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Abstract: Due to the characteristics of low signal-to-noise ratio and low contrast, low-light images
will have problems such as color distortion, low visibility, and accompanying noise, which will cause
the accuracy of the target detection problem to drop or even miss the detection target. However,
recalibrating the dataset for this type of image will face problems such as increased cost or reduced
model robustness. To solve this kind of problem, we propose a low-light image enhancement model
based on deep learning. In this paper, the feature extraction is guided by the illumination map and
noise map, and then the neural network is trained to predict the local affine model coefficients in the
bilateral space. Through these methods, our network can effectively denoise and enhance images.
We have conducted extensive experiments on the LOL datasets, and the results show that, compared
with traditional image enhancement algorithms, the model is superior to traditional methods in
image quality and speed.

Keywords: low light enhancement; feature guided; denoise

1. Introduction

When the object is in a low-light environment, such as backlight, at night, or the image
is underexposed during the capture process, the resulting low-light image will affect visual
perception and lose information. The loss of image information will cause many adverse
effects. For example, in the target detection task at night, it will cause the accuracy of the
detection results to be reduced, and even missed and false detections.

Image enhancement based on low-light images is a current research hotspot and
difficulty in the field of image processing. This technology is widely used, and most
commonly used to enhance photos taken by the camera at night or in other low-light
scenes. Chen et al. [1] propose a new image processing pipeline to avoid the noise amplifi-
cation and error accumulation problems caused by traditional camera processing pipelines.
Guo et al. [2] combine this method with target detection technology to improve the accu-
racy of detecting targets at night. However, due to its own characteristics, low-light images
are often mixed with a lot of noise, which increases the difficulty of image enhancement. In
order to achieve the desired enhancement effect, researchers have proposed many ideas and
methods. In the early days, high-quality images were obtained by enhancing image con-
trast; the representative method is histogram equalization. However, this type of method
is incapable of restoring image details and colors. With the development of deep learning
in recent years, data-driven neural network methods have also been widely adopted and
improved. The neural network-based method can learn more complex color and contrast
transformations and has strong expressive power, but there are still many problems. The
current mainstream traditional image enhancement methods and the existing problems of
neural network enhancement methods are shown in Figure 1:

Appl. Sci. 2021, 11, 5055. https://doi.org/10.3390/app11115055 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11115055
https://doi.org/10.3390/app11115055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115055
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11115055?type=check_update&version=2


Appl. Sci. 2021, 11, 5055 2 of 11Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 11 
 

(a) Input (b) HE (c)  MSR (d) LIME

(e)  MF (f) NPE (g) SRIE (h) Retinex-Net
 

Figure 1. Comparison of image enhancement model results: (a) is the corresponding low-light 
image, (b–h) are the enhanced result of other methods, and (h) is the deep learning technique. 

It can be seen from Figure 1 that traditional models such as histogram equalization 
(HE) [3] only consider contrast enhancement when enhancing images, while Retinex-Net 
[4] and NPE [5] methods will cause serious color distortion. Methods such as MF [6], LIME 
[7], SRIE [8], and MSR [9] are lacking both in image quality and visual expressiveness, 
which affect the sensory aesthetics and later target detection work. 

In this paper, we propose a new deep neural network architecture to enhance low-
light images. For noise removal and illumination enhancement, feature maps are extracted 
through two sub-networks to obtain noise and illumination features. Then, it is guided by 
the extracted features, and the denoising and enhancement work are performed at the 
same time, which avoids the limitations caused by the first enhancement and then the 
denoising, or the first denoising, and then the enhancement. In addition, we also use the 
method of bilateral grid upsampling to accelerate the image processing process and 
achieve the purpose of fast image enhancement without reducing the image quality. 

2. Related Work 
From the emergence of digital image processing technology to the present, image 

enhancement technology has made considerable progress. In recent years, with the rise of 
target detection, more and more low-light image enhancement and denoising algorithms 
have been proposed. 

Enhancing the image by changing the contrast is an early classic idea, such as histo-
gram equalization (HE) and an improved version of the contrast-limited adaptive histo-
gram equalization (CLAHE) [10]; the principle is to increase the contrast by expanding the 
dynamic range of image pixel values and reducing the image gray level. Another method 
is gamma correction (GC), which changes the contrast by multiplying each pixel. The lim-
itation of these two types of methods lies in the global adjustment of the image, and the 
resulting image will be distorted. 

Retinex theory [11] believes that the object has color constancy, and the image can be 
expressed as reflection and illumination. Early methods based on this theory include sin-
gle-scale Retinex (SSR) [12] and multi-scale Retinex (MSR) [9]. The output of this method 
tends to be unnatural and locally over-enhanced. Fu et al. [8] proposed a weighted change 
model to estimate the reflection and illumination of the input image. In the same year, 
they proposed an image enhancement method based on the fusion idea [6], which ad-
justed the illumination image through multi-scale fusion and weighted average strategy. 
Cai et al. [13] adjusted the image by combining texture and illumination priors. LIME [4] 
designed a structure-aware smoothing model to predict the illumination map. Martin et 
al. [14] proposed a robust Retinex model, which introduced noise feature maps for de-
noising enhancement. The method based on Retinex theory is to estimate the illumination 

Figure 1. Comparison of image enhancement model results: (a) is the corresponding low-light image,
(b–h) are the enhanced result of other methods, and (h) is the deep learning technique.

It can be seen from Figure 1 that traditional models such as histogram equalization
(HE) [3] only consider contrast enhancement when enhancing images, while Retinex-Net [4]
and NPE [5] methods will cause serious color distortion. Methods such as MF [6], LIME [7],
SRIE [8], and MSR [9] are lacking both in image quality and visual expressiveness, which
affect the sensory aesthetics and later target detection work.

In this paper, we propose a new deep neural network architecture to enhance low-
light images. For noise removal and illumination enhancement, feature maps are extracted
through two sub-networks to obtain noise and illumination features. Then, it is guided by
the extracted features, and the denoising and enhancement work are performed at the same
time, which avoids the limitations caused by the first enhancement and then the denoising,
or the first denoising, and then the enhancement. In addition, we also use the method
of bilateral grid upsampling to accelerate the image processing process and achieve the
purpose of fast image enhancement without reducing the image quality.

2. Related Work

From the emergence of digital image processing technology to the present, image
enhancement technology has made considerable progress. In recent years, with the rise of
target detection, more and more low-light image enhancement and denoising algorithms
have been proposed.

Enhancing the image by changing the contrast is an early classic idea, such as his-
togram equalization (HE) and an improved version of the contrast-limited adaptive his-
togram equalization (CLAHE) [10]; the principle is to increase the contrast by expanding
the dynamic range of image pixel values and reducing the image gray level. Another
method is gamma correction (GC), which changes the contrast by multiplying each pixel.
The limitation of these two types of methods lies in the global adjustment of the image,
and the resulting image will be distorted.

Retinex theory [11] believes that the object has color constancy, and the image can
be expressed as reflection and illumination. Early methods based on this theory include
single-scale Retinex (SSR) [12] and multi-scale Retinex (MSR) [9]. The output of this method
tends to be unnatural and locally over-enhanced. Fu et al. [8] proposed a weighted change
model to estimate the reflection and illumination of the input image. In the same year, they
proposed an image enhancement method based on the fusion idea [6], which adjusted the
illumination image through multi-scale fusion and weighted average strategy. Cai et al. [13]
adjusted the image by combining texture and illumination priors. LIME [4] designed a
structure-aware smoothing model to predict the illumination map. Martin et al. [14]
proposed a robust Retinex model, which introduced noise feature maps for denoising
enhancement. The method based on Retinex theory is to estimate the illumination map by
decomposing the image, and then enhancing the illumination map. This kind of method
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depends on the accuracy of image decomposition, but often the decomposed components
are not exactly the same, so the enhanced image obtained is less authentic, and noise will
inevitably be added and amplified.

Deep learning methods have shown unprecedented potential in learning image en-
hancement. Wei et al. [4] combined Retinex and deep learning methods to propose Retinex-
net. This network decomposes the image, and under the assumption of smooth illumination
map, the reflection component is denoised by the BM3D method, and finally the image is
reconstructed. However, this method will cause color distortion and unsatisfactory noise
removal effect. Wang et al. [15] introduced an intermediate illumination layer in the net-
work for image enhancement and learned the image adjustment ability through image data
carefully designed by experts. Chen et al. [16] proposed an image enhancement method
for processing unpaired datasets based on a two-way generative confrontation network.
GHARBI et al. [17] performed most of the processing at low resolution and used deep
bilateral models for fast image enhancement. Chen et al. [1] proposed a fully convolutional
network model that can be trained end-to-end for processing low-light images.

As low-light image enhancement is an ill-posed problem, no ground truth is available
in the real situation. Therefore, there are many deep learning methods for low-light image
enhancement based on unpaired or self-supervision. Guo et al. [2] set a series of non-
reference loss functions to enable the network to perform end-to-end training without
any reference images. Jiang et al. [18] proposed an efficient and unsupervised generative
adversarial network called EnlightenGAN for the low-light image enhancement problem,
which can be trained without low/normal-light image pairs. N. Anantrasirichai and David
Bull [19] used an adaptation of the CycleGan structure to color and denoise images. They
also proposed a multiscale patch-based framework, capturing both local and contextual
features. Lehtinen et al. [20] thought it possible to learn to restore images by only looking at
corrupted examples without explicit image priors or likelihood models of the corruption.

Image denoising: image denoising is an indispensable work for image processing.
In recent years, many denoising methods and ideas have emerged. According to ideas,
denoising algorithms can be divided into conversion algorithms and spatial algorithms. The
most classic conversion algorithm is wavelet transform, while non-local means (NL-means)
is a classic spatial algorithm. At the same time, there is also the well-known BM3D [21]
algorithm that combines the two ideas. This algorithm has a good effect on the current
normal image denoising effect, but it has great defects in the speed and low-illumination
image denoising. In addition, deep learning methods also have strong expressive power in
image denoising. REDNet [22] built an encoding and decoding network to learn image
denoising. CBDNet [23] denoised real images by establishing a noise model that is closer
to the real world and based on asymmetric learning.

3. Materials and Methods

In this paper, we consider the impact of low-light image noise and propose a multi-
feature guided model with illumination map and noise map. After training, it can quickly
remove noise and enhance image at the same time and can also retain the detailed informa-
tion of the image. Figure 2 shows the processing flow of the model. The model is divided
into three sub-networks: the illumination awareness network, the noise estimation network,
and the enhancement network. The image first passes the illumination perception network
to output the illumination feature map, and then the input image and the illumination
feature map obtained in the previous step are input into the noise perception network to
obtain the noise feature map. After obtaining the multi-guided feature map of illumination
and noise, it is input into the enhancement network together with the input image for image
enhancement, and, finally, the final result is output according to the bilateral grid affine
transformation. In the following subsections, we introduce the role and implementation of
each network in detail.
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3.1. Illumination Awareness Network 
The illumination awareness network is a photosensitive feature network that is out-
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detailed information and global information of image lighting, we use U-Net [24] full con-
volutional network as the main structure of the subnet. The illumination features ex-
tracted by this module can better guide the enhancement network to enhance the under-
exposed areas and avoid over-enhancing the normally exposed areas. Inspired by [25], we 
constrain the output of the network to be between [0,1], the stronger the light, the lower 
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izontal and vertical directions, and ‖·‖୬ represents the nth order paradigm. To avoid the 
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age H, Iୡ represents the (R, G, B) channel of the corresponding low-illumination image I, and ϵ also prevents the denominator from being 0 and takes a value of 0.01. According 
to experience, we set λଵ, λଶ, and λଷ to 0.3, 0.6, and 0.1, respectively. 
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When performing noise processing in the image enhancement process, there are gen-

erally two ideas: one is to perform denoising operations on the basis of low-illumination 
images, and then image enhancement, and the other is to perform image denoising on the 
enhanced images. Both of these two methods have certain shortcomings. The former will 
blur the enhanced image, and the latter will inevitably amplify the noise. Therefore, we 
use the method of multi-feature map guidance to simultaneously perform image de-
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3.1. Illumination Awareness Network

The illumination awareness network is a photosensitive feature network that is output
according to the input image’s illumination intensity. In order to better perceive the detailed
information and global information of image lighting, we use U-Net [24] full convolutional
network as the main structure of the subnet. The illumination features extracted by this
module can better guide the enhancement network to enhance the underexposed areas
and avoid over-enhancing the normally exposed areas. Inspired by [25], we constrain the
output of the network to be between [0, 1], the stronger the light, the lower the output
value. According to the illumination smoothness constraint and the sensitivity intensity,
the loss function we designed is:

Li = ω1

∣∣∣∣∣∣∣∣ ∇F(I)
max(|∇I|, ε)

∣∣∣∣∣∣∣∣
1
+ω2||F(I)− L2|| (1)

In the formula, the first term is the illumination smoothing constraint, and the second
term is the difference between the predicted output and the expected output. Among them,
I is the input image, F(I) is the corresponding output image,ω is the scale factor, we setω1
andω2 to 0.7 and 0.3, respectively, ∇ represents the first derivative in the horizontal and
vertical directions, and ||·||n represents the nth order paradigm. To avoid the case where
the denominator is 0, here we add a very small number ε and take the value 0.01. L is the
expected output of the network. It is worth noting that we use the form of grayscale to
calculate the illumination intensity, which is specifically expressed as:

L =
λ1(HcR − IcR) + λ2(HcG − IcG) + λ3(HcB − IcB)

max(λ1HcR + λ2HcG + λ3HcB, ε)
(2)

where Hc represents the (R, G, B) channel of the corresponding normal illumination image
H, Ic represents the (R, G, B) channel of the corresponding low-illumination image I, and
ε also prevents the denominator from being 0 and takes a value of 0.01. According to
experience, we set λ1, λ2, and λ3 to 0.3, 0.6, and 0.1, respectively.

3.2. Noise Estimation Network

When performing noise processing in the image enhancement process, there are
generally two ideas: one is to perform denoising operations on the basis of low-illumination
images, and then image enhancement, and the other is to perform image denoising on the
enhanced images. Both of these two methods have certain shortcomings. The former will
blur the enhanced image, and the latter will inevitably amplify the noise. Therefore, we
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use the method of multi-feature map guidance to simultaneously perform image denoising
and enhancement.

Most of the existing denoising networks are based on additive white Gaussian noise
(AWGN) modeling for denoising. This method tends to cause network overfitting, and
the real-world noise is caused by complex reasons, so the denoising method based on
AWGN modeling does not work well on real data. Inspired by [23], in order to establish
a model closer to real noise, we carry out noise modeling based on the Poisson Gaussian
distribution and the simulation of the real camera imaging process. For a given input noise
image I, the output noise map is n̂ after being processed by the noise subnet. Given a
certain pixel point i in the feature map, the estimated noise level is n̂i, and the true noise
level is ni. According to the sensitivity of the denoising model to the estimation error,
when n̂i < ni, that is, when the standard deviation of the estimated noise is lower than the
standard deviation of the real noise, the mean square error (MSE) should be penalized. Set
the loss here as:

Ln = ∑
i
λn(n̂i − ni)

2 (3)

The value of λn is expressed as: λn = |b− α|, the value range of α is (0, 0.5), and b is a
constant. When n̂i < ni, the value of b is 0, otherwise the value is 1.

Considering the performance and efficiency of the denoising network, we compress
the depth of the network and adopt a fully convolutional network structure with a number
of layers of 4, set the number of convolution kernels in each layer to 16, and set ReLu
activation after each convolution layer function to add nonlinearity. In order to better
capture the contextual information of the image, increase the receptive field of the network,
and reduce the computational cost, we use the method of dilated convolution with a
sampling rate of 2 to extract the features.

3.3. Enhancement Network

In order to solve the shortcomings caused by the non-synchronization of enhancement
and denoising, we put feature maps obtained by the illumination awareness network and
the noise estimation network and the input images into the enhancement network at the
same time for guided learning. Inspired by [26], we downsample the input, and perform a
series of feature extraction at low resolution. In this way, the image enhancement operation
is mainly performed at the low resolution of the image, which can speed up the image
processing. Finally, the enhanced version of the input image is learned through the bilateral
space affine model.

3.3.1. Low-Level Feature Extraction

The enhancement network needs to consider the local and global features of the input
image at the same time. Extracting local features of an image can better obtain information
such as image contrast, lighting, and texture details, and extracting global features can
obtain image brightness and scene information. The lighting information of the local
features reflects the change of the local light, while the brightness of the global feature
represents the overall style of the image, such as dark or normal brightness. Therefore, in
order to better enhance the effect, we layer the network to better extract global and local
information (see the right part of Figure 2). Before that, we designed a coding network to
learn low-lever features.

The encoding network receives the low-resolution version of the input image and com-
bines the noise feature map obtained by the noise estimation network and the illumination
map output by the illumination awareness network for low-level feature extraction. The
coding network consists of five fully convolutional layers, followed by the ReLu function
for nonlinear activation. It is worth noting that we use a combination of conventional
convolution and dilated convolution for feature extraction, where the first to fourth layers
use conventional convolution methods, the size of the convolution kernel is 3 × 3, and the
step size is 2. For the last layer, we use dilated convolution with convolution kernel size of
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3 × 3, interval of 2, and step size of 1. In this way, we can reduce the parameters of image
and expand the receptive field of the convolution kernel.

3.3.2. Deep Feature Extraction

In order to further extract features of different levels to better achieve image enhance-
ment, we control the receptive field by changing the interval of the dilated convolution
kernel. For any position i of the input feature map m, the corresponding output is y,
applying the dilated convolutionω to get the formula:

y[i] = ∑
j

m[i + r·j]ω[j] (4)

where j is any position of the convolution kernelω, and the sampling rate r corresponds to
r-1 zeros inserted between two consecutive values of the filter in each spatial dimension
of the feature map m. When r = 1, the dilated convolution degenerates into a standard
convolution. According to the above formula, the perceptual range of the filter is changed
by changing the value of r, thereby extracting features of different scales, and avoiding the
loss of detailed information caused by further downsampling.

Inspired by the Atrous Spatial Pyramid Pooling (ASPP) proposed in [27], this structure
can accurately and effectively perform feature extraction at different scales, so a structure
similar to ASPP is used for deep feature extraction. As shown in the right part of Figure 2,
after the last layer of convolution, we use different sampling rates of dilated convolution
parallel modules to enhance image-level features. The structure is divided into four
branches, including a conventional 1 × 1 convolution and three convolution kernels with a
size of 3 × 3, and sampling rate r of (4, 8, 12) dilated convolutions. The number of feature
channels is 64, followed by the BN layer (batch standardization). As the sampling rate
gradually increases, the number of effective weights of the filter gradually decreases. When
the sampling rate and the size of the feature map are very small, only the weight of the
filter center is effective, and the dilated convolution degenerates to simply a 1 × 1 filter. In
order to avoid this phenomenon, we adopt an adaptive mean pooling method to extract
global features. The specific method is to perform pooling through a pooling layer of the
input feature size, and then reduce the dimensionality through 1 × 1 convolution, and
finally restore the original input size through an upsampling operation.

After extracting features of different scales, we add features of different levels to fuse
the features, and then perform ReLu nonlinear activation, which produces a 16 × 16 × 64
feature array. Finally, linear prediction is performed through a 1×1 convolution operation
to generate a 16 × 16 × 96 feature map.

3.3.3. Bilateral Grid

To speed up image processing, inspired by method bilateral grid upsampling (BGU)
proposed in [26], we add the structure of bilateral grids into the enhancement network.
According to the feature maps of different scales extracted by the enhanced network, the
local affine model coefficients of the bilateral grid are predicted. It is a bilateral grid with a
size of 16 × 16 × 8, and each grid has a 3 × 4 affine transformation matrix. The feature
map is converted into a bilateral grid to realize the input in the low-resolution form of
the image, and, finally, the high-resolution output is obtained by upsampling through the
bilateral grid.

3.3.4. Enhancement Loss

In order to better evaluate the effect of the enhancement network, we define the loss
function from the three aspects: image structure similarity, color, and area.



Appl. Sci. 2021, 11, 5055 7 of 11

Structural loss: We evaluate the similarity index between the generated image and
the input image by introducing structural similarity loss. We use the SSIM algorithm to
calculate, specifically expressed as:

LSSIM(x, y) = − log (
1

2|P| ∑
p∈P(x,y)

(1 + SSIM(p))) (5)

where P is the element set of the SSIM index in the input image (x, y).
Color loss: The structural loss is implicitly calculated for the color difference, but it is

only limited to the numerical value and cannot guarantee the same direction of the color
vector, which will also cause color shift, so we use color loss to correct it. The specific
performance is:

Lcolor(x, y) = ∑
pεP(x,y)

∠
(

xp, yp

)
(6)

where ∠ is the operator for calculating the color angle, and P is the element set of the input
image (x, y).

Area loss: In order to suppress the underexposed or overexposed areas, we construct
the area loss according to the distance between the average local exposure level and the
expected exposure level. The specific form is:

Lregion =
1
N ∑

i
|Yi − E| (7)

where N represents the number of nonoverlapping blocks of size 16 × 16, Y is the average
intensity value of the local enhancement area, and E is the expected intensity value. We
empirically set E to 0.6.

Therefore, the loss function of the enhancement network can be expressed as:

Le = ωaLSSIM +ωbLcolor +ωcLregion (8)

where ωa, ωb, and ωc are the proportional coefficients corresponding to the three
loss functions.

4. Experiment and Result Analysis
4.1. Experimental Details

We first train Illumination-Net and Noise-Net, and then use Adam optimizer [28] to
fine-tune the entire architecture end-to-end. For the noise estimation net, batch size is set
to be 4 and patch size to be 48 × 48, while for the illumination awareness net, batch size is
set to be 8 and patch size to be 96 × 96. In the optimizer, we use the default parameters:
β1 = 0.9, β2 = 0.999, α = 0.001, and ε = 10−8. We implemented the proposed model
under the Pytorch deep learning framework. We used the LOL dataset as the training
dataset to train 20 epochs on the NVidia Titan-X GPU and conduct the final test. The Low
Light paired dataset (LOL) contains 500 low/normal-light image pairs taken from real
scenes, and it is proposed in the work [1]. For the entire net, batch size is set to be 16 and
patches to be 256 × 256. ωa,ωb, andωc are set to 10, 1, and 1, respectively. The learning
rate decay strategy is adopted; after each epoch, the learning rate becomes 90% of the
original. For image enhancement, we adopt standard enhancement strategies of random
scaling, cropping, and horizontal rotation.

4.2. Result Analysis

We evaluated the proposed method through extensive experiments. For better quan-
titative comparison, we used two indicators, PSNR and SSIM. The higher the value, the
better the quality of the enhanced image.
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4.2.1. Comparison with Classic Methods

We compare the proposed method with the current mainstream traditional image
enhancement methods and also state-of-the-art methods. In order to better compare the
visual quality, considering the influence of noise, as some methods do not consider image
denoising, we first use the BM3D method to denoise the image, and then input the image
into the method that does not take denoising into account. Table 1 shows the quantitative
comparison results of the classic image processing methods and the model we proposed on
the LOL dataset. Our experimental results are marked in italics. Data can prove that our
proposed method is significantly better than other traditional image denoising methods in
the table, in terms of quality evaluation.

Table 1. Quantitative comparison table of results of each method.

Method PSNR SSIM

HE 16.52 0.62
MSR 13.01 0.43
SRIE 11.54 0.47

Retinex-Net 16.35 0.51
LIME 16.28 0.53

MF 15.35 0.60
NPE 13.25 0.45

OURS 18.89 0.75

Figure 3 shows an example of the results of specific low-light images generated in
each method. Through the comparison, it can be clearly seen that the image enhanced by
our proposed model has a better effect.
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In addition to the evaluation of image quality, the speed of image processing is also an
important indicator to test the level of the model. In order to verify this standard, we used
20 images with a resolution of 1024 × 768 for time testing. Under the premise of image
quality assurance, the average time of our proposed method to process an image of the
above size was 0.42 s. The time taken by each method to process an image of the same size
is shown in Table 2.
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Table 2. Speed comparison table of results of each method.

Method Time (s)

HE 0.13
MSR 3.54
SRIE 65

Retinex-Net 3.04
LIME 1.57

MF 1.89
NPE 45

OURS 0.47

After comparison, it can be found that our model is more efficient than traditional
image enhancement methods on the basis of ensuring quality.

4.2.2. Comparison with State-of-the-Art Methods

We also compare the performance of our method with current state-of-the-art methods
based on deep learning. Results are demonstrated in Figure 4; we zoom in on some details
in the bounding boxes to get a better observation.
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After comparing the pictures, we can see that our method can restore detailed infor-
mation and suppress noise in a relatively dark scene with good contrast. The Zero-DCE
method fails to enhance background details in darker scenes. The KinD method is unsatis-
factory in enhancing contrast and detail.

4.3. Limitations

Of course, our method has limitations. At present, most of the state-of-the-art methods
fail to enhance small targets and other low-light images that lack contextual information.
The above limitations still exist in our method, as shown in Figure 5. In addition, when
applied to target detection in night scenes, the enhanced image processing speed is difficult
to match to the detection rate. Therefore, our future work will focus on faster processing
speed and enhancement of small objects.
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This paper proposes a new deep neural network for image enhancement. The network
considers the influence of noise and performs multi-guided enhancement through noise
and illumination feature maps, which can effectively remove noise and enhance images
with noisy pictures. In addition, the model also introduces bilateral grid upsampling to
accelerate image processing. After extensive experiments, it is proved that the method
proposed in this paper is superior to traditional image enhancement methods in terms of
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