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Abstract: The field of bio-inspired design has tremendously transitioned into newer automated
methods, yet there are methods being discovered which can elucidate underlying principles in design,
materials, and manufacturing. Bio-inspired design aims to translate knowledge from the natural
world to the current trends in industry. The recent growth in additive manufacturing (AM)methods
has fueled the tremendous growth of bio-inspired products. It has enabled the production of intricate
and complicated features notably used in the aerospace industry. Numerous methodologies were
adopted to analyse the process of bio-inspired material selection, manufacturing methods, design,
and applications. In the current review, different approaches are implemented to utilize bio-inspired
designs that have revolutionized the aerospace industry, focusing on AM methods.

Keywords: bio-inspireddesign; additive manufacturing; aerospace

1. Introduction

Bio-inspired design is a broad field of study, which emphasizes cognitive mechanisms
to facilitate process-based inspiration. The method of utilizing biomimetic inspiration
has been investigated since the 1950s by revolutionary thinkers, such as artists, engineers,
and innovators. This was implemented in architecture, automotive, and the aerospace
sector [1–4]. The incorporation of mathematics with architecture was used in the earliest
construction of complex bio-inspired structures. Using such methods, the varying char-
acteristics that can be adopted from different animals and birds were characterized, the
primary focus being the wings of innumerable birds. Tucker and Parrott focused on the
structure of birds, measuring the aerodynamic capabilities [2]. These include the gliding
performance of the laggar falcon, emphasizing the soaring capabilities and the use of wind
tunnels for testing the flight. In 1987, Norberg and Rayner saw potential in the optimal
design of the bat wings and their varied applications in both mechanical systems and
aerodynamic models [3], taking the aspect ratio and morphology as the primary measures
and comparing it with the bat’s specific movements. In later years, with the growth of
industrialization and manufacturing techniques, there was a brisk development in rapid
manufacturing techniques for bio-inspired design. The concept of biomimicry demands a
scientific and engineering based approach, rather than to just be implemented in the form of
a concept [5]. The application of bio-inspired concepts in the aerospace sector implements
different inspired features, such as morphing and flapping methodologies [6]. The concep-
tual process flow for a bioinspired design follows the biomimicry methodology [7]. The
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initial steps focus on extensive research and laying the groundwork for existing biological
systems and methods. These were further extended to specific areas where bio-inspired
design was targeted and the methodologies it can follow for further scope. The entire
framework was based on the process, structure, property, behaviour, which can further be
elaborated for AM. These were expanded into the design spaces for the method of design
of additive manufacturing (DFAM) [8]. One of the key examples was the wings of a beetle.
It was chosen due to its large wingspan. After the study and research, experimentation is
conducted to replicate this using a scotch yoke mechanism. This was used in drones and
aerofoil structures. Subsequently, DFAM methods such as FEA (finite element analysis) and
initial CAD (computer aided design) design were applied for manufacturing. The further
scope for research emphasizes bio-inspired materials, which was combined with the plan
for the optimization of parts [9,10]. The benchmark of design has evolved to a bio-inspired
strategy to create artificial solutions with natural capability [11–16]. Systematic design
literature and its methods have developed over the years, being much more relevant in
today’s world due to the approach of finding ecologically sustainable solutions. Figure 1
shows the different methods to implement the bio-inspired design, involving a top-down
or bottom-up approach. The bio-inspired method [11] identified the unmet needs and
translated these into the feasibility of an application. The bio-inspired method [15] used
the biological functions to enable iterative solutions used to extract the neutral solutions,
the combination of biology and mechanics followed by constraints. The Aalborg Method
emphasized integrating the bionic design process that selected the natural system and
evaluated the environmental factors [17]. The spiral design method [18] led to the develop-
ment of a design brief that focused on the human need, with natural modes, and explored
inventive principles to build ideas. The problem method analysed the micro to macro
levels, to reframe the solution with parallels between the systems and components.
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The replacement of conventional materials in aerospace with bio-inspired materials,
techniques, and methods can damage tolerance, strength, and durability. The applications
vary from specific rudder parts to aerofoil designs in aeronautical parts. Figure 2 shows
the methodology adopted to review the bio-inspired design.
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2. Review on Materials Used in Bio-Inspired Design

Bio-inspired materials mimic natural materials in terms of properties or functions,
these are made of synthetic materials. Bio-inspired materials are a combination between
biology and physical sciences. The combination of the various bio-inspired materials
provides templates for performance enhancement. Hair-like structures consisted of a
network of microfibrils, protruding from a surface. This inspired various devices, such as
sensors, adhesion, and geometrical capturing arrangements [10]. Deep-sea glass sponges
are capable of producing complex skeletal structures which were reconstructed using the
laser additive manufacturing (LAM) technique. These reconstructed biomimetic structures
displayed high buckling resistance for a particular material [14]. Nacre and other hybrids
consisted of multiscale architecture which displayed high strength, high stiffness, and
high toughness. These serve as great alternatives to synthetic materials, that improved
structural integrity and provided ease of robust assembly [20]. In nature, the silk from the
spider’s web has the most common occurrence. These structures were made of microfibrils
and the micro/nanostructures consisted of spindle knotted fibers. The interlinking of these
amorphous chains were the domains of the supramolecular structure. The development of
artificial biomaterials displayed water-controlling properties and impeccable strength [21].
One of the earliest bio-inspired structures was inspired by turtle shells which consisted of
Ca, P, Cl, and Na, etc. These multilayer structures consisted of porous structures which were
used in composite damping material. Moreover, the inspiration for composite structures
that we see today was drawn from these porous shells [22]. Bone-inspired microstructures
include bone regeneration to provide cell attachment and ingrowth. These materials were
designed using a bottom-up approach and a hierarchical atomic structure [23]. Bio-inspired
materials display impeccable material properties, such as self-repair, crack deflection,
strengthening mechanisms, toughness, and lightweight structures [24]. These are used
in aerospace, automotive, energy, architecture, agriculture, robotics, transportation, and
healthcare.

Table 1 shows the bio-inspired materials, cellular structures, properties, and mi-
crostructures.

Burns et al. highlighted the tree trunk’s internal structure [25]. It closely resembled a
ball-socket joint structure arranged in a lay-up structure consisting of fibrils. In conclusion,
the utilization of bio-inspired materials in composite and epoxy layers demonstrate prop-
erties, such as improved ductility and damage tolerance. Figure 3 shows the analysis of
the T joint performance with respect to the buckling load to study the displacement for
bio-inspired tree trunk material.
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Table 1. Bio-inspired material properties [24].

Material Cellular Structure Properties Diagram

Hair [10] Keratin
protein/Micro fibrils

Long degradation
time
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Honeycomb structures reduce the material density and honeycomb structures opti-
mize the space to reduce deflection. Figure 4 displays the cellular structure of honeycomb,
ladybug, and beetle which progressively show high strength properties [26].

The AM technique was employed in the materials; for bio-inspired design, the infill
techniques in AM used ABS (Acrylonitrile Butadiene Styrene) it was used to vary the
geometry. It offered the freedom to expand the various materials in specific designs [27].
The beetle structure with tubular showed the maximum strength performance, due to even
weight distribution. Hogan et al. further emphasized the use of AM techniques to produce
bio-inspired materials [28]. Figure 5 shows the methods for additively manufacturing
bio-inspired materials and their subsequent properties.
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The material properties inherit the design principles rather than duplicating the
material design [23]. The honeycomb structures were printed using fused deposition
modelling (FDM) that involved a layer-by-layer deposition of the ABS or any other required
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polymer to produce structures that were damage-tolerant with high fracture toughness.
The complex geometry of nacre and deep-sea glass sponges were printed using Digital
Light Processing (DLP) which ensured high stiffness and strength [28]. Skin structures are
often one of the key inspirations in bio-inspired materials. Graphene manufactured with
the chemical vapour deposition process displayed high compression strength [29]. The
combination of cobalt naphthenate, ethyl ketone peroxide, and unsaturated polyester resins
(UPR) were used to make fire retardant materials [30]. The braided epoxy composites were
printed using AM techniques. The coolant material design in spacecraft was inspired by the
earthworm that consisted of a film layer and porous surface [31]. This resulted in the most
revolutionary features of bio-inspired materials that focus on properties, which has led to
diverse applications in the aerospace, automotive, healthcare, defense, and architecture
sector.

There are various methods of material selection as depicted in Figure 6 based on
choosing a technique, artificial intelligence method, screening method, optimization, and
fuzzy methods. The screening methods work based on an elimination method and the
identification of multiple approaches for a particular problem. This involved the use
of Ashby plots and considering the economic factors of materials. The materials were
compared using ranking methods based on a multi-criteria decision-making process. The
various processes followed a hierarchical approach to classify materials. The Artificial
Selection methods used digital techniques for material selection, that rely on databases as
compared to human experience, tools, and manuals. An extensive and optimized approach
for material selection involved the use of programming tools to identify materials based
on required parameters. Various strategies were analyzed with strengths and weaknesses
for each specific material property. Life cycle energy analysis was used to identify mate-
rials with the least energy consumption. The use of fuzzy logic was to integrate specific
assessment properties devoid of numerical rankings and the materials across various
environments [32].
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The various methods in Figure 6 used computing and strategic methods, which
focused on mathematical calculations that chose methods based on performance indices.
The methodology of material selection consisted of tools, strategies, and identification of
limitations.

Table 2 gives a summary of the material properties, highlighting the contributions and
inferences.
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Table 2. Review of Materials used in Bio-inspired design.

Research Work Contributions Inferences

Burns et al. [25] Investigation of T joint performance Toughening mechanisms in tree branch joints

Gu [24] Bio-inspired Composites Use of AM technique in Bio-inspired

Wang et al. [33] Fabrication of nano-graphene composites Utilization of skin structure for material design

Xiang et al. [26] Honeycomb structure under impact loading Honeycomb structure (with circular tubes) is the best
under impact loading by changing the structures’ height.

Feng et al. [27] Structural effects on ABS in nanostructure mixture Impregnating CNC on ABS, inspired by wood

Hogan et al. [28] Design method for bio-inspired structure Using FEA to optimize bio-inspired structures

3. Review on Manufacturing Methods Used in Bio-Inspired Design

Greek architecture is the key inspiration for the earliest bio-inspired manufacturing
methods Historically, accounts were seen in the Bolle di saponetraArte e Mathematica
that described the geometry of a soap bubble. On a theoretical basis, it expanded from
mathematics to architecture [1–4]. The distinction was made after identifying characteristics
and noting the earliest ones being drawn from mathematics. Plateau described the energy
distribution, and it was the onset for manufacturing bio-inspired design. The conventional
manufacturing techniques lay the early onset for minimal surface production. [1–4].

The Topology optimization (TO) method was used across various industries, which
followed the density-based approach. It used the DFAM aspect which resulted in more
specific solutions to print bio-inspired structures which have a complex geometry [13].
Frascio et al. focussed on the adhesive-bonded specimens in a thermal cycle using 3D
printing techniques [34]. The main advantage of AM techniques was the out-of-the-plane
compressive response of panels, with bio fabrication. The inability of conventional manu-
facturing methods to produce complex geometries, limited applications, waste-production,
and limited design structures led to the adoption a new manufacturing method [35]. Due
to the complexity in nature, post-processing techniques were applied after powder-based
processes [35]. The utilization of the selective laser sintering (SLS) method and its combi-
nation with six-design methods were used [36]. Aziz et al.broadly classified the different
manufacturing processes of structures as depicted in Figure 7 [37]. This highlighted a
hierarchical approach to manufacture bio-inspired structures, with eventual growth from
the organism level to the ecosystem level.

Furthermore, the material structures were converted into the mason-slurry composi-
tion, which, incorporated by carbon nano tubes (CNT), amplified the reinforcing effects.
The material layers and the hierarchical structure were proven successful in various appli-
cations, especially in aerospace [38]. These paved the way for the bio-inspired composites,
which provide a near-net-shape for bio-inspired materials, which displayed anisotropic
properties. It provided integration between AM and the techniques [39]. With the incorpo-
ration of 4D printing, there was an onset of shape memory transformations. In addition
to 3D printed materials, it responded to environmental stimuli such as pressure, tempera-
ture, etc. [33]. The main advantage of AM was the key focus on sustainable development
and production of high impact complex parts with material reduction. Product life cycle
management was used for an all-encompassing bio-inspired method, from the physical
characteristics to the design method. DFAM, sustainability, and bio-inspired design encom-
pass the bio-inspired product [40]. SLS with a nylon powder and adhesive bonding was
the technique used for this application. HoganVelsco et al. gave a detailed explanation and
the characteristics of each AM technique, as shown in Figure 8 [28].

The structural–material properties were enhanced by the AM techniques, which were
optimized for bio-inspired design, using generative design, topology optimization, and
lattice structure design, as shown in Figure 9.
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The constraints were further considered during manufacturing. The ideation to the
design phase was solely dependent on experimentation [41]. This provided a synergistic
system for bio-inspired applications. The research in bio-inspired design is inclined towards
sustainable development, and this research methodology was implemented in the laser-
based systems shown in Figure 10 [42].

The majority of the optimum ways of manufacturing bio-inspired design is multi-
layered architecture [43]. They have higher energy absorption and hit capacity, which was
increased by subsequent adhesion. Alternatively, fire-resistant properties were also noted
using AM techniques. The GAP methodology establishes it for the design and manufac-
turing process. An extensive GAP method is shown in Figure 11, which implemented a
product development cycle for bio-inspired processes.
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CNC’s infusion (cellulose nanocrystal) to print a composite structure [45]. The infill
in ABS and the impregnation of CNC even at 100% infill opened new avenues for AM
techniques. The bio-inspired design also inspired new frontiers in AM, including the
gravo-elastic scaling using bio-inspiration [46]. The method emphasized the gravitational
and aeroelastic scaling, it aimed at aeroelastic, centrifugal, and gravitational load acting
on the load. The scaling-up process was followed by a ground testing method, with the
blade structural scaling error. Along with the AM methods, optimization techniques such
as TO, generative design, and shape optimization can be used [47]. Selective laser melting
(SLM) techniques were used for the Ti-6Al-4 V fabrication. The compression testing was
more efficient than conventional methods; it had strength beyond 300 MPa. Similarly,
Sun et al. highlighted the mechanical properties of a bio-inspired tool path [48]. The
parallel scan method was used for contour crafting, which involved printing honeycomb
and nacre structures and assisted by FEA analysis. The growth in composite materials
has increased in the past decade, which serves as an optimum technique for printing
bio-inspired materials [44]. Toughness and strength were increased to 12% and 100%. The
two main methods followed are given in Figure 12.
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The SLM techniques provide 10% more accuracy in designing corrugated, triangular,
and square panels. Similarly, corrugated sandwiches with foam-related substances and
metals with conventional structures sustained more shock and loading absorption [49].
One of the key features to be noted is the performance trade-offs for 3D printed designs, as
shown in Figure 13. These represent the basic building blocks of bio-inspired materials,
varying from brick mortar, concentric hexagon, cross lamellar, and rotating plywood [50].

In recent years, in combination with FEM techniques, the corrugated structures can
aid homogenization [51]. The continuous growth of 3D printing from the nanoscale to the
macroscale was aided by various structure formations shown in Figure 14 [52].

The CNC wire cut machine was used to impose manufacturing constraints in foam
materials for groid fabrication. It highlighted the importance of using conventional manu-
facturing techniques combined with digital manufacturing [53]. Freeze casting methods
were employed to manufacture bio-inspired structures that ensured the lamellar microstruc-
tures between ice structures that improved strength and complexities [23]. The beam-based
dynamic model was proposed and could accurately transmit the waves and identify the
multiparameter efforts. Furthermore, the thin-walled metal tubes provide superior me-
chanical properties, and these were the horse hoof inspired compared to vertex structure
tubes [54]. The AM techniques utilized lattice structures with different process parameters,
producing dense lattice structures, which provided successive transfer of load [55]. Conclu-
sively, AM processes, in their futuristic approach, moved towards sandwich composites
with re-entrant cores [56]. It ensured the balance between fatigue strength and loading.
There is still scope for improvement due to crack development and fatigue failure. The
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compressive properties developed in both room and elevated temperatures [57]. The pri-
mary shortcomings noted were matrix softening and interfacial debonding. The presence
of helicoidal structures reduced these failures. It is further enhanced by impact perfor-
mance [58]. However, one of the critical concerns is the manufacturing defects due to the
3D printing techniques.
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Bio-machining is a manufacturing technique that utilizes microorganisms to remove
metal from the workpiece. The main advantages are the less utilization of energy and
reduced thermal damage. It is a sustainable technique for machining micro components.
These micro components are used in aerospace electronics and other technologies. The
overall dimensions of the compact parts are around 100 µm. There are various kinds of
machining processes which include physical, chemical, and biological. Bio machining is a
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controlled biological process that uses selective microorganisms to remove metals. It is a
consecutive oxidation and reduction reaction, with an extracellular polymeric substance.
Bio machining performed on a copper workpiece involved the conversion of Fe2+ to
Fe3+. Subsequently, the ferric ion acts as an oxidising agent, and Fe2+ was reduced by
the microorganisms. This was a cyclic process inclusive of subsequent reduction and
oxidation [59]. Tena et al. studied the machining of copper. The oxygen-free copper (OFC)
consisted of a 10 × 15 × 2 mm disk rinsed with deionized water. The tests consisted of
the OFC block in a culture medium, it was placed in a deionized sample and taken out
in intervals. Extremophile bacteria was used in bio machining, and the efficiency was
increased with the increase in the inoculum. This shows the potential to be implemented at
an industrial level [60].

Slip casting was a technique used to manufacture bio-inspired materials and structures.
The process consisted of the deposition of fluids into a mould. These were pre-dimensioned
moulds, where the fluid is deposited and vacuumed after the wetting. The continuous
assembly was used to prepare the bio-inspired structures. This technique when combined
with AM can potentially be implemented for complex, nacre-based bio-inspired structures
and tubular honeycomb structures [61]. The various manufacturing techniques with a
focus on AM are highlighted and used to manufacture bio-inspired structures.

4. Applications of Bio-Inspiration in the Aerospace Industry

(a) Wing designs

A design based on seagulls’ capability to morph their wings to provide reasonable
aerodynamic and flapping control was mimicked [62]. The gulls’ variable wing action was
implemented in an aircraft design using lightweight airframe components and an actuator.
This control linkage-based system helped change the wing’s morphology. Figure 15 depicts
the morphing wing structure in an aircraft. The experimental and analytical analysis results
were found to agree with each other, thus proving the bio-inspired concept.
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An implementation of a flapping wing mechanism attached rearwards to a fixed-wing
in micro-air vehicles (MAVs) was studied in early 2005 [63]. Although the main, fixed
element was found to provide most of the lift, the bio-inspired flappingwing provided
more thrust and helped prevent flow separation for the main feature itself, thus improving
the complete system’s efficiency.

A bird’s wing’s three-dimensional flapping motion was implemented in a MAV design
using a four-bar mechanism [64]. The motive behind implementing such a plan was to
replicate the spatial flapping of wings to provide a similar aerodynamic advantage. The
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spherical mechanism was used for flapping, which when compared with a non-spherical
mechanism, provided a favorable flapping mechanism for flight applications.

A humpback whale boasts a superior hydrodynamic performance by the tubercles
on the leading edge of its flippers [64]. An inspired tubercle design on an aircraft’s wing
was developed to improve aerodynamic performance by increasing maximum lift and
drag reduction. This could thus help reduce weight and fuel costs. Figure 16 depicts the
implemented tubercle design on the wings and stabilizers of an aircraft.
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Leonardo da Vinci’s plane design and inspired bird wing design to mimic the swift
and effortless wing action of birds that enabled flight was discussed [65]. The designs were
based on the anatomy of birds, which made them capable of flight.

A design inspired by a bird’s wing’s ability to change shape seamlessly, as indicated
in Figure 17, depending on the flight itself was adopted to help provide enhanced perfor-
mance [66]. A flexing parallelogram wing in place of a fixed, non-morphed wing element
enabled an unmanned aerial vehicle (UAV) to reach its higher maximum velocity with a
decrease in power requirement.
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The impact that the shape of an insect’s flapping wing has on its aerodynamic perfor-
mance was analyzed [67]. When comparing the profiles of wings with equal wingspans,
the bumblebee and honeybee were noted to possess ideal wing shapes. In contrast, on com-
paring wing conditions with a similar wing surface, it was observed that the bumblebee
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and the fruit fly had optimum wing shapes. Based on the shapes and other characteristics
of an insect’s wing, these data could be implemented successfully in larger aerodynamic
applications to improve forward flight.

An elastically deforming wing design was explored as flexibility and capability of the
wing to deform play an essential role in improving the system’s efficiency [68]. Figure 18
depicts the flapping-wing design. Wing deformations are commonly observed in insects
such as dragonflies, locusts, and honeybees, with wing deformations being necessary
to maintain lift. A similar synthetic, flexible wing design made of carbon fiber, Kapton,
and Mylar films was analyzed. The analysis revealed that the artificial wing’s elastic
deformations matched closely with that of an insect, thus proving the concept of the
design.
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A study for flight in the Martian atmosphere was numerically analysed [69]. To offset
the low density of such an atmosphere that directly impacts the aerodynamic performance
and restricts commonly used space-flight techniques, a flapping wing, and a hovering
mechanism was devised and studied numerically using the Navier–Stokes equation. It was
predicted that a bumblebee’s wing shape wouldn’t sustain flight in the Martian atmosphere.
However, an enlargement of the wing coupled with a flapping-based wing movement
could help generate lift to counteract the increased weight on Mars.

A flapping wing MAV’s noise control capabilities were improved by incorporating
a wing design, commonly observed in insects such as bats and butterflies [70]. Dielectric
elastomers and other similar materials were used as wings in MAV designs, namely an
insect-inspired wing as a reference design, a moth-inspired fabric-based wing design,
and an elastic wing design inspired by bats. It was found that the noise per unit thrust
decreased with increasing flapping frequency for all the systems and that the rubber flaps
provided a better noise reduction than the films.

A leading-edge alula inspired device (LEAD), influenced by a set of feathers on each
wing of a bird, called the alula (refer Figure 19) was developed and verified for aerodynamic
performance [71–73]. The LEAD provided optimal performance when placed along the
wing’s semi-span, increasing lift during post and deep stalling.

An investigation to improve the aerodynamic performance inspired by a pigeon’s
discrete wing structure. A continuous wing orientation revealed a better drag reduction
with more increased lateral stability than a constant wing structure. This indicated the
efficiency in the aerodynamic performance of a discrete wing design [72]. Figure 20 depicts
the models developed for testing the discrete and continuous structures.
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A corrugated wing designed based on a dragonfly was implemented on panels and
verified experimentally, with results indicating an improvement in flow characteristics, with
more considerable pressure differences between the upper and lower corrugated surfaces,
causing an increase in a lift [73]. Another application of a flapping wing mechanism in a
UAV to counter turbulence during the flight was approached [74]. During turbulent flights,
birds tend to hover rather than flap their wings, which allow a set of covert feathers beside
the primary feathers to deflect gusts of turbulent winds. Figure 21 indicates the natural
and synthetic mechanisms for the same. The application of a gust mitigation system (GMS)
in flapping wing UAVs served a purpose similar to the covert feathers, helping mitigate
gusts of winds only while facing turbulence, and remained integrated with the entire wing
at all other times to maintain the wing profile.
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A Bat’s wing possesses a very articulated musculoskeletal system, which assists them
with multiple degrees of freedom, in addition to a compact and lightweight mechanism [75,76].
Mimicking this behaviour, Figure 22 depicts an arm wing structure that was modelled and
analysed. The design showed successful wing performance during the flapping motion.
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(b) Sensors

The implementation of sensors in aerospace engineering plays a crucial role in deter-
mining an aerial vehicle’s response towards its surrounding stimuli. An early application
of bio-inspired sensors can be traced back to 2003. The problems regarding the installation
of environment perception sensors on small-scale aerial vehicles like MAVs and UAVs were
the issue [6]. Small winged insects have particular neurons for the same purpose called
elementary motion detectors, which helps them form a safe path through lit obstacles. Two
micro-bots were mounted by optic flow sensors, to implement optical motion detection.
Experiments revealed that this enabled one of the microbots to perceive a safe distance from
the ground even after altering speeds and enabled the other to fixate itself on a contrasting
target. The functioning of the International Space Station and the crew aboard can be in
imminent danger in the event of a leak in the station’s walls [77]. To counter this, various
pressure sensors inspired by the sensory capabilities of a swarm of bees are distributed
throughout the station to pick up signals in case of a pressure loss. In the event of a pressure
loss, a swarm of pressure sensors around the region of failure is activated. An ultralight
indoor aerial vehicle, inspired by flies’ flight, was capable of autonomously steering the
aircraft [78]. A fly’s ability of trajectory control was incorporated into the system of the
plane as well.

Another study based on a bio-inspired optic flow sensor-enabled a MAV to perform
tasks such as take-off and leveling mid-flight [7]. Optic flow sensors were tested on
serial vehicles for perception sensing of indoor and outdoor environments to assess their
sensitivity to illumination [10]. The study proved the sensors to show sound visual
processing under natural conditions. A low-cost optical sensor based on the compound
eye of a fly was developed, which helped gauge the angular position of a distant edge
with a minimum accuracy of 160 times, concerning the particular interceptor angle [79]. A
bio-inspired optical device was developed based on a fly’s ability to gauge speed, landing,
and obstacles based on elementary motion detection [80]. A sensor similar to the compound
eye was developed to mimic the large field of view and the exceptional ability of the insect
to process light. This helped with terrain navigation and auto landing, with a 360-degree
FOV. Figure 23 indicates the sensor developed inspired by a compound eye of a fly.
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A VODKA sensor was also implemented to locate a contrasting target, precisely
an edge [81]. This optical sensor (refer Figure 24), inspired by insects’ rapid eye move-
ments such as a housefly was mounted onto a MAV and detected an opposite edge at an
exceptional resolution.
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A bio-inspired pressure sensor installed chordwise on an unmanned aerial system
was used to control the aircraft attitude using a trained artificial neural network [82]. A
pressure sensor inspired by mechanoreceptors embedded in a bird’s wing was imple-
mented in a MAV to establish roll control in a turbulent environment by showing the
correlation between the pressure variation on the wing surface and pitch angle variation
of the upstream flow [83]. A bat possesses several sensory hairs on its wings. Influenced
by these structures, a UAV was set up with strain sensors that controlled roll motions,
and pressure sensors (chordwise) were able to control pitch motions [84]. A bio-inspired
pressure sensor’s robustness to detect airflow installed strategically on the leading edge of
a small UAV wing was indicated by numerical analysis. It showed promising results under
the change in external stimulus [85].

A quadcopter design inspired from the lobula giant movement detector neurons
(LGMD) in locusts was designed to detect possible collisions [86]. A neural network based
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on LGMD was designed, modelled, and experimentally analysed, with results indicating
reliability in terms of collision avoidance. A sensor to detect appropriate landing sites,
considering the movements of landmasses on a planetary structure, was developed by
NASA [87]. The optical sensor worked on the compound vision principle and could be
used for remotely measuring the displacements. Implementing a 2D optic flow sensor
based on the compound vision of flying insects in an autonomous MAV indicated that the
sensor could track objects successfully at a maximum frame rate of 120fps [88]. Multiple
sensors were efficiently assembled within the synthetic compound eye and also had low
power consumption. Birds’ ability to use atmospheric conditions to benefit their flight was
exploited in a design based on harvesting energy under different wind conditions [89]. The
experimental analysis revealed that harvesting energy using various pressure sensors and
other components enabled the aircraft to maintain altitude. Another implementation of
pressure and strain sensors using a trained artificial neural network helped detect unsteady
flow and stall [90].

(c) Structures

The influence of biomimetics in the aerospace industry has led to the development and
implementation of several bionic structures in advanced, high-end applications. There have
been significant developments of bionic systems, other than the standard honeycomb and
Kagome structures. Apart from applying a dragonfly-inspired wing in MAVs, dragonflies
also possess a very optimized body structure and could ensure lightweight aerospace
body parts. Their self-cleansing wings provide constant dirt removal that helps maintain
stability [91]. The segmented body of a honeybee was used to influence an aircraft’s nose
cone [92]. A segmented nose structure helped the vehicle with enhanced manoeuvrability
due to improved bending properties and the aircraft’s axial scalability. The structure of
the skin of an aerospace vehicle is of great prominence as a thermal protection layer. A
bio-inspired quadrilateral shape structure (BIQS) was tested on a similar setup for its ability
to reduce the vibrations due to impact with debris post-capture [93]. Figure 25 depicts the
complete structure, including the BIQS, for an in-orbit capture. It was found that the BIS
provided a better vibrational damping performance in comparison with a spring-mass
damper.
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A lightweight, thermal resistant corrugated core sandwich structure inspired from
a peacock mantis shrimp was preferred over a honeycomb structure owing to its lower
weight, lower heating rate, and minimum deflection at high heating [94]. The heat flow
(via transpiration) from the combustion chamber for a hypersonic vehicle was biologically
mimicked. A parallelogram-style non-smooth structure was used which improved the
cooling rate, like the skin of a tapeworm [31]. A rover to tackle the harsh conditions offered
by Mars, which can lead to increased travel time, was theoretically designed at NASA [95].
The design idea involved a giant spherical robot equipped with several separate wind-
driven micro flying rovers that would be detached from the spherical bot, just like the
seeds of a dandelion, as observed in Figure 26.
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A wheel design inspired by an African ostrich’s feet was developed based on its ability
to travel on the sand, owing to its unique toe structure [96]. The wheel design could be
an effective means of traveling on Mars, with its capability of reducing soil resistance.
Considering the debris present in space at the moment, the ISS and other satellites could be
in danger of being struck at any moment. A bio-inspired anti-impact manipulator (BAM),
based on kangaroos’ spring-like movements, was developed and tested for in-orbit capture
of this debris [97]. The spring-like motion of the bio-inspired structure helped reduce the
impact velocity of the incoming waste. The scales embedded on the skin of a teleost fish
provide stiffening and stabilizing mechanisms for protection and robustness [98]. The
scales provide strain stiffening, which promotes the development of morphing structures
for aerospace vehicles.

5. Conclusions

This review emphasizes bio-inspired design with its influence on materials, manufac-
turing methods, and aerospace applications. It highlights the properties such as strength,
durability, and manufacturability. The approach aims at identifying upcoming materials
such as Ti-6Al 4V which use SLM techniques and can potentially be utilized in gathering
space debris. The methodology used in bio-inspired structures and surfaces can be manu-
factured using AM techniques, with its underlying focus on UAV and MAV designs based
on bio-inspired systems, which have not been thoroughly exploited. The characteristics
of various material properties, such as toughness, flexibility, and self-repair, displayed
in silk, turtle shell, and hair can be employed for aerospace technologies pertaining to
contour crafting. Bio-inspired materials could potentially aid 3D printing structures in
space. The key to future aerospace technologies’ growth lies in sustainability, which can
be achieved by AM techniques and bio-inspired tools. The multiple design processes that
can be utilized for conversion into products range from the Aalborg method to the GAP
methodology.

MAV and UAV design is interpreted from flapping-wing mechanisms of birds and
other winged insects and the presence of specific features of a bird’s wings that aerody-
namic aid flight has been explored. The possibility of developing a wing design based on
the natural tendency of winged animals to take flight and adjust naturally to conditions that
can alter the natural flight conditions has aided the development of similar aerial vehicles
that have helped develop optimized designs. Coupling the newly developed techniques
with lightweight materials, such as titanium alloys (Ti-6Al-4V), aluminium alloys, and
bio-inspired composites, and simultaneous additive implementation manufacturing can
genuinely help create lightweight structures that can further help improve flight. The sen-
sors which guide the aerial vehicle have been developed based on bio-inspired phenomena
as discussed. The ability of sensors to perform in harsher conditions of space and other
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planetary environments still has further research scope. The implementation of lightweight
structures and AM to supportfabrication for space exploration can be further explored. The
development of bio-inspired facilities in the aerospace industry can aid weight reduction
without a compromise in reliability, as is already observed in the performance of efficient
biological structures. The aerospace industry could be massively benefited provided the
said design structures and sensing capabilities are applied on a much larger scale and to
much larger systems.
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