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Abstract: Array gain is investigated based on the acoustic channel characteristics manifested by the
fluctuant transmission loss and decrease in the acoustic channel spatial coherence. An analytical
expression is derived as the summation of the products of the acoustic channel correlation coefficients
and root-mean-square pressures. The formula provides insight into the physical mechanisms of the
gain degradation in the ocean waveguide. Furthermore, this formula provides a new method to
study array gain in the ocean waveguide from underwater acoustic field. The obtained expression
is a more general formula that is applicable to shallow water, deep sea, and continental slope, with
the traditional methods as a special case. Numerical results show that the array gain calculated
by previous formulas are generally overestimated, caused by ignoring the effect of transmission
loss fluctuation.

Keywords: array gain; propagation loss; acoustic channel spatial coherence; ocean waveguide

1. Introduction

Sonar, no matter if passive or active, often uses array to improve the performance of
communication, detection or localization depending on the end use. The improvement
can be measured by array gain (AG). Array gain is defined as an improvement in the
signal-to-noise ratio (SNR) obtained for an array output compared to that for a single
element [1]. It is one of the most important measures of the sonar system performance
which is subjected to the inhomogeneous waveguide. For the AG of a linear array, critical
questions are usually posed as: How much improvement will be obtained with an array in
a specific ocean waveguide? What is the length of the designed array that can ensure that
the array still provides the added gain? Before addressing these questions, one should find
out the mechanism of the gain affected by the ocean waveguide. Under ideal assumptions,
i.e., the noise is uncorrelated, and the signal is a perfect plane wave (far field), AG can reach
its ideal value 10 log10 M, where M is the number of elements in the array [2]. However,
both assumptions are violated in practical sonar applications, where a waveguide must be
considered. The real ocean waveguide manifests as a complex acoustic channel with spatial
and temporal fluctuations that are caused mainly by the rough sea surface, the sound
speed profile (SSP) and the seabed topography [3]. These factors cause the wave-front to
undergo distortion and the signals to show amplitude/phase fluctuations varying across
different elements [4]. This outcome ultimately leads to the practical AG lower than the
ideal value [5], especially for a long-towed array [6,7]. Nevertheless, both the decline in
AG and its underlying mechanism have not been explicitly explored, due to the lack of
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research efforts to the study of the acoustic channel characteristics. A precise formula is
needed to describe the effect of the acoustic channels on AG.

Previous research has derived the expression for AG when the signal phase fluctua-
tions are governed by a Gaussian joint-probability density function [8–10]. In the ocean
waveguide, the fluctuations of the acoustic channel transfer functions that lead to the
degradation of the coherence [11,12] determine the signal phase fluctuations. Urick cal-
culated AG using the correlation coefficients of the signal and noise between all pairs of
elements. Based on the Urick formula, Cox [13] and Green [14] have derived the expression
for AG in the uncorrelated noise, under the assumptions that the signal coherence decreases
exponentially or linearly with the element separation, respectively. However, the signal
coherence is determined by the waveguide that has uncertain change and the coherence
lengths are different in shallow water or deep sea [15–17]. Furthermore, the formulas
cannot predict the effect of acoustic channels on AG. In practice, different mechanisms
give rise to the influence of the waveguide on the signal and the noise. In this case, AG
can be divided into the array signal gain and noise gain, which has been used to study
the AG of a passive vertical array [18]. In shallow water, AG can be expressed in terms of
discrete normal modes [19], providing insight into the problem of the AG affected by the
range-independent waveguide. However, the modes are coupled in a range-dependent
waveguide, and the analyses based on the normal mode have not yet been developed for
this case. A general formula of AG for a linear array in the ocean waveguide is derived in
this paper based on the acoustic channel spatial coherence and the propagation losses. The
physical problems involved in underwater acoustic signal processing that affect AG are
investigated from the acoustic channel.

The paper has the following organization. The traditional method presented by
Urick [1] is outlined in Section 2. Then, the analytical expression of AG in an isotropic noise
field is derived in Section 3. Some useful results are provided and are verified by numerical
simulations in Section 4. Finally, we provide a short summary and draw the conclusion in
Section 5.

2. Array Gain for Plane Wave

The array gain for an arbitrary array is defined as [2]:

AG =
SNRarray

SNRhyp
, (1)

where SNRarray is the SNR at the array output, and SNRhyp is that at a single element of
the array. The traditional formula given by Urick calculates AG as:

AGU =
M

∑
i=1

M

∑
k=1

(ρs)ik/
M

∑
i=1

M

∑
k=1

(ρn)ik, (2)

where (ρs)ik and (ρn)ik are the signal and noise correlation coefficients between the
ith and kth elements, respectively. M is the number of elements. The subscript “U”
indicates that this formula was given by Urick. If the ambient noise is uncorrelated,

AGU = 1
M

M
∑

i=1

M
∑

k=1
(ρs)ik. AGU can be only applied to the scenarios where both the signal

powers and the noise powers are equal at their respective elements. However, this is not
true in the real ocean as: (1) the propagation losses are not equal, and this inequality is
more pronounced in the transition area between the shadow zone and the high intensity
zone; (2) the noise power distribution is depth-dependent, particularly in deep sea [20]. In
addition, Equation (2) does not take into account the effect of the ocean waveguide on the
array performance. In the following, a theoretical formula for AG is derived in terms of the
spatial-coherence of the acoustic channels and propagation losses that can help to interpret
the degradation of AG caused by the acoustic channel fluctuation.
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3. Array Gain in the Ocean Waveguide

In a real ocean environment, the elements of the array will have different outputs.
We take the average of the SNRs at all the elements as the “single hydrophone” reference
required in the definition in Equation (1). Moreover, the ocean waveguide has different
effects on the signal field and the noise field, and the influence of the array processing
on signal and noise should be considered separately. The ratio of the signal powers of
the array output (Sarray) and the average powers (Savg) is defined as the array signal gain,
denoted by asg. Similarly, the ratio of the noise powers of the array output (Narray) and the
average powers (Navg) is defined as the array noise gain, denoted by ang. Then, AG can be
rewritten as:

AGW =
SNRarray

SNRavg
=

(S/N)array

(S/N)avg
=

Sarray

Savg
/

Narray

Navg
=

asg
ang

, (3)

where SNRavg is the average SNR at all the elements.
For a short duration pulse, the acoustic channel can be regarded as linear time-

invariant and characterized by the transfer function in the frequency domain. We assume
that the array receives a narrow-band signal with a frequency band [ fL, fH]. The signal in
the frequency domain at the ith element can be described as:

Xi( f ) = S( f )Hi( f ), (4)

where S( f ) is the source spectrum, and Hi( f ) is the acoustic channel transfer function (or
the Green’s function) between the source and the ith element, at frequency f . According to
Parseval’s theorem, the signal energy on the ith element is given by:

Ei =
∫ ∞

−∞
|Xi( f )|2d f =

∫ ∞

−∞
|S( f )Hi( f )|2d f . (5)

Dividing the signal band into a number of subbands, and assuming the transfer
function to be constant in each subband, the integral in Equation (5) can be converted into
a summation. Further, the power of the signal on the ith element can be rewritten as:

Pi =
1
Ts

∫ fH

fL
|S( f )Hi( f )|2d f =

|S( f )|2

Ts

B

∑
b=1
|Hi( fb)|2, (6)

where Ts is the duration of the signal, and B is the number of frequency bins in [ fL, fH].
|Hi( f )| is the amplitude of the transfer function that takes the pressure at 1 m away from
the source as the reference, which also denotes the pressure at the ith element. Denoting pi
as the mean square of the pressure at the ith element:

pi =
1
B

B

∑
b=1
|Hi( fb)|2, (7)

the average transmission loss (ATL) (averaged over the frequencies) is:

ATLi= −10 log10 pi, (8)

and the average signal power Savg of all elements is:

Savg =
1
M

M

∑
i=1

Pi =
B|S( f )|2

Ts M

M

∑
i=1

pi. (9)
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Denoting h ,
[√

p1,
√

p2, · · · ,
√

pM
]T, with the superscript “T” representing the

transpose operation, Equation (9) can be written in a compact form as:

Savg =
B|S( f )|2

Ts M
‖h‖2

2, (10)

where “‖·‖2” denotes the 2-norm of a vector.
The signal power at the array output after weighting is:

Sarray =
1
Ts

∫ fH

fL

∣∣∣∣∣ M

∑
i=1

wiXi( f )

∣∣∣∣∣
2

d f =
|S( f )|2

Ts

M

∑
i=1

M

∑
k=1

∫ fH

fL

wi Hi( f )Hk( f )∗wk
∗d f , (11)

where wi is the weighting coefficient at the ith element using to compensate for the phase
difference between acoustic channels, and the superscript “*” denotes the complex con-
jugate operation. We define the spatial correlation coefficient of the acoustic channels i
and k as:

ρik =
Re
[∫ fH

fL
Hi( f )Hk( f )∗ej2π f τd f

]
√∫ fH

fL
|Hi( f )|2d f

√∫ fH
fL
|Hk( f )|2d f

, (12)

where 2π f τ is the phase-shift that can maximize ρik. The correlation coefficient matrix is
then constructed as:

ρ =


ρ11 ρ12 · · · ρ1M
ρ21 ρ22 · · · ρ2M

...
...

. . .
...

ρM1 ρM2 . . . ρMM

. (13)

We assume that the phase difference between the weights at the ith and the kth
elements equal to 2π f τ (maximize ρik). When the uniform amplitude weighting (i.e.,
|wi| = 1/M) is applied, Equation (11) can be compacted by substituting Equations (12) and
(13) into Equation (11), and after converting the integral to the summation, we obtain:

Sarray =
B|S( f )|2hTρh

M2Ts
. (14)

The weighting amplitude has a slight influence on AG for a linear beamformer [21].
Hence, we are only concerned with the uniform amplitude weighting in the subsequent
research.

According to Equations (10) and (14), the array signal gain can be obtained as:

asg =
Sarray

Savg
=

hTρh

M‖h‖2
2

. (15)

For an equal inter-element spacing d in an isotropic ambient noise environment, ang
has been derived as [18]:

ang =
M

∑
i=1

wi
2 + 2

M−1

∑
i=1

M

∑
k=i+1

wiw∗k
sin[2π(i− k)d/λ]

2π(i− k)d/λ
. (16)

Then AG can be obtained by substituting Equations (15) and (16) into Equation (3):

AGW =
hTρh

M‖h‖2
2

(
M

∑
i=1
|wi|2 + 2

M−1

∑
i=1

M

∑
k=i+1

wiw∗k
sin[2π(i− k)d/λ]

2π(i− k)d/λ

)−1

, (17)
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where the subscript “W” denotes the formula for AG in a waveguide. For d = λ/2,
Equation (17) can be simplified to:

AGW =
hTρh

‖h‖2
2

, (18)

where AG is determined by the propagation loss and the acoustic channel coherence. Then,
we discuss the AG given by Equation (18) in three special cases.

Case 1: If the sound wave propagates in a free space and arrives as a plane wave, the
ATLs at two arbitrary elements will be equal, or

√
pi =

√
pk =

√
p, h =

√
p[1, 1 · · · , 1], and

the corresponding acoustic channels are fully coherent (ρik = 1). In this case, Equation (18)
yields the ideal value 10 log10 M.

Case 2: If the acoustic channel coherence decreases with the element separation, and
the ATLs at two arbitrary elements are equal, AG will deviate from the ideal value according
to Equation (18). Assuming h =

√
p[1, 1, · · · , 1], Equation (18) can be simplified as:

AGW = (
√

p[1, 1, · · · , 1])ρ
(√

p[1, 1, · · · , 1]T
)

/p‖[1, 1, · · · , 1]‖2
2 =

1
M

M

∑
i=1

M

∑
k=1

ρik. (19)

In this case, AGW is positively correlated with the correlation coefficients. Equation (19)
has the same form as Equation (2) given by Urick (AGU), when the ambient noise is uncor-
related. The only difference is that the ρik in AGW is the acoustic channel spatial correlation
coefficient that represents the spatial fluctuation of acoustic channels over the different
elements. Generally, the acoustic channel correlation coefficient can be a measure of the cor-
responding signal coherence. When the acoustic channel coherence decreases exponentially
or linearly, the expressions for AG given in Refs. [6,7], respectively, can be obtained. It is
observed that the work by Urick, Cox and Green were carried out based on the assumption
that ATLs are equal, which is true for the special case of Equation (18).

Case 3: If the ATLs at different elements are not equal in the application, AG can be
expanded as:

AGW =
M

∑
i=1

pi + 2
√

p1

M

∑
k>1

√
pkρk1 + 2

√
p2

M

∑
k>2

√
pkρk2 + · · ·+ 2

√
pM−1

√
pMρMM−1/

M

∑
i=1

pi, (20)

indicating that AG is affected by the acoustic channels in a complex manner, and the result
is determined by the propagation loss and acoustic channel coherence simultaneously.

For a linear array in the real ocean, AG is generally expressed by Equation (20) when
the ambient noise is isotropic. Next, the results of AGU and AGW are compared using
numerical simulations for Cases 2 and 3.

4. Numerical Simulation Results and Discussion

Comparative analyses of AGU and AGW are conducted in four scenarios. In the first
scenario, we assume that the coherence decreases exponentially and ATLs’ fluctuation
over the elements follows the standard normal distribution, and compares AGU and AGW.
Then, in the next three scenarios, we consider AGU and AGW of a horizontal uniform linear
array (HLA) in three different ocean waveguides, including shallow water, deep sea, and
upslope waveguide, respectively. The HLA with 150 elements, and the spacing between
adjacent elements in the array is 4 m, approximately equal to half of the wavelength (the
source frequency is 190 Hz).

4.1. Array Gain When the Coherence Decreases Exponentially

The coherent coefficient is ρik = ρ|i−k| (ρ is the coherence between the acoustic channels
at the adjacent elements), which is the same as in ref. [6]. Here, two assumptions are made
in the simulation: (1) the ATLs’ fluctuation over the elements follows the standard normal
distribution; (2) the ambient noise powers are equal and uncorrelated for all pairs of



Appl. Sci. 2021, 11, 5046 6 of 14

elements. The AGU (colorful solid lines) and AGW (colorful dash lines) as functions of
the element number are plotted in Figure 1, where ρ is equal to 0.99, 0.95, 0.90 and 0.80,
respectively. For comparison, the ideal value of AG (10 log10 M) is shown by the black solid
line. An examination of Figure 1 shows that AGU is always larger than AGW for a given ρ.
Taking ρ = 0.95 as an example, the gain of a 200-element array is 15.47 dB for AGU, while
the corresponding gain for AGW is 14.78 dB for a reduction of 0.69 dB. However, due to the
coherence degradation, both AGU and AGW are lower than the ideal value of AG.

Figure 1. AGU (colorful solid line) and AGW (dash line) as a function of the number of elements for
different ρ, with the black solid line showing the ideal value of AG.

It should be noted that the red dash line (ρ = 0.99 for AGW) intersects with the blue
solid line (ρ = 0.95 for AGU) when the element number is 10, as shown by the zoomed-in
figure in the upper-left corner of Figure 1. Before the intersection point, AGU is larger than
or equal to AGW, even though the corresponding coherence for AGU is less than that for
AGW. This illustrates that AG for the weak coherence but without ATL’s fluctuation may
be smaller than that with strong coherence but large fluctuation of ATL. In other words,
the propagation loss also affects AG, which should not be ignored in the ocean waveguide.

4.2. Array Gain in the Shallow Water

In simulation B, we consider the gain of the HLA in shallow water. The water depth is
229 m with the corresponding SSP as shown in Figure 2a. The source radiating a narrow-
band signal with center-frequency 190 Hz is fixed at 110 m. The corresponding ATLs
are calculated as follows: the transmission loss corresponding to all frequencies within
the narrow band is calculated by Kraken program [22] which is developed based on the
horizontal-invariant normal model [23]; then ATL can be obtained by Equations (7) and (8).
The ATLs in shallow water within 80 km is shown in Figure 2b.

The HLA is suspended on a depth of 120 m at the direction of end-fire. We investigate
the gain of the HLA at 49 km away from the source, and the corresponding ATLs and
acoustic channel coherence. The acoustic channel transfer functions corresponding to the
HLA are also obtained by Kraken program.

The curve of ATLs on the distance 49 km as a function of element number is displayed
in Figure 3a. It is observed from Figure 3a that at the 49 km distance, ATLs have slight
fluctuation with the element number. The variance of ATLs’ fluctuation on the HLA is
calculated and equal to 0.03 dB. Submitting the acoustic channel transfer functions into
Equation (12), we calculate the spatial correlation coefficients between all pairs of the
acoustic channels as a function of element number, and the result is shown in Figure 3b. It
is observed that at the 49 km distance, the spatial correlation coefficients are almost greater
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than 0.7, which can be considered as completely coherent [24]. Next, we will investigate
the gain of the HLA from transmission loss and acoustic channel coherence.

Figure 2. Simulation parameters and sound propagation in shallow water: (a) The sound speed profile; (b) The average
transmission loss.

Firstly, ignoring the fluctuation of ATLs (for Case 2), i.e.,
√

pi =
√

pk, the expression
of array gain can be simplified as Equation (19) that specifies AGU. We calculate AGU as
the function of element number, and the result is shown by the blue solid line in Figure 3c.
Then, using Equation (18) or Equation (20), AGW is also calculated as the function of
element number, as shown by the red dash line in Figure 3c. The ideal value of AG
(10 log10 M) is shown by the black solid line for comparison. It is observed that both AGU
and AGW are close to the ideal value since the acoustic channels are almost completely
coherent. In addition, AGU is almost equal to AGW, as the result of the slight fluctuation
on ATLs (in this case, Equation (18) is equivalent to the Equation (19)).

Figure 3. Cont.
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Figure 3. Fluctuant acoustic channels and AGs for the receiving depth of 120 m and distance of 49 km in the shallow water:
(a) ATL s on the elements; (b) Correlation coefficients; (c) AGU (blue solid line), AGW (red dash line) and the ideal value of
AG (black solid line) varying with the element number.

4.3. Array Gain in the Deep Sea

Simulation C considers the gain of the HLA in deep sea with water depth of 5000 m.
The SSP of the deep sea is a Munk curve with an acoustic channel axis at 1300 m, as shown
in Figure 4a. The source is at a fixed depth of 110 m, radiating a narrow-band signal with a
center frequency of 190 Hz (the same as in the simulation B). The ATLs can be calculated
by Kraken program (the calculation is the same as in simulation B), and the result within
100 km as a function of the sea depth in deep sea is shown in Figure 4b.

The HLA is at the direction of end-fire, with a receiving depth of 120 m and 20 km
away from the source. The sound channel transfer functions corresponding to the HLA are
calculated by Kraken program. We calculate ATLs at a distance of 20 km as a function of
element number, and the result is shown in Figure 5a. It can be observed from Figure 5a
that ATLs fluctuate with element number greatly, and the fluctuation is greater than that
in the simulation B (shallow water). The variance of ATLs’ fluctuation on the HLA is
calculated and equal to 1.92 dB, which is larger than that in simulation B. Submitting the
acoustic channel transfer functions into Equation (12), the spatial correlation coefficients
between all pairs of the acoustic channels are calculated as a function of element number,
and the result is shown in Figure 5b. Comparing Figure 5b to Figure 3b, it is observed that
the correlation coefficients of acoustic channels decrease rapidly as the element spacing
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increases (the number of elements increases) and is smaller than those in the simulation B.
Since AG is affected by ATLs and acoustic channel coherence, it can be inferred that the
gain will deviate from the ideal value.

Figure 4. Simulation parameters and sound propagation in deep sea: (a) The sound speed profile; (b) The average
transmission loss.

Figure 5. Fluctuant acoustic channels and AGs for the receiving depth of 120 m and distance of 20 km in the deep sea: (a)
ATL s on the elements; (b) Correlation coefficients; (c) AGU (blue solid line), AGW (red dash line) and the ideal value of AG
(black solid line) varying with the element number.
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Both AGU and AGW corresponding to the HLA are calculated as the function of
element number, utilizing Equation (19) and Equation (20), respectively. The results are
shown in Figure 5c. It can be observed that both AGU and AGW are less than the ideal
value since there is a rapid degradation of acoustic channel coherence. Besides, AGW is
smaller than AGU as a result of the fluctuation of ATLs, which is different from those in
simulation B where AGW is equal to AGU.

4.4. Array Gain in the Upslope Waveguide

Finally, AG is investigated in the upslope waveguide where the waveguide is range-
dependent and the acoustic channels have large fluctuations. The waveguide is shown
in Figure 6a, including an abyssal plain (distance of 2 km with water depth of 5000 m),
a continental slope (in the 2 to 90 km range, the oblique angle of the bottom is 3.5◦) and
shallow water (distance of 20 km with water depth of 229 m). The SSP of shallow water
is a negative gradient, and the SSP of the abyssal sea is the standard Munk curve with a
deep sound channel axial at 1300 m. The SSPs of the continental slope region which are
range-dependent are shown in Figure 6b.

Figure 6. The upslope waveguide: (a) Simulation environment and parameters; (b) The SSPs of the
continental slope region.
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The source is at a fixed depth of 550 m, radiating a narrow-band signal with a center
frequency of 190 Hz. The ATLs are calculated by RAM program developed on parabolic
equations method which is the well-known technique for solving range-dependent propa-
gation problems [25] (the calculation is the same as in simulations B and C). ATLs within
100 km in the upslope waveguide are shown in Figure 7.

Figure 7. Average transmission loss in the upslope waveguide when the source depth is 550 m.

The HLA is suspended at a depth of 120 m, 48 km away from the source (at the
direction of end-fire). The ATLs at distance 48 km are calculated as the function of element
number which are displayed in Figure 8a. As can be seen from the Figure 8a, ATLs have
rapid fluctuation compared to simulations B (Figure 3a for shallow water) and C (Figure 5a
for deep sea). The variance of ATLs’ fluctuation is 30.55 dB, which is larger than those in
simulations B and C.

The correlation coefficients between two arbitrary acoustic channels corresponding to
the elements are shown in Figure 8b. It is observed that when the number of elements is
less than 112, the acoustic channels are completely coherent, and the correlation coefficient
between any pair of acoustic channels is larger than 0.8. As the number of elements
continues to increase (the space between the elements increases), the acoustic channel
coherence decreases rapidly.

We investigate AGW and AGU of the HLA in the upslope waveguide. Firstly, for Case
2, ignoring the fluctuation of ATLs, AGU is calculated as the function of element number
utilized in Equation (19) (equivalent to AGU), as shown by the blue solid line in Figure 8c.
Then, for Case 3, AGW is calculated by substituting the acoustic transfer functions into
Equation (20), and the result is displayed by the red dash line in Figure 8c.

It is observed that AGU are almost equal to the ideal value when the element number
is less than 112. Besides, AGW is also close to the ideal value, however, AGW is smaller than
AGU, due to the fluctuation of ATLs on the elements (the variance of ATLs’ fluctuation on
112 elements is 11.6 dB).

When the number of elements is more than 112, as the acoustic channel coherence
degradation, both AGW and AGU are lower than the ideal value. In addition, it is observed
that AGW is less than AGU, and the deviation of AGW from the ideal value is more severe.
This is because the ATLs fluctuate more severely when the number of elements keep
increasing (more than 112), as shown in Figure 8a.
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Figure 8. Fluctuant acoustic channels and AGs for the receiving depth of 120 m and distance of 48 km in the upslope
waveguide: (a) ATL on the elements; (b) Correlation coefficients; (c) AGU (blue solid line), AGW (red dash line) and the
ideal value of AG (black solid line) varying with the element number.

From the above simulations, it can be inferred that AG is determined by both transmis-
sion loss and acoustic channel coherence. For the completely coherent acoustic channels,
AG is almost equal to the ideal value. The result of traditional method for AG in ocean
waveguide is too large. The reason is that the effect of the transmission loss fluctuation
with elements on AG is ignored in the traditional method. The numerical results verify the
theory in Section 3.

5. Conclusions

The degradation of AG in the ocean waveguide is investigated in the paper from the
fluctuant acoustic channels that can be depicted with the fluctuant propagation loss and
the acoustic channel coherence degradation. A general formula of AG for a linear array in
the ocean waveguide is derived as Equation (18) under the assumption that the ambient
noise is isotropic. The formula takes full account of the influence of acoustic channels and
can be applied to shallow water, deep sea, and continental slope area. Furthermore, we
prove that the traditional formula of AG (by Urick) is only a special case of the formula
presented in this paper. An analysis of AG for a uniform linear array is presented that
provides some insight into the physics of the problem of the array performance in the
ocean waveguide. We have found that the obtained AG in the ocean waveguide is reduced
compared to that calculated by the traditional method. The numerical simulations compare
AGs obtained by the traditional method and the proposed method in four scenarios,
including the acoustic channel coherence decreasing exponentially, shallow water, deep sea,
and upslope waveguide. Numerical results show that (1) the stronger the acoustic channel



Appl. Sci. 2021, 11, 5046 13 of 14

coherence, the greater AG; (2) AGU is almost equal toAGW when the fluctuation of ATLs
is small; (3) AGU will be always be larger than AGW if the fluctuation of the propagation
losses is ignored. It is inferred that both acoustic channel coherence and transmission loss
fluctuation should be considered when calculating AG in ocean waveguide.
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