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Abstract: Cracks are one of the most serious defects that threaten the safety of bridges. In order
to detect different forms of cracks in different collection environments quickly and accurately, we
proposed a pixel-level crack segmentation network based on convolutional neural networks, which
is called the Skip Connected Crack Detection Network (SCCDNet). The network is composed of
three parts: the Encoder module with 13 convolutional layers pretrained in the VGG-16 network,
the Decoder module with a densely connected structure, and the Skip-Squeeze-and-Excitation (SSE)
module which connects the feature map shaving the same resolution in the Encoder and Decoder. We
used depthwise separable convolution to improve the accuracy of crack segmentation while reducing
the complexity of the model. In this paper, a dataset containing cracks collected in different scenes
was established, and SCCDNet was trained and tested on this dataset. Compared with the advanced
models, SCCDNet obtained the best crack segmentation performance, while F-score reached 0.7763.

Keywords: crack detection; semantic segmentation; SCCDNet; SSE module; DenseNet

1. Introduction

In modern society, the safety inspection of bridges is very important. Cracks are
one of the most common defects of bridges. The timely detection and maintenance of
cracks can effectively prevent the quality problems of the bridges from endangering human
safety [1]. Due to the requirements for bridge safety, we need to successfully detect cracks
and overcome the impact of noises on the bridge in real life which will influence the
detection results, such as stains, scratches, and uneven illumination.

In recent years, crack detection algorithms based on computer vision have been contin-
uously developed. Threshold segmentation [2], morphology [3], wavelet transform [4], and
filter-based algorithms [5] have been applied to crack detection tasks. Although the above
algorithms can achieve good detection accuracy after tuning the parameters, they can only
be effective for images collected in a specific environment. Changes in illumination and
shooting distance will reduce the detection accuracy, so they cannot meet actual engineering
requirements. Li et al. [6] proposed a Neighboring Difference Histogram Method (NDHM)
algorithm, which binarizes the images by calculating the global optimization threshold
of the image. However, this algorithm is ineffective when there are a lot of stains and
shadows in the image. Chun et al. [7] proposed a crack detection methodology based on
pixel values and geometric shapes in two stages, which achieved an accuracy of 99.7% and
on F-measure of 0.6952. The F* Seed-growing Approach (FoSA) [8] algorithm is proposed
on the basis of the NDHM algorithm, which enhances its anti-noise ability; CrackTree [9]
is an automatic crack detection algorithm that solves the influence of shadows similar to
cracks on the detection results. Crack detection algorithms based on traditional computer
vision generally focus on the understanding of local features and global features of the
image. The parameters of the algorithms are mostly designed for specific datasets and crack
patterns. When the scenes and features of the datasets change, the detection accuracy will
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always decrease. For instance, the FoSA algorithm and the CrackTree algorithm have good
detection results for fine cracks, but the detection accuracy for thick cracks will decrease.

To overcome the limitations of traditional computer vision algorithms, the Convolu-
tional Neural Networks (CNNs) are applied to vision tasks. CNNs were first proposed by
LeCun et al. [10], which can yield abundant hierarchical features in the image, and then can
better understand the objects in the image [11]. CNNs are widely used in many spheres
such as image classification [12,13], object detection [14], semantic segmentation [15–17],
and are gradually being applied to crack detection tasks.

In order to detect cracks timely, researchers design classifiers to determine whether
image units belong to cracks. The network designed by Cha et al. [18] based on CNNs
combined with sliding window technology can detect the crack images whose resolutions
are greater than 256 × 256; the classifier designed by Zhang et al. [19] can detect crack
images with a resolution of 3264× 2448; Soukup et al. [20] used supervised learning to train
CNNs classifiers and discussed the impact of regularization methods such as unsupervised
hierarchical pre-training and training set expansion on the results. However, these image-
level crack detection algorithms can only judge whether there are cracks in small image
units and cannot accurately segment the cracks in pixel-level, so it is impossible for them
to analyze the characteristics of cracks such as length and width. In addition to algorithms
based on CNNs, Artificial Neural Networks (ANNs) [21–24] and Support Vector Machines
(SVMs) [25,26] have been verified to be able to classify crack images, which have the
same problems.

In some cases, we need to calculate the cracks’ length and width so that we could
evaluate the safety of the targets. Therefore, we have to do pixel-level crack detection
instead of path-level crack detection to achieve this target. This kind of pixel-level crack
detection can be equivalent to semantic segmentation task. U-Net [27] is a common
semantic segmentation network. It uses an Encoder-Decoder structure and the skip-
connection strategy to concatenate the shallow feature maps with the deeper feature maps,
which greatly improves the network performance, but at the same time, it will increase
model parameters; SegNet [28] also uses the skip-connection strategy to introduce the
maximum pooling parameter in the Encoder module into the Decoder module, greatly
improving the computational efficiency of the model, but at the expense of detection
accuracy. Yamane et al. [29] proposed a crack detection method based on the model of
semantic segmentation, which could alleviate the influence of the trace of tie-rod holes
and formworks on the detecting accuracy. CrackNet [11] was proposed in 2017 for pixel-
level crack detection tasks. Different from the traditional CNNs structure, it removes the
pooling layer to avoid the loss of details caused by excessive downsampling. Although
CrackNet can achieve better crack detection accuracy, artificially designed filters limit the
learning ability of the model. CrackNet-V [30] is improved on the basis of CrackNet. Its
model has a deeper structure and fewer parameters and improves the efficiency of crack
detection and calculation. However, the data set used by this algorithm only contains
specific types of cracks, and it is difficult to guarantee the validity of the model when the
types of crack change. Liu et al. [31] proposed a model for pixel-level crack detection called
DeepCrack and verified the effectiveness of the model on a dataset containing 537 crack
images. Although the above algorithms have achieved good results on their respective
datasets, the datasets they use are small and it is difficult to prove the generalization ability
of the model. Choi et al. [32] designed the Semantic Damage Detection Network (SDDNet),
which greatly improved the computational efficiency of the model. However, the dataset
of the model also only has 200 single-type crack images, which have not been published,
so the performances of these methods are difficult to make a comparison.

According to the above situation, we designed an end-to-end CNNs model for pixel-
level crack detection, called the Skip Connected Crack Detection Network (SCCDNet), and
its structure is shown in Figure 1. The main contributions of this paper are as follows:

• We designed an end-to-end crack segmentation network based on the CNNs, which
can determine whether each pixel in the image belongs to a crack.
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• In order to improve the segmentation accuracy of the model, the Skip-Squeeze-and-
Excitation (SSE) module we designed was introduced into the network, using Squeeze
and Excitation to recalibrate the pixels of the feature map. This skip-connection
strategy can enhance the gradient correlation between the layers, thereby enhancing
the performance of the network.

• We designed a dense connection network in the Decoder module to reduce the num-
ber of channels of feature maps by considering the crack features learned by each
layer of the network; the traditional convolution was replaced by depthwise sepa-
rable convolution, which reduces the complexity of the model without affecting the
segmentation accuracy.

• A public dataset with manual annotations was established, including 7169 crack
images with a resolution of 448 × 448. This dataset includes labeled crack images of
different scenes and different shapes, as well as non-crack images which are similar to
crack images, which can enhance the generalization ability of the model.
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2. Methods
2.1. Model Architecture

The structure of the pixel-level SCCDNet is shown in Figure 1. The model uses the
classic Encoder-Decoder [28] structure, in which the Encoder learns the features of images
at different scales, and the Decoder obtains predicted images with the same resolution as
the input image by combining the feature map in the Encoder module.

As shown in Figure 1, the left dotted box contains the structure of the Encoder. We
used 13 convolutional layers pretrained in the VGG-16 network as the main structure of the
Encoder. In order to reduce the amount of model parameters without affecting the perfor-
mance of the model, we used depthwise separable convolution [33] instead of traditional
convolution. Each depthwise separable convolution is composed of a Depth-wise (DW)
convolution and a Point-wise (PW) convolution, which can reduce the amount of calcula-
tion to the original 1/N + 1/D2

K without reducing the performance of the model, where N
is the number of channels of the output feature map, and DK is the size of the convolution
kernel. In this model, the size of the convolution kernel of all DW convolutions is 3× 3,
and that of all PW convolutions is 1× 1. In order to ensure that the dimension of the output
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feature map remains unchanged, we set padding = 1 in DW convolutions. In addition, in
order to enhance the generalization ability of the crack segmentation model, considering
the need to segment cracks of different sizes, we used 5 downsampling operations with a
size of 2× 2 to reduce the resolution of the feature maps and learn the characteristics of
cracks on different scales.

The right dotted box contains the structure of the Decoder. DenseNet [34] proved
that establishing short connections between the layers of the network will strengthen
feature propagation, encourage feature reuse, alleviate gradient disappearance, and make
training more efficient. Inspired by this, we designed a densely connected structure in the
Decoder module, reducing the number of channels of each feature map, and improving
the performance of the model. The dash-dotted lines indicate the omitted operations. The
detailed structure of the Decoder module is detailed in Section 2.3.

Compared to U-Net [27], which directly uses the feature map of the Encoder as the
input of the Decoder, Oktay et al. [35] verified that introducing the Attention Gate (AG)
model into the connection between the Encoder and the Decoder, allowing the model to
automatically focus on targets of different shapes and sizes, while emphasizing the area of
interest while suppressing irrelevant area. Therefore, we used the SSE module to connect
the Encoder module and the Decoder module. The SSE module plays the role of AG model,
and the structure of it is detailed in Section 2.2. In order to further reduce the amounts of
parameters, we compressed the number of channels before using the feature map output
by the Encoder module as the input of the SSE module. In addition, all activation functions
used in the model are the rectified linear unit (ReLU) [36]. The codes of our model are
available at https://github.com/543630836/SCCDNet_crack, accessed on 29 May 2021.

2.2. SSE Module

We designed an embedded SSE module [37] based on the skip-connection and Atten-
tion strategy, which is an important part of the SCCDNet. Oktay et al. [35] proved that
the AG model is more efficient than the concatenating operation used in U-Net. Inspired
by their work, we designed the SSE module to connect the feature map with the same
resolution in the Encoder and Decoder. Instead of considering the global feature obtained
by the output of early layers directly, the SSE module could emphasize useful channels and
suppress useless channels of the feature map, which could alleviate the problem that the
correlation of feature maps decreases due to the increase of network depth. This kind of
skip-connection strategy is useful for increasing model performance in Encoder-Decoder
structures. The SSE module is used to recalibrate the feature map output by the Encoder
module, then used as the input of the Decoder module.

The structure of the SSE module is shown in Figure 2. The input of Squeeze operation
is the feature map FMi, and its spatial dimensions will be aggregated in each channel, that
is, use global average pooling, compress the size of size Hi ×Wi in each channel to 1× 1,
and get the channel-wise feature descriptor d ∈ RCi , the formula is as follows:

dc = Fsq(FMci) =
1

Hi ×Wi
∑Hi

m=1 ∑Wi
n=1 FMic(m, n), (1)

where dc is the value of c-th channel in the channel descriptor d and FMic refers to the c-th
channel of the feature map FMi.

https://github.com/543630836/SCCDNet_crack
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In order to alleviate the gradient irrelevance, we select the deeper feature map FMj to
interact with the channel information descriptor d obtained from the output of early layers.
However, the number of channels of them are usually different. In order to multiply the
two, we have to process d further. The Squeeze is the attention to the spatial dimension
and it can obtain the global eigenvalues of each channel; however, it does not consider the
relationship between the channels, so the Excitation part uses the gating strategy [38] to
focus on establishing the correlation between the channels:

d
′
= Fex(d, W1, W2) = δ(W2δ(W1d)), (2)

where d
′
=
[
d′1, d′2, . . . , d′c, . . . , d′j

]
, δ refers to the ReLU activation function, W1 ∈ R

Ci
r ×Ci ,

W2 ∈ RCj×
Ci
r , r is reduction ratio. To build up the correlation between channels, we take the

channel descriptor d as the input of two fully-connected layers. The first fully-connected
layer changes the number of channels from Ci to Ci/r, and the second changes the number
of channels from Ci/r to Cj, which is the same as the channels number of the feature map
FMj. The final output of the SSE module is obtained by the following formula:

SSEc = Fsc
(
FMjc, d′c

)
= d′cFMjc, (3)

where SSE =
[
SSE1, SSE2, . . . , SSEc, . . . , SSEj

]
, Fsc

(
FMjc, d′c

)
refers to channel-wise multi-

plication between the channel weights d′c and the feature map FMjc.

2.3. Decoder Module

The function of the Decoder module is to resize the low-resolution feature map
obtained by the Encoder to the same resolution as the input image to achieve pixel-level
segmentation of the image. As shown in Figure 3, the dotted box contains the structure
diagram of the Decoder. As can be seen from the figure, the Decoder and Encoder can be
divided into five parts according to the spatial resolution of the feature map, and each part
is composed of two depth wise separable convolutions, which can minimize the complexity
of the model compared to conventional convolutions.



Appl. Sci. 2021, 11, 5074 6 of 15Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 16 
 

256

28
×2

8 8D×2 8D

56
×5

6

4D×3 4D×2 4D
11

2×
11

2 2D×4 2D×2 2D

D×5 D×3 D

22
4×

22
4

44
8×

44
8

D/2×6 D

output
predict

Decoder

8D×2

SSE, Conv 1×1, ReLU
Depthwise Conv , ReLU
Copy and Up-conv 2×2
Conv 1×1, ReLU

14
×1

4

·SSE1

·SSE2

·SSE3

·SSE4

·SSE5

1

 
Figure 3. Structure of Decoder module. 

In addition to the 14 × 14 × 256 feature map obtained at the bottom of the module, 
the input of the Decoder module also includes the result of the feature maps of different 
spatial resolutions in the Encoder module after being recalibrated by the SSE module. For 
example, the input of the first part of the Decoder consists of two parts, the first part of 
the feature map represented by the blue rectangle comes from the output of the SSE5 mod-
ule, and the size is 28 × 28 × 8D; The other part of the feature map represented by the red 
rectangle comes from the feature map of the lowest resolution after 2 × 2 deconvolution, 
whose size is 28 × 28 × 8D. After concatenating two feature maps of the same size, two 
depth separable convolutions are performed to obtain the output feature map of the first 
part of the Decoder module. 

In order to further alleviate the problem of gradient disappearance as the network 
depth increases, we establish short connections in the Decoder module. For instance, in 
addition to the output of the SSE1 module, we use the remaining five output feature maps 
of the Decoder module as the input of the fifth part of the module. This strategy not only 
considers all the output feature maps of the Decoder, but also considers that of the En-
coder through the SSE module, and will not weaken the features obtained by the shallow 
network as the depth of the model increases. 

2.4. Model Customization 
As shown in Figure 1, SCCDNet can be customized by setting different depth values 

(D), which means the number of channels. The number of model parameters and segmen-
tation accuracy will change with the selection of D. We can customize the model with 
appropriate D according to the different data set sizes. In this paper, we use SCCD-D# to 
represent different customized models, where D# represents the value of D. We discuss 
in detail the influence of parameter D on the number of model’s parameters and segmen-
tation results in Section 3.3., and finally select SCCD-D32 as the best model after experi-
mental verification. 

2.5. Loss Function and Hyperparameters 
Since the crack detection task can be equivalent to the semantic segmentation prob-

lem of two classes, that is, the output of the network is a single-channel probability map 
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In addition to the 14× 14× 256 feature map obtained at the bottom of the module,
the input of the Decoder module also includes the result of the feature maps of different
spatial resolutions in the Encoder module after being recalibrated by the SSE module. For
example, the input of the first part of the Decoder consists of two parts, the first part of the
feature map represented by the blue rectangle comes from the output of the SSE5 module,
and the size is 28 × 28 × 8D; The other part of the feature map represented by the red
rectangle comes from the feature map of the lowest resolution after 2 × 2 deconvolution,
whose size is 28 × 28 × 8D. After concatenating two feature maps of the same size, two
depth separable convolutions are performed to obtain the output feature map of the first
part of the Decoder module.

In order to further alleviate the problem of gradient disappearance as the network
depth increases, we establish short connections in the Decoder module. For instance, in
addition to the output of the SSE1 module, we use the remaining five output feature maps
of the Decoder module as the input of the fifth part of the module. This strategy not only
considers all the output feature maps of the Decoder, but also considers that of the Encoder
through the SSE module, and will not weaken the features obtained by the shallow network
as the depth of the model increases.

2.4. Model Customization

As shown in Figure 1, SCCDNet can be customized by setting different depth val-
ues (D), which means the number of channels. The number of model parameters and
segmentation accuracy will change with the selection of D. We can customize the model
with appropriate D according to the different data set sizes. In this paper, we use SCCD-
D# to represent different customized models, where D# represents the value of D. We
discuss in detail the influence of parameter D on the number of model’s parameters and
segmentation results in Section 3.3, and finally select SCCD-D32 as the best model after
experimental verification.
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2.5. Loss Function and Hyperparameters

Since the crack detection task can be equivalent to the semantic segmentation problem
of two classes, that is, the output of the network is a single-channel probability map of
crack prediction. Therefore, we chose the cross-entropy function with sigmoid as the loss
function of the model. The formula is as follows:

ln = −wn[yn·logσ(xn) + (1− yn) log(1− σ(xn))], (4)

where xn represents the predicted image output by the model, yn represents the ground
truth of the input image, n represents the n-th image in the batch size; σ(·) represents
the sigmoid function, which can assign the predicted image to a value between 0–1; wn
represents the weight of each loss. When a pixel in the ground truth image belongs to a
crack, then yn = 1. If the value of the pixel in the predicted image is closer to 1, then the
value of ln is closer to 0, and the training loss is smaller; on the contrary, the value of the
pixel is closer to 0, the greater the training loss. Therefore, sigmoid cross entropy is suitable
as the loss function of the crack detection task.

The model parameters we tuned are: the size of input images (448× 448× 3), the
size of ground truth (448× 448× 1). In this paper, we choose SGD optimizer to optimize
the entire model and the mini-batch size is 4. The momentum variable is set as 0.9 and
it is helpful for stabilizing network training. The weight decay is 0.0001 while the initial
learning rate is set as 0.005. We use CosineAnnealingLR [39] strategy to adjust the learning
rate during the training and set T_max as 5, which means that the change period of learning
rate is 10. This strategy is helpful for training loss to escape from local minimum point. In
order to ensure that the model is fully trained, we have to choose appropriate stopping
criteria for the training process. The specific strategy is: if the loss of validation set dose not
decrease in 10 epochs, the model is considered to be fully trained. Further, the maximum
epoch is set as 100.

3. Results and Experimental Evaluations

SCCDNet is built with python3.6 under the framework of pytorch1.4.0. All training
and testing are performed under the following hardware environment:

(a) CPU: Intel(R) Core(TM) i9-7980XE;
(b) GPU: NVIDIA 2080Ti GPU;
(c) RAM: 32 GB.

3.1. Dataset

Currently, there is no consistent public dataset for pixel-level crack segmentation task,
so it is difficult to compare other networks on the same dataset. Most of the previous papers
train and test their networks on small datasets established by themselves, which cannot
verify the generalization ability of the model. Therefore, we set up a large-scale public
dataset to verify the effectiveness of the network. This dataset consists of 7169 images with
manually annotated labels with a resolution of 448× 448. Some typical crack images and
their labels are shown in Figure 4. It can be seen that the data set contains crack images
of different environments, different shooting distances, and different forms, covering
the common crack characteristics to the greatest extent. The images in the dataset come
from published datasets [9,30,40–42], crack images on the Internet, and images of similar
crack objects.
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and (f) is an image without cracks.

The dataset is divided into two parts: training set and test set: the training set contains
6164 input images and label images, including 4965 crack images and 1199 no crack images;
the test set contains 1005 crack images and label images, including 793 crack images and
212 no crack images. In addition to the various crack images, we add about 20% of the no
crack images to the dataset. The purpose is to strengthen the anti-interference ability of the
model and reduce the probability of detecting environmental objects as cracks.

3.2. Evaluation Matrix

In order to quantitatively evaluate the accuracy of crack segmentation, we need
to select appropriate evaluation indicators. First, in crack detection sphere, we use the
following evaluation indicators:

Precision =
True Positives

True Positives + False Positives
, (5)

Recall =
True Positives

True Positives + False Negatives
, (6)

F− score =
2× Precision× Recall

Precision + Recall
. (7)

Precision represents the proportion of pixels that are correctly detected as cracks,
which reflects the impact of false detection on the results; Recall represents the proportion
of real crack pixels that are correctly detected, which reflects the impact of missed detection
on the results; F-score represents the harmonic average of the two, which reflects the
comprehensive ability of the model to resist false detection and missed detection.

In addition, we also introduce two common evaluation criteria in the sphere of seman-
tic segmentation, Dice and Intersection over union (IoU) [16]. Let X(i, j) be the segmented
image output by the model, and Y(i, j) be the corresponding truth image in the data set,
where i ∈ [0, H], j ∈ [0, W], H and W are the length and width of the image respectively,
the formula is:

Dice =
2
∣∣∣∑i ∑j X(i, j)·Y(i, j)

∣∣∣∣∣∣∑i ∑j X(i, j)
∣∣∣+ ∣∣∣∑i ∑j Y(i, j)

∣∣∣ , (8)

IoU =

∣∣∣∑i ∑j X(i, j)·Y(i, j)
∣∣∣∣∣∣∑i ∑j[(X(i, j) + Y(i, j))− X(i, j)·Y(i, j)]

∣∣∣ . (9)
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In addition to measuring the segmentation accuracy of the model, the complexity of
the model is also an important indicator. We select model parameters and Floating Point of
Operations (FLOPs) to represent the complexity of the model. The formulas are as follows:

Parameters = (DK × DK ×M)× N + N, (10)

FLOPs = [(DK × DK ×M)× N + N]× (H ×W), (11)

where DK represents the size of the convolution kernel, M and N represent the number
of channels of the input feature map and output feature map, respectively, and H and W
represent the length and width of the output feature map, respectively.

3.3. Segmentation Result

As mentioned in Section 2.4, SCCDNet can customize models with different parame-
ters by selecting different depth values. We select the models constructed with D = 4, D = 8,
D = 16, D = 32, and D = 64, respectively, for training, and compare their performances in
segmentation accuracy and model complexity. In addition, in order to further verify the
advantages of SCCDNet, we choose the advanced approach DeepCrack [31], U-Net [27],
and SegNet [28] to compare with the model we designed. U-Net and SegNet use the
Encoder-Decoder structure, and the comparison results are shown in Table 1.

Table 1. Segmentation results of different models. The best scores are in bold.

Models Precision Recall F-Score Dice IoU FLOPs/G Parameters/M

U-Net 0.6953 0.8056 0.7464 0.7185 0.6002 111.632 44.021
SegNet 0.6483 0.7402 0.6912 0.6184 0.5015 30.703 29.444

DeepCrack 0.6761 0.4489 0.5396 0.3951 0.3166 61.280 58.858
SCCD-D4 0.7336 0.7320 0.7328 0.6959 0.5773 61.590 30.161
SCCD-D8 0.7114 0.8467 0.7732 0.7511 0.6362 61.817 30.302

SCCD-D16 0.7234 0.8223 0.7697 0.7485 0.6324 62.533 30.663
SCCD-D32 0.7294 0.8296 0.7763 0.7541 0.6402 65.004 31.705
SCCD-D64 0.7302 0.8278 0.7760 0.7495 0.6372 74.108 35.066

It can be seen from Table 1 that with the increase of D, the Parameters and FLOPs are
increasing. However, except for SCCD-D64, the complexity of the other models is not much
different. Among all the models of SCCDNet, the precision of the model is the highest
when D = 4. The proportion of false positives of the model is the lowest at this time, so
the ability to resist false detection is the strongest. When D = 8, the Recall of the model
is the highest. At this time, the false negative of the model is the lowest, and the ability
to resist missed detection is the strongest. When D = 32, the highest F-score, Dice, and
IoU are obtained. Since F-score is the harmonic average of Precision and Recall, the model
has the strongest ability to resist false detection and missed detection at the same time.
Although SCCD-D64 has the largest amounts of parameters, its segmentation results are
slightly worse than SCCD-D32, except Precision.

The experimental results are consistent with the theoretical analysis. The change of D
determines the number of channels and parameters of the Decoder module. Theoretically,
the performance of the model will improve with the increase of the model parameters, but
when the model’s ability has a large redundancy relative to the scale of the dataset, there
will be an over-fitting problem, and the performance of a model with more parameters
will not improve or even decrease compared to the model with less parameter. The results
also show that as D increases from 4 to 32, the amounts of parameters and segmentation
accuracy of the model is steadily improving; however, when D increases to 64, the amounts
of parameters greatly increase. At the same time, the accuracy of the model is slightly
lower than that when D = 32, and the model is over-fitting at this time. Since continuing to
increase D will introduce more parameters, we choose SCCD-32 as the best model.



Appl. Sci. 2021, 11, 5074 10 of 15

Compared with U-Net, SCCD-D32 improves Precision, Recall, F-score, Dice, and IoU
by 4.9%, 3.0%, 4.0%, 5.0%, and 6.7%, respectively, and reduces FLOPs and Parameters
by 41.8% and 28.0%, respectively, which improves the accuracy of crack segmentation
under the premise of greatly reducing the complexity of the model; compared with SegNet,
although the complexity of the model is increased, the accuracy of crack segmentation
is greatly improved. The precision, Recall, F-score, Dice, and IoU are increased by 9.5%,
20.5%, 14.6%, 27.4%, and 34.1%, respectively. Compared with other models, DeepCrack
shows relatively poor performance, because it is designed for the task of small crack dataset.
The structure of DeepCrack is hard to deal with such a large dataset having crack images
obtained from different environment. Therefore, SCCDNet greatly improves the accuracy
of crack segmentation on the complex dataset while reducing the complexity of the model
as much as possible.

The visualization of experimental results of typical models is shown in Figure 5. It
can be seen that SCCD-D32 can completely detect the cracks in the input image. Compared
to the output of SCCD-D32, fine cracks detected by other models will break in the middle,
or even cannot be detected, which means that the models’ anti-miss detection ability needs
to be improved. In addition, SegNet and DeepCrack will falsely detect other stains as
cracks, which means that the anti-error detection ability needs to be improved. Although
SCCD-D32 shows the strongest capability in all models, we notice that it cannot detect
some detail texture on the edge of the crack. This may be due to the excessive number of
pooling layers, resulting in the loss of texture details. We will consider designing a more
efficient structure to utilize the detail texture of the feature map in the Encoder module.
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3.4. 5-Fold Cross-Validation

Although the dataset we constructed is larger than that used by other researchers,
it is still smaller than the common semantic segmentation dataset. Therefore, in order to
prevent the over-fitting problem, we use a 5-fold cross-validation method.

We divide the training set into five parts and select one part as the validation set, in
turn, while the remaining four as the training set so that a total of five training sessions
are performed. In theory, each image in the dataset will be selected as the validation set.
Compared with only a small part of the images can be used as the verification set, the
5-fold cross-validation can ensure that each image in the training set will be used as the
verification set, which can further verify the generalization ability of the model and prevent
the randomness of the selected validation set from affecting the results.

In order to verify the ability of the SCCD-D32 model, we choose the SCCD-16, SCCD-
64, U-Net, and SegNet models for 5-fold cross-validation. The average results are shown
in Table 2. M-train_loss represents the average training losses obtained from five training
sessions; m-valid_loss represents the average verification losses obtained from five training
sessions; the rest of the evaluation criteria are the average values of test results obtained
after five training sessions. It can be seen from the table that SCCD-D64 has the lowest
average training loss, and SCCD-D32 and SCCD-D64 have both the lowest average ver-
ification loss. In the test evaluation indicators, SCCD-D32 gets the highest m-Precision,
m-Dice and m-IoU, and SCCD-D64 get the highest m-Recall and m-F-score. The results
of the 5-fold cross-validation are basically consistent with the results obtained in Table 1.
SCCD-D32 and SCCD-D64 both show better crack segmentation performance than other
models, while SCCD-D32 saves a lot of Parameters and FLOPs compared to SCCD-D64.
Therefore, we choose SCCD-D32 as the best model.

Table 2. Results of 5-fold cross-validation. The best average scores are in bold.

Models m-Train_loss m-Valid_loss m-Precision m-Recall m-F-Score m-Dice m-IoU

U-Net 0.0245 0.0284 0.6901 0.8069 0.7439 0.7160 0.5967
SegNet 0.0275 0.0404 0.6349 0.7592 0.6908 0.6226 0.5061

SCCD-D16 0.0248 0.0363 0.7161 0.8246 0.7103 0.6462 0.5320
SCCD-D32 0.0209 0.0270 0.7199 0.8300 0.7710 0.7457 0.6316
SCCD-D64 0.0203 0.0270 0.7192 0.8320 0.7714 0.7441 0.6308

3.5. Ablation Study and Discussion

In this part, we discuss the crack segmentation results obtained after the SCCDNet
model is constructed in different ways. We focus on the impact of the SSE module, the
Decoder module, and the depthwise separable convolution on the overall model.

3.5.1. Ablation Analysis of the SSE Module

In Section 2.2, we specifically introduced the structure and function of the SSE module.
In order to prove its contribution to the model, we compare the effects of different connec-
tion strategies on the accuracy of crack segmentation. In order to prove the generalization
of the model, we also use 5-fold cross-validation to prove the influence of the SSE module
on the performances. The results are shown in Table 3.
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Table 3. Results of different SSE modules. The best average scores are in bold.

Models m-Precision m-Recall m-F-Score m-Dice m-IoU FLOPs/G Parameters/M

None-SSE 0.7153 0.8024 0.7563 0.7364 0.6181 64.997 30.875
SSE1 0.7192 0.8084 0.7612 0.7409 0.6230 64.997 31.269
SSE2 0.7139 0.8046 0.7566 0.7379 0.6187 64.997 31.203
SSE3 0.7126 0.8168 0.7612 0.7387 0.6211 64.998 30.957
SSE4 0.7326 0.8017 0.7656 0.7489 0.6316 64.998 30.895
SSE5 0.7313 0.8046 0.7662 0.7465 0.6297 65.000 30.880

Fully-SSE 0.7294 0.8296 0.7763 0.7541 0.6402 65.004 31.705

As shown in Table 3, None-SSE represents the model in Figure 1 without any SSE
module, that is, completely eliminates the contribution of the SSE module; SSE1 represents
the model that only remains the SSE1 module which connects two feature maps with
a resolution of 448×448, while SSE2, SSE3, SSE4, SSE5, respectively, indicate that only
the corresponding SSE modules in Figure 1 remained, and the influence of other SSE
modules on the results is excluded. Fully-SSE means that all 5 SSE modules remained, and
the network structure is shown in Figure 1. In order to prove the generalization of the
model, we also use 5-fold cross-validation to prove the influence of the SSE module on the
experimental results.

As shown in Table 3, compared to None-SSE, SSE1, SSE2, and SSE3 do not greatly
improve the model performance. The reason is that the feature maps connected by the three
modules are too far apart, so the difference between the features is too large. Although the
value of the shallow feature map is recalibrated through the attention gate, it is difficult to
find similar features in the subsequent learning after concatenating, so the improvement
of model performance is limited; SSE4 and SSE5 improve m-Precision more greatly and
improve m-Recall less. Therefore, when using the SSE module to connect two feature
maps that are close, the model’s ability to resist error detection is enhanced significantly.
In addition, compared with the None-SSE model, all models with the SSE module have
improved m-F-score, m-Dice, and m-IoU, which enhances the model’s crack segmentation
capabilities. The Fully-SSE model enhances the model’s ability to resist error detection
and missed detection and has obtained the greatest evaluation performances except for
m-Precision. We verified that all SSE modules can improve the performance of the model.
Although some improvements are not obvious, considering that the SSE module basically
does not increase the amount of model parameters, we use Fully-SSE as the best model.

3.5.2. Ablation Analysis of the Decoder Module

In Section 2.3, we specifically introduce the structure and characteristics of the De-
coder module. In order to verify the effectiveness of our Decoder module, we design a
comparative experiment as shown in Table 4. Between them, the Normal Decoder uses
the most common Decoder module of U-Net [27], and the Dense Decoder uses the densely
connected Decoder module as shown in Figure 3. Furthermore, we unsure the other parts
of the models are the same. In order to prove the generalization of the model, we also use
5-fold cross-validation to compare the influence of the Decoder module on the results.

Table 4. Results of different decoder modules. The best average scores are in bold.

Models m-Precision m-Recall m-F-score m-Dice m-IoU FLOPs/G Parameters/M

Normal Decoder 0.6929 0.8150 0.7489 0.7232 0.6040 111.639 45.245
Dense Decoder 0.7294 0.8296 0.7763 0.7541 0.6402 65.004 31.705

It can be seen from the table that the Dense Decoder module we designed greatly im-
proves the accuracy of crack segmentation compared to the Normal Decoder module, and
greatly reduces the complexity of the model. Specifically, m-Precision, m-Recall, mF-score,
m-Dice, and m-IoU increase by 5.3%, 1.8%, 3.7%, 4.3%, and 6.0%, respectively; FLOPs and
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Parameters decrease by 41.8% and 29.9%, respectively. The dense connection of the Decoder
module enhances the gradient correlation of the model and improves the performance of
the model by utilizing feature maps from early layers. This allows us to reduce the number
of convolutions of each layer and reduce the amount of model parameters.

3.5.3. Ablation Analysis of the Depthwise Separable Convolution

In order to further reduce the complexity of the model, we use depthwise separable
convolution in the model, as shown in Figure 1. In order to verify the contribution of the
depthwise separable convolution in the network and to prove the generalization of the
model, we designed the 5-fold cross-validation shown in Table 5. Between them, Normal
Conv represents the SCCDNet that uses conventional convolutions; D-S Conv represents
the SCCDNet that uses depthwise separable convolutions.

Table 5. Results of different convolution strategies. The best average scores are in bold.

Models m-Precision m-Recall m-F-Score m-Dice m-IoU FLOPs/G Parameters/M

Normal Conv 0.7281 0.8112 0.7674 0.7485 0.6310 83.786 39.499
D-S Conv 0.7294 0.8296 0.7763 0.7541 0.6402 65.004 31.705

Compared with using conventional convolution, it can be seen from the table that
using depthwise separable convolution greatly reduces the complexity of the model and
further improves the accuracy of crack segmentation. This also proves that the spatial
dimension and channel dimension in the convolution kernel are decoupled, that is, the con-
ventional convolution convolutes the spatial dimension and channel dimension at the same
time, and separates them into the operation of spatial dimension and channel dimension
in turn, which can reduce the complexity of the model and improve the performance of
the model. Specifically, FLOPs and Parameters decrease by 22.4% and 19.7%, respectively,
while m-Precision, m-Recall, m-F-score, m-Dice, and m-IoU increase by 0.2%, 2.3%, 1.2%,
0.7%, and 1.5%, respectively.

4. Conclusions

In this paper, we design an end-to-end crack segmentation network based on CNNs,
which can detect the crack image in pixel-level. SCCDNet is composed of the Encoder
module using 13 convolution layers pretrained in VGG-16 network, the Decoder module
with dense connection structure, and the SSE module connecting the Encoder and the
Decoder. In order to further reduce the complexity of the model, we replace all convolu-
tions with depthwise separable convolutions. In practical applications, the aim of crack
detection is to detect different forms of cracks in various environments. However, most of
the existing crack detection models detect a single form of cracks in a dataset collected in
a single environment, and the dataset is small. Therefore, we established a dataset with
7169 labeled images (crack images with different textures collected in different environ-
ments) and conducted training and testing on this dataset. We will publish the code and
dataset of the model used in this paper, so as to support other researchers to compare
with our model. We prove the performance of our model by comparing SCCDNet with
other popular models. Results show that SCCD-D32 is the best model in the SCCDNet
series, and its performance in crack segmentation accuracy and model parameters is better
than other models. Although the overall performance of the SCCD-D32 model is excellent,
its m-Precision can only reach 0.7294, which is much lower than the 0.8296 of m-Recall,
which proves that the ability to resist error detection is weaker than the ability to resist
missed detection. Therefore, we will continue to conduct in-depth research on improving
the model’s ability to resist error detection.
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