global optimization is being solved, and the target function is not unimodal.

This work is devoted to the methods of symbolic regression. These techniques
emerged as a development in genetic programming [1]. Here, we use symbolic regression
to find the mathematical expression of some function coded in some way. Then, GA is
applied to these codes to find the optimal solution.

Note that classical GA performs the crossover operation similar to the crossover of
genes in living organisms. The crossing point is determined randomly and the tails of the
genes change after the crossing point. If GA crosses two identical codes then the same
codes are obtained as a result of crossover.

In GP, the code for a possible solution is a computational tree. To encode a mathe-
matical expression, it is necessary to determine a basic set of elementary functions. Each
elementary function can be encoded by two integers, the function index and the number of
its arguments. The computational tree of mathematical expression is a sequence of codes of
elementary functions. Unlike codes in GA, codes of different mathematical expressions in
GP have different lengths. Therefore, to perform the crossover, we need random crossing
points for each parent. Crossover is performed by exchanging branches starting from
crossing points. Since the sizes of the branches are different, the lengths of the offspring
differ from the lengths of the codes of the parents. The crossover in GP is not similar to
crossover of genes in living organisms. When crossing two identical codes we obtain two
different codes due to two different crossover points.

Note that when searching for the structure of the mathematical expression, it is
necessary to use the code space, since the mathematical notation of a function itself is
also a specific code, in a space with a non-numerical metrics. Previously, the search for
mathematical expressions ceased to search parameters with some accuracy. In the search
process these mathematical expressions could become more complex, as happens in series
or in neural networks. GP and other symbolic regression methods allow searching not only
for parameters but also for the structure of mathematical expressions. Nowadays, many
symbolic regression methods have emerged that eliminate some of the disadvantages of
genetic programming. For example, due to redundancy, all codes of possible solutions may
have the same length.

All methods of symbolic regression use special operations of crossover and mutation,
which allow constructing codes for new possible solutions. It should be noted that, due
to the complexity of the code, crossover operations can create new possible solutions that
do not preserve the properties of the parents as in classical GA. In this case, complex
operations of crossover and mutation can generate new possible solutions such as random
number generators.

The effectiveness of symbolic regression methods is usually compared to random
search. This means that the operations of crossover and mutation of symbolic regression
methods should generate a set of codes of new possible solutions in which the guaranteed
best possible solution has a value of target function less than the best possible in the set of
codes of the same cardinality, generated randomly.

Let us define the inheritance property of crossover for symbolic regression methods.

Definition 2. Symbolic regression method has an inheritance property, if at the performing
crossover operation for M randomly selected possible solutions, bαMc, where 1/M < α 6 1,
new possible solutions exist that have a value of target function that differs from parent values by
no more than ∆ > 0.

Theorem 1. For the symbolic regression method with the inheritance property to be more efficient
than the random search in solving optimization problems in a non-numerical space, it is enough
that the value of the target function is uniformly distributed from f− to f+ and f ∗ < α/2 f+ +
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(1− α/2) f−, where f ∗ is a value of functional of possible solution, α is a neighborhood in the space
of solutions with values of functionals differ from f ∗ no more than α/2.

Proof. Let us find the possible solution with the target function f ∗. Then, according to the
condition of the theorem, random search will find a possible solution with the value of
target function f̃ < f ∗ with probability

pRS( f̃ < f ∗) =
f ∗ − f−

f+ − f−
. (13)

In symbolic regression, the probability of getting into the neighborhood of parent
solution is α. Due to uniform distribution, half of the solutions is better than the parent
solution, and the other half is worse and, thus, the probability of finding the possible
solution with target function f̃ < f ∗ according to inheritance property is

pS( f̃ < f ∗) =
α

2
. (14)

Then pS > pRS if the condition is fulfilled

f ∗ <
α

2
f+ +

(
1− α

2

)
f−. (15)

Consider a universal approach to creating symbolic regression methods that most
likely preserves the inheritance property.

3. Principle of Small Variations of Basic Solution

The principle of small variations is universal and can be applied to any symbolic
regression method. To apply the principle, small variations are initially determined for the
code of symbolic regression method. Small variation is coded by an integer vector of small
dimension. This code contains the information required to perform the small variation.
Then, one possible solution, let us name it a basic solution, is encoded by the method of
symbolic regression. The basic solution is set by the researcher, and it is the closest to the
optimal solution of the problem. All other possible solutions are determined by ordered
sets of vectors of small variations. The search for the optimal solution is performed by the
GA, which is called variational genetic algorithm (VarGA), that searches for the optimal
solution on the space of ordered sets of vectors of small variations. During the search and
after a given number of generations, the basic solution is replaced by the best possible
solution found by this moment.

Let us consider application of the principle of small variations in detail. In general,
the elements of the code space of the non-numerical optimization problem can be written
in the form of ordered sets of integer vectors

Ξ = {S1, S2, . . . }, (16)

where Si is a coded element.
Each element of (16) consists of a given number of integer vectors

Sk = (sk,1, sk,2, . . . , sk,nk ). (17)

Here, sk,j is an integer vector, j = 1, nk, nk is a length of one element code,

sk,j = [sk,j
1 . . . sk,j

r ]T , (18)

where r is a length of code vector.
An element of code can be a vector, a matrix or an ordered set of matrices. In general,

these constructions of code can always be presented as an ordered set of integer vectors
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if you do not use special mathematical operations for them. For example, if a code is an
integer matrix

A = [ai,j], i = 1, m, j = 1, n, (19)

then
S = (s1, . . . , sm), (20)

where
si = [si

1 = ai,1 . . . si
n = ai,n]

T , i = 1, m. (21)

Hence, the code of the symbolic regression method is an ordered set of integer vectors.
A set can have a different number of vectors, but all integer vectors have the same number
of elements.

Let us introduce an elementary variation of the code of a non-numerical element.

Definition 3. An elementary variation of the code is the replacement of one element of an inte-
ger vector.

Replacement of one element does not always result in a new valid code. There are
certain coding rules that should not be violated. Let us define a small variation.

Definition 4. A small variation is the required minimum set of elementary variations that are
necessary to obtain valid code of the element from another valid code.

In some symbolic regression methods, a small variation consists of one elementary
variation, and in other methods, several elementary variations are needed.

For a given set of valid codes, let us define a finite set of small variations

Ω(Ξ̃) = {δ1(S), . . . , δM(S)}. (22)

Completeness is the main property of a set of small variations for a set of valid codes
with bounded length.

Definition 5. A set of small variations is complete if for any two valid codes ∀Si, Sj ∈ Ξ it is
always possible to find a finite number of small variations to obtain a valid code Sj ∈ Ξ from valid
code Si ∈ Ξ.

Sj = δk1(. . . (δkd
(Si) . . .). (23)

Any small variation is a mapping function of set of valid element codes into itself

δk(S) : Ξ→ Ξ, δk(S) ∈ Ω. (24)

Let us define the distance between two valid codes.

Definition 6. The distance between two valid codes equals the minimum number of small variations
to obtain a valid code from another valid code.

d(Si, Sj) = min
d
{Sj = δk1(. . . (δkd

(Si) . . .)}, (25)

where δkr (S) ∈ Ω(Ξ), r = 1, . . . d.
Here, the distance corresponds to the Levenshtein metrics [25] but for symbolic

regression codes.
Let us define the M-neighborhood ∆M(S) of code S.

Definition 7. Neighborhood ∆R(S) of code S is a set of all codes that are less than R far from S.
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∀Si ∈ ∆R(S0) ⊆ Ξ→ d(Si, S0) 6 R. (26)

To describe a variation let us introduce a vector of variation

w = [w1 . . . wr]
T , (27)

where r is a dimension of the vector of variation that is determined by the information
required to perform a small variation δi(S). It depends on the symbolic regression method.
For example, w1 is an index of small variation, w2, wr−1 is the index of the variable symbol
in the code or the indices of the element in vector or in matrix by which the variable element
is determined, wr is the new value of the variable element of the code S.

Vector of variation is an operator that influences the code and transforms it into
another code

Sj = w ◦ Si. (28)

According to the principle of small variations of the basic solution in the code space for
symbolic regression methods, let us define a basic solution. The basic solution is set by the
researcher based on the assumption that this possible solution should be the closest to the
desired optimal solution. Here, the researcher may interfere with the machine search and
“advise” the machine where to search for the optimal solution. If a researcher is looking
for, for example, a mathematical expression for solving identification or a control synthesis
problem, then he can simplify the statement, find an analytical solution, and use it as a
basic one. Next, he encodes the basic solution using the symbolic regression method

S0 = (s1, . . . , sn0). (29)

Other possible solutions are given by the sets of vectors of variations

B = {W1, . . . , WH}, (30)

where
Wi = (wi,1, . . . , wi,R). (31)

Thus, any possible solutions Si is in R-neighborhood of basic solution

Si = Wi ◦ S0 = wi,R ◦wi,R−1 ◦ · · · ◦wi,1 ◦ S0, (32)

that is why d(S0, Si) 6 R, 1 6 i 6 H.
Now, instead of searching for a solution on the entire set of codes (16), a solution is sought

in the neighborhood of a given basic solution on the space of vectors of variations (30).
To find the optimal solution, we use a genetic algorithm. In this case, there is no need

to develop special operations for crossover and mutation.
When performing the crossover, we select two sets of vectors of variations randomly

or according to methods used in theory of GA

Wi = (wi,1, . . . , wi,R), Wj = (wj,1, . . . , wj,R). (33)

Define a crossover point c ∈ {1, . . . , R}. Exchange the vectors of variations after
the crossover point in the selected sets. As a result, we obtain two new sets of vectors
of variations

WH+1 = (wi,1, . . . , wi,c, wj,c+1, . . . , wj,R), (34)

WH+2 = (wj,1, . . . , wj,c, wi,c+1, . . . , wi,R). (35)

Two new sets of vectors of variations are two new codes in the neighborhood of
basic solution

SH+1 = WH+1 ◦ S0 = wH+1,R ◦ . . . ◦wH+1,1 ◦ S0, (36)
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SH+2 = WH+2 ◦ S0 = wH+2,R ◦ . . . ◦wH+2,1 ◦ S0. (37)

To perform the mutation in the obtained sets (34), (35), randomly select one of the
vectors and replace it with a randomly generated vector of variations.

4. Small Variations for Symbolic Regression Methods

Nowadays, many symbolic regression methods are known. Let us name some of them:
GP [1], analytic programming [4], grammatical evolution [2], Cartesian GP [3], inductive
genetic programming [13], network operator method [5], parser-matrix evolution [6], and
complete binary GP [7]. Only eight symbolic regression methods are listed here. All these
methods, except for the network operator method, do not use the principle of small
variations of the basic solution. The principle of small variations was firstly applied in the
network operator method. If we apply the principle of small variations of the basic solution
to the rest seven symbolic regression methods, then we get seven more new methods.
Symbolic regression methods with the principle of small variations of the basic solution
have the first word “variational” in their name. For example, variational GP, variational
Cartesian GP, etc. Consider the application of the principle of small variations of the basic
solution to GP.

4.1. Network Operator Method

The network operator method encodes mathematical expressions in the form of
directed graphs [5,27]. For coding, the method uses functions with one and two arguments.
On the graph, functions with one argument are associated with the edges, functions
with two arguments are associated with the nodes, and the arguments of the encoded
mathematical expression are associated with the source nodes of the graph. Functions with
two arguments must be commutative, associative, and have a unit element. An integer
matrix of the network operator is used to store the code in the computer memory.

Let us consider an example of coding in the network operator method. Let a mathe-
matical expression be given as

y = sin(cos(q1x1 + q2)) + exp(−q2x2), (38)

where q1, q2 are parameters, x1, x2 are variables. The parameters and the variables are
arguments of the mathematical expression.

To encode a mathematical expression, it is sufficient to use the following sets of
arguments and elementary functions

The set of arguments
F0 = {x1, x2, q1, q2}. (39)

The set of function with one argument

F1 = { f1,1(z) = z, f1,2(z) = −z, f1,3(z) = sin(z),
f1,4(z) = cos(z), f1,5(z) = exp(z)}. (40)

The set of function with two arguments

F2 = { f2,1(z1, z2) = z1 + z2, f2,2(z1, z2) = z1z2}. (41)

The graph of the network operator for (38) is given in Figure 1. In the source nodes
of the graph, there are arguments of the mathematical expression. The remaining nodes
contain indices of functions with two arguments. Next to the edges there are indices of
functions with one argument. The indices correspond to the second index of elements in
the sets of elementary functions (40) and (41). The nodes are enumerated according to
topological sorting in their upper parts. The number of the node from which the edge exits
is less than the number of the node where the edge enters. Such enumeration is always
possible for graphs without loops, and it allows one to obtain an upper triangular matrix
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of the network operator. For nodes 8 and 9, the second argument is not specified. We use a
unit element, zero for the addition function, as the second argument.

Figure 1. The network operator graph for mathematical expression (38).

The network operator matrix for (38) is the following

Ψ =



0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 2 0 1 0 0 0
0 0 0 0 0 2 0 2 0 0
0 0 0 0 0 0 1 0 4 0
0 0 0 0 0 0 0 1 0 5
0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 1


. (42)

The numbers of rows and columns in the network operator matrix correspond to the
node number in the graph. Edges exiting the node are located in a row, edges entering a
node are located in a column. The diagonal elements contain indices of functions with two
arguments. The rest nonzero elements are the indices of functions with one argument.

Let us introduce small variations for the code of the network operator: 1—replacement
of a nonzero off-diagonal element, 2—replacement of a nonzero diagonal element, 3—
replacement of a zero off-diagonal element, 4—zeroing of an off-diagonal nonzero element.
Small variation 4 is performed only if at least one off-diagonal nonzero element remains in
the given row and in the given column.

To present a small variation use a vector of four components

w = [w1 w2 w3 w4]
T , (43)

where w1 is an index of small variation, w2 is an index of row, w3 is an index of column, w4
is a new value of element.

Suppose that we have a set of four vectors of variations

w1 = [1 7 9 2]T ,
w2 = [4 6 8 1]T ,
w3 = [2 6 6 1]T ,
w4 = [3 5 9 3]T .

(44)



Appl. Sci. 2021, 11, 5081 10 of 19

If we apply this set of variations to the network operator matrix (42), we obtain a new
network operator matrix

w4 ◦w3 ◦w2 ◦w1 ◦Ψ =



0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 2 0 1 0 3 0
0 0 0 0 0 1 0 2 0 0
0 0 0 0 0 0 1 0 2 0
0 0 0 0 0 0 0 1 0 5
0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 1


. (45)

Note that the second variation w2 cannot be performed since, after this, there will be
no nonzero nondiagonal elements left.

New network operator matrix (45) corresponds to the following mathematical expression

y = sin(−(q1x1 + q2) + sin(q1x1)) + exp(−(q2 + x2)). (46)

4.2. Variational Genetic Programming

The GP code for a mathematical expression is a computational tree. Arguments of a
mathematical expression are located on the branches of the tree. The computational tree
for the mathematical expression (38) is shown in Figure 2.

Figure 2. GP computational tree for mathematical expression (38).

In GP computational tree functions are placed in the nodes. The functions from the
sets (40) and (41) were used. The number of arguments in the leaves of the tree must
match the number of times these arguments are used in the expression. For example, the
parameter q2 appears in a mathematical expression twice, so it appears twice in the leaves
of the tree.

To store the computational tree in the computer memory a vector of two components
is used

sGP = [s1 s2]
T , (47)

where s1 is a number of function arguments, s2 is the function index.
Arguments of a mathematical expression are represented as functions without arguments

F0 = { f0,1 = x1, f0,2 = x2, f0,3 = q1, f0,4 = q2}. (48)
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GP code for (38) is

S = ([2 1]T , [1 3]T , [1 4]T , [2 1]T , [2 2]T , [0 1]T , [0 3]T ,
[0 4]T , [1 5]T , [1 2]T , [2 2]T , [0 2]T , [0 4]T).

(49)

Let us define small variations for GP: 1—change of the second component of the
function code vector, while the value of the second component indicates the index of the
element from the set given by the first component; 2—removal of the vector of the function
code with one argument; 3—insertion of a function code vector with one argument; 4—
increasing the value of the first component of the function vector code, while the vector of
the argument code is inserted after the code of the function; 5—decreasing the value of the
first component of the function vector code by one, while deleting the first argument code
encountered after the variable code. If a contradiction arises when performing a variation,
then the small variation is not performed.

To code small variation for GP we use a vector of variation of tree components

w = [w1 w2 w3]
T , (50)

where w1 is a type of variation, w1 ∈ {1, . . . , 5}, w2 is an index of variable element, w3 is a
value of new element.

Suppose that for a GP code (49) of expression (38) the following variations are defined

w1 = [1 4 2]T ,
w2 = [2 3 1]T ,
w3 = [4 9 1]T

w4 = [3 5 4]T

w5 = [5 12 1]T

(51)

Perform small variations for code (49)

w1 ◦ S = ([2 1]T , [1 3]T , [1 4]T , [2 2]T , [2 2]T , [0 1]T , [0 3]T ,
[0 4]T , [1 3]T , [1 2]T , [2 2]T , [0 2]T , [0 4]T),

(52)

w2 ◦w1 ◦ S = ([2 1]T , [1 3]T , [2 2]T , [2 2]T , [0 1]T , [0 3]T ,
[0 4]T , [1 3]T , [1 2]T , [2 2]T , [0 2]T , [0 4]T),

(53)

w3 ◦w2 ◦w1 ◦ S = ([2 1]T , [1 3]T , [2 2]T , [2 2]T , [0 1]T ,
[0 3]T , [0 4]T , [1 3]T , [2 2]T , [0 1]T ,
[2 2]T , [0 2]T , [0 4]T),

(54)

w4 ◦w3 ◦w2 ◦w1 ◦ S = ([2 1]T , [1 3]T , [2 2]T , [2 2]T , [1 4]T ,
[0 1]T , [0 3]T , [0 4]T , [1 3]T , [2 2]T ,
[0 1]T , [2 2]T , [0 2]T , [0 4]T),

(55)

w5 ◦w4 ◦w3 ◦w2 ◦w1 ◦ S = ([2 1]T , [1 3]T , [2 2]T , [2 2]T , [1 4]T ,
[0 1]T , [0 3]T , [0 4]T , [1 3]T , [2 2]T ,
[0 1]T , [1 2]T , [0 4]T).

(56)

As a result of small variations (51) for code (49), we obtain a code (56) of expression

y = sin(q1q2 cos(x1)) + sin(−x1q2). (57)

4.3. Variational Cartesian Genetic Programming

Cartesian genetic programming (CGP) does not use graphs to present codes of ex-
pressions. All elementary functions are combined into one set. The number of function
arguments is determined by its index. A mathematical expression is coded as a sequence
of calls of elementary functions. Each function call is coded by an integer vector. The
first element of the vector is the function index, the remaining elements are the indices
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of elements from the set of arguments. The result of the calculation of the function call is
immediately added to the set of arguments so that it can be used in subsequent calls.

Consider an example of coding mathematical expression (38) by CGP. We will use the
set of arguments (39), combine all functions from (40) and (41) into one set, and exclude
identity function f1,1(z) = z

F = { f1(z) = −z, f2(z) = sin(z), f3(z) = cos(z),
f4(z) = exp(z), f5(z1, z2) = z1 + z2, f6(z1, z2) = z1z2)}.

(58)

Since in (58) there are only functions with one and two arguments, it is sufficient to use
a vector of three elements to encode a function call. For the function with one argument,
the third element is not used.

The CGP for a mathematical expression (38) is as follows

S =

6
3
1

,

5
5
4

,

3
6
1

,

2
7
2

,

6
4
2

,

1
9
3

,

 4
10
4

,

 5
8
11

. (59)

Small variation of code in CGP is a change of one element of the code [28]. To present
a small variation, it is enough to use an integer vector of three elements

w = [w1 w2 w3]
T , (60)

where w1 is an index of column in the code, w2 is an index of row in the column w1, and
w3 is a new value of the element.

If we vary the first element of the vector of an elementary function, then its new
value is determined by the index of the element from the set of elementary functions (58).
If we vary some other element, then its value must be less than the sum of the number of
elements in the set of arguments (39) and the index w1 of the varied call vector.

Let us define some variations of the CGP code of (59).

w1 = [2 1 3]T ,
w2 = [3 2 5]T ,
w3 = [6 2 8]T ,
w3 = [6 1 6]T .

(61)

Having performed small variations (61), we obtain the following CGP code

w4 ◦w3 ◦w2 ◦w1 ◦ S =

6
3
1

,

3
5
4

,

3
5
1

,

2
7
2

,

6
4
2

,

6
8
3

,

 4
10
4

,

 5
8
11

. (62)

that corresponds to mathematical expression

y = exp(q1 sin(cos(q1x1))) + sin(cos(q1x1)). (63)

The disadvantage of CGP is that some calls of function in the final mathematical
expression may not be used.

4.4. Variational Complete Binary Genetic Programming

Complete binary genetic programming (CBGP) encodes mathematical expressions as
complete binary trees. For this structure, only functions with one or two arguments are
used. Functions with two arguments are associated with tree nodes, functions with one
argument are are associated with tree branches. Arguments of mathematical expressions
and unit elements for functions with two arguments are placed on the leaves of the tree.
Since the tree is complete, the number of elements at each level is known. There is no
need to specify the number of arguments for the function when writing code to store it
in computer memory. The quantity of arguments is determined by the position of the
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function in the code. Unit elements for functions with two arguments are added to the set
of arguments.

To encode a mathematical expression (38) by CBGP, we use sets of elementary func-
tions with one and two arguments (40) and (41). We add unit elements for functions with
two arguments in the set of arguments (39), i.e. zero for addition and one for multiplication

F0 = ( f1 = x1, f2 = x2, f3 = q1, f4 = q2, f5 = 0, f6 = 1). (64)

A CBGP computational tree for mathematical expression (38) is given in Figures 3 and 4.

Figure 3. CBGP computational tree for mathematical expression (38).

Figure 4. CBGP computational tree for mathematical expression (38) (continued).

CBGP code is an ordered set of function indices from a tree, written sequentially from
left to right. At the last level, the indices of arguments from the set (64) are indicated.

The CBGP code for mathematical expression (38) is

S = (1, 1,
3, 5, 1, 1,
4, 1, 2, 1, 1, 2, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 5, 6, 5, 6, 5, 2, 5, 4, 5, 6, 5, 6, 5).

(65)

Here, for convenience, the CBGP code is presented on different lines according to the
levels of the tree. Each level k contains 2k number of functions with one argument and the
same number of functions with two arguments. Altogether, there are 2k+1 elements at the
level k. The total number of elements L in the CBGP code for a binary tree with K levels is
calculated as

L =
K

∑
k=0

2k+1 = 21 + 22 + . . . + 2K+1 = 2K+2 − 2. (66)

In the considered example, we have K = 4 levels and thus 24+2 − 2 = 62 elements.
To determine whether element fsα , where α is an index of element in the code, belongs

to one of the sets F0, F1, or F2, we use the following relations

fsα ∈


F0, if 2k+2 − 2k 6 α 6 2k+2 − 2 and k = K
F1, if 2k+1 − 1 6 α 6 2k+2 − 2k − 2
F2, if 2k+2 − 2k 6 α 6 2k+2 − 2 and k < K

, (67)
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where k is the smallest number, that satisfies inequality

α 6 2k+2 − 2. (68)

To present a small variation of CBGP code, let us use a vector of two elements

w = [w1 w2]
T , (69)

where w1 is an index of element position and w2 is a new value of element.
Consider an example of small variations of CBGP code (65) that describes the mathe-

matical expression (38)
w1 = [12 1]T ,
w2 = [55 3]
w3 = [7 5]T

w4 = [50 1]

. (70)

Having performed variations (70), we obtain a new CBGP code

S = (1, 1,
3, 5, 1, 1,
5, 1, 2, 1, 1, 1, 2, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 6, 5, 6, 5, 3, 5, 4, 5, 6, 5, 6, 5).

(71)

This code presents a new mathematical expression

y = sin(exp(q1x1 + q2 + x1)) + exp(−(q1 + q2)). (72)

5. Computational Experiments
5.1. Case 1. Control Synthesis for Mobile Robot

As an example, let us consider the application of the variational symbolic regression
method for control synthesis of a mobile robot. In the problem, it is necessary to find a
mathematical expression for the control function that transfers the object from the set of
initial conditions to the terminal one with the optimal value of the quality criterion.

The mathematical model [29] of control object is

ẋ1 = 0.5(u1 + u2) cos(x3),
ẋ2 = 0.5(u1 + u2) sin(x3),
ẋ3 = 0.5(u1 − u2),

(73)

where x = [x1 x2 x3]
T is a state vector, u = [u1 u2]

T is a control vector.
The control is constrained

u− = −10 6 ui 6 10 = u+, i = 1, 2. (74)
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The initial condition is a set of 30 states

X0 = {x0,1 = [2 2.5 5π/12]T , x0,2 = [1 2.5 5π/12]T , x0,3 = [0 2.5 5π/12]T ,
x0,4 = [−1 2.5 5π/12]T , x0,5 = [−2 2.5 5π/12]T ,
x0,6 = [2 − 2.5 5π/12]T , x0,7 = [1 − 2.5 5π/12]T ,
x0,8 = [0 − 2.5 5π/12]T , x0,9 = [−1 − 2.5 5π/12]T ,
x0,10 = [−2 − 2.5 5π/12]T , x0,11 = [2 2.5 0]T , x0,12 = [1 2.5 0]T ,
x0,13 = [0 2.5 0]T , x0,14 = [−1 2.5 0]T , x0,15 = [−2 2.5 0]T ,
x0,16 = [2 − 2.5 0]T , x0,17 = [1 − 2.5 0]T , x0,18 = [0 − 2.5 0]T ,
x0,19 = [−1 − 2.5 0]T , x0,20 = [−2 − 2.5 0]T ,
x0,21 = [2 2.5 − 5π/12]T , x0,22 = [1 2.5 − 5π/12]T ,
x0,23 = [0 2.5 − 5π/12]T , x0,24 = [−1 2.5 − 5π/12]T ,
x0,25 = [−2 2.5 − 5π/12]T , x0,26 = [2 − 2.5 − 5π/12]T ,
x0,27 = [1 − 2.5 − 5π/12]T , x0,28 = [0 − 2.5 − 5π/12]T ,
x0,29 = [−1 − 2.5 − 5π/12]T , x0,30 = [−2 − 2.5 − 5π/12]T}.

(75)

The terminal condition is
x f = [0 0 0]T . (76)

It is necessary to find a control as a function of state coordinates

ui = hi(x1, x2, x3), u− 6 hi(x1, x2, x3) 6 u+, i = 1, 2, (77)

to minimize the functional

J =
30

∑
k=1

t f ,k +

√√√√ 3

∑
i=1

x2
i (t f ,k, x0,k)

, (78)

where

t f ,k =

{
t, if
√

∑3
i=1 x2

i (t, x0,k) < ε

t+, otherwise
, (79)

ε = 0.01, t+ = 1.5 s, xi(t, x0,k) is a partial solution of ODE system (73) with control (77) for
initial state x0,k, k ∈ {1, . . . , 30}.

To solve the problem, we used variational CGP and obtained the following control function

hi(x1, x2, x3) =


u−, if ũi < u−

u+, if ũi > u+

ũi, otherwise
, i = 1, 2, (80)

where

ũ1 = sgn(arctan(q2x2/(q3x1) + 1/x1))(exp(q3 arctan(q2x2/(q3x1)+
1/x1))− 1)− 3q3x1 − x3

ũ2 = ((−q3x1 − x2 − sgn(q2x2/(q3x1) + 1/x1)×
(exp(q3 arctan(q2x2/(q3x1) + 1/x1))− 1))3 + 1 + q1)

3

(81)

q1 = 2.74121, q2 = 1.82129, q3 = 3.88281. The value of quality criterion (78) for the solution
is J = 34.6372.

Trajectories of mobile robot from different initial states to terminal one on plane are
presented on Figure 5. To solve the problem, the system (73) was integrated 2,386,440 times.
The calculations were performed on Intel Core i7, 2.8 GHz. The computational time was
approx. 15 min.
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Figure 5. Trajectories of mobile robot from eight initial states.

It should be noted here that CGP without applying the principle of small variations of
the basic solution did not cope with the solution of the problem and could not find a single
acceptable solution with the same search parameters.

5.2. Case 2. Knapsack Problem

Consider a classic NP-hard knapsack problem. We need to choose, among a number
of objects, some set of objects that satisfy certain criteria. Vector of small variations consists
of two elements: 1—index of element in the set of objects; 2—a new value.

Suppose that the capacity of knapsack is C. The set of objects with some weights is

X = (x1, . . . , xK), x− 6 xi 6 x+, i = 1, K, (82)

where x− and x+ are low and upper values of objects, K is a number of objects.
Each possible solution is

y = [y1 . . . yK], yi ∈ {0, 1}, i = 1, K. (83)

It is necessary to find a vector y to minimize the following quality criterion

F(y) = |C∗ −
K

∑
i=1

yixi| → min, (84)

so that the weight of objects would be as close to the capacity of knapsack as possible.
Consider the following example. We have a K = 100 objects that have real values

(suppose weights, kg) from 0 to 10. The capacity of the knapsack is 100 kg. We need to
choose the objects so that their total weight is close to the capacity. In general case there are
different types of constraints,on weight, volume, costs, etc.

To solve this problem, we applied VarGA. The parameters of algorithm are given in
Table 1.

Table 1. Parameters of VarGA for the knapsack problem.

Parameter Value

Number of solutions in generation 1024
Number of generations 128
Number of crossovers 128

Depth of variation 8
Number of generations between epochs 8

Probability of mutation 0.75
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The set of objects is

X = {x1 = 1.198973, x2 = 8.195864, x3 = 0.149163, x4 = 0.600499,
x5 = 1.868563, x6 = 1.134450, x7 = 2.940746, x8 = 3.005569,
x9 = 0.235667, x10 = 6.92442, x11 = 9.862742, x12 = 9.013933,
x13 = 1.685997, x14 = 4.716708, x15 = 1.805467, x16 = 3.955157,
x17 = 3.605431, x18 = 3.456106, x19 = 4.063158, x20 = 8.704509,
x21 = 1.290323, x22 = 7.570359, x23 = 0.605452, x24 = 5.840240,
x25 = 7.466071, x26 = 7.852390, x27 = 0.020214, x28 = 4.903944,
x29 = 7.782723, x30 = 8.912633, x31 = 8.311701, x32 = 4.629041,
x33 = 9.999174, x34 = 0.188699, x35 = 2.837382, x36 = 6.866526,
x37 = 3.853656, x38 = 9.422472, x39 = 7.059892, x40 = 5.666469,
x41 = 7.686985, x42 = 6.470105, x43 = 3.892209, x44 = 0.501044,
x45 = 3.471120, x46 = 3.024267, x47 = 1.730138, x48 = 8.358248,
x49 = 0.700096, x50 = 8.905066, x51 = 6.966928, x52 = 3.520369,
x53 = 3.283775, x54 = 9.267853, x55 = 0.620899, x56 = 7.016356,
x57 = 9.203328, x58 = 4.219690, x59 = 1.891819, x60 = 3.921507,
x61 = 4.049162, x62 = 5.061787, x63 = 9.480431, x64 = 6.256851,
x65 = 0.661214, x66 = 5.630264, x67 = 9.411684, x68 = 5.275044,
x69 = 4.325184, x70 = 1.710065, x71 = 2.823965, x72 = 1.055504,
x73 = 8.029722, x74 = 5.355668, x75 = 1.084831, x76 = 9.075759,
x77 = 6.102632, x78 = 8.207962, x79 = 1.945653, x80 = 0.996382,
x81 = 7.408127, x82 = 5.727311, x83 = 2.674080, x84 = 4.547363,
x85 = 7.281093, x86 = 6.022923, x87 = 3.066631, x88 = 5.206564,
x89 = 2.919562, x90 = 0.500339, x91 = 0.182961, x92 = 7.070480,
x93 = 9.648925, x94 = 8.176261, x95 = 6.963208, x96 = 3.829286,
x97 = 3.794559, x98 = 6.652624, x99 = 4.438315, x100 = 0.459797}.

(85)

As a result, we obtained the following solution

yi = 1,
i = 1, 4, 5, 6, 11, 14, 15, 16, 21, 23, 27, 28, 29, 31, 32,

43, 44, 46, 47, 48, 51, 59, 65, 69, 78, 90, 91, 92.
(86)

The objective function for this solution is F(y) = 0.00125,

100

∑
i=1

yixi = 99.998749. (87)

6. Results

Symbolic regression methods are currently used to solve complex optimization prob-
lems in non-numeric spaces. To expand the area of their application and, in particular, to
simplify the execution of the operations of the genetic algorithm, a universal approach was
developed based on the principle of small variations of the basic solution.

The main definitions, the distance between the codes, and the neighborhood of the
code, including the concept of the inheritance property, were given. A proof of the theorem
was presented for solving an optimization problem on a non-numerical space, and provided
that the value of the functional is uniformly distributed over a certain interval, the use of
symbolic regression methods with the inheritance property for search of optimal solution
on a non-numerical space is more efficient than the random search.

Examples of constructing small variations of the basic solution for various methods of
symbolic regression were given. It is proposed that the methods which use the principle of
small variations be called variational. An example of solving the synthesis problem was
given, in which it was necessary to find one control function to ensure the transfer of an
object from 30 initial conditions to one terminal point according to the criterion of speed
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and accuracy. The problem was solved by the variational Cartesian genetic programming.
In addition, the classical NP-hard knapsack problem for 100 objects was solved using a
variational genetic algorithm.

The results presented in the article have both fundamental and practical importance.

7. Discussion

The principle of small variations of basic solution is considered as a universal approach
to solving problems using symbolic regression methods. In the future, it is proposed to
expand the area of its application for solving other optimization problems on a non-
numerical space.

The set of types of elementary variations can be expanded by introducing new varia-
tions: inserting a code element at a certain position with a shift of the rest of the code to the
right, deleting a code element with a shift to the left, exchanging code elements, etc. The
depth of variations, that is, the number of small variations applied to the basic solution for
obtaining a new code, affects the computational time to find the optimal solution and may
vary. The study of the effectiveness of using various types of small variations and their
depth are tasks to be solved.

8. Patents
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