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Abstract: Many real-world problems can be formalized as predicting links in a partially observed
network. Examples include Facebook friendship suggestions, the prediction of protein–protein
interactions, and the identification of hidden relationships in a crime network. Several link prediction
algorithms, notably those recently introduced using network embedding, are capable of doing this
by just relying on the observed part of the network. Often, whether two nodes are linked can
be queried, albeit at a substantial cost (e.g., by questionnaires, wet lab experiments, or undercover
work). Such additional information can improve the link prediction accuracy, but owing to the
cost, the queries must be made with due consideration. Thus, we argue that an active learning
approach is of great potential interest and developed ALPINE (Active Link Prediction usIng Network
Embedding), a framework that identifies the most useful link status by estimating the improvement
in link prediction accuracy to be gained by querying it. We proposed several query strategies for
use in combination with ALPINE, inspired by the optimal experimental design and active learning
literature. Experimental results on real data not only showed that ALPINE was scalable and boosted
link prediction accuracy with far fewer queries, but also shed light on the relative merits of the
strategies, providing actionable guidance for practitioners.

Keywords: active learning; link prediction; network embedding; partially observed networks;
optimal experimental design

1. Introduction

Network embedding and link prediction: Network embedding methods [1], also known
as graph representation learning methods, map nodes in a graph onto low-dimensional
real vectors, which can then be used for downstream tasks such as graph visualization, link
prediction, node classification, and more. Our focus in this paper was on the important
downstream task of link prediction.

The purpose of link prediction in networks is to predict future interactions in a
temporal network (e.g., social links among members in a social network) or to infer
missing links in static networks [2]. Applications of link prediction in networks range
from predicting social network friendships, consumer-product recommendations, citations
in citation networks, to protein–protein interactions. While classical approaches for link
prediction [3] remain competitive for now, link prediction methods based on the state-
of-the-art network embedding methods already match and regularly exceed them in
performance [4].

Active learning for link prediction: An often-ignored problem affecting all methods
for link prediction, and those based on network embedding in particular, is the fact
that obtaining information on the connectivity of a network can be challenging, slow,
or expensive. As a result, in practice, networks are often only partially observed [5], while
for many node pairs, the link status remains unknown. For example, an online consumer-
product network is far from complete as the consumption offline or on other websites is
hard to track; some crucial relationships in crime networks can be hidden intentionally;
in biological networks (e.g., protein interaction networks), wet lab experiments may have
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established or ruled out the existence of links between certain pairs of biological entities
(e.g., interactions between proteins), while due to limited resources, for most pairs of
entities, the link status remains unknown. Moreover, in many real-world networks, new
nodes continuously stream in with very limited information on their connectivity to the
rest of the network.

In many of these cases, a budget is available to query an “oracle” (e.g., human or
expert system) for a limited number of as-yet unobserved link statuses. For instance, wet
lab experiments can reveal missing protein–protein interactions, and questionnaires can
ask consumers to indicate whether they have seen particular movies before or have a
friendship relation with a particular person. Of course, the link statuses of some node pairs
are more informative than those of the others. Given the typically high cost of such queries,
it is thus of interest to identify those node pairs for which the link status is unobserved, but
for which knowing it would add the most value. Obviously, this must be performed before
the query is made and thus before the link status is known.

This kind of machine learning setting, where the algorithm can decide for which data
points (here: node pairs) it wishes to obtain a training label (here: link status), is known as
active learning. While active learning for the particular problem of link prediction is not
new [6–9], it has received far less attention than active learning for standard classification
or regression problems, and the use of active learning for link prediction based on network
embedding methods has to the best of our knowledge remained entirely unexplored.
Studying this is the main aim of this paper: Can we design active learning strategies that
identify the node pairs with unobserved link status, of which knowing the link status would be
maximally informative for the network embedding-based link prediction? To determine the utility
of a candidate node pair, we focused on the link prediction task: querying a node pair’s
link status is deemed more useful if the embedding found with this newly obtained link
status information is better for the important purpose of link prediction.

Partially observed networks: To solve this problem, a distinction should be made between
node pairs that are known to be unlinked and node pairs for which the link status is not
known. In other words, the network should be represented as a partially observed network,
with three node pair statuses: linked, unlinked, and unknown. The node pairs with
unknown status are then the candidates for querying, and if the result of a query indicates
that they are not linked, actual information is added. This contrasts with much of the
state-of-the-art in network embedding research, where unlinked and unknown statuses are
not distinguished.

Thus, the active learning strategies proposed will need to build on a network embed-
ding method that naturally handles partially observed networks. Given such a method, we
then need an active learning query strategy for identifying the unknown candidate link
statuses with the highest utility. After querying the oracle for the label of the selected link
status, we can use it as additional information to retrain the network embedding model. In
this way, more and more informative links and non-links become available for training the
model, maximally improving the model’s link prediction ability with a limited number of
queries.

The ALPINE framework: We proposed the ALPINE (Active Link Prediction usIng Net-
work Embedding) framework, the first method using active learning for link prediction
based on network embedding, and developed different query strategies for ALPINE to
quantify the utilities of the candidates. Our proposed query strategies included simple
heuristics, as well as principled approaches inspired by the active learning and experimen-
tal design literature. ALPINE was based on a network embedding model called Conditional
Network Embedding (CNE) [10], whose objective function is expressed analytically. There
are two reasons why we chose to build our work on CNE. The first is that, as we will
show, CNE can be easily adapted to work for partially observed networks, as opposed
to other popular network embedding methods (including those based on random walks).
The second reason is that CNE is an analytical approach (not relying on random walks
or sampling strategies), and thus allowed us to derive mathematically principled active
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learning query strategies. Yet, we note that ALPINE can be applied also to other existing or
future network embedding methods with these properties.

Illustrative example: To illustrate the idea of ALPINE, we give an example on the Harry
Potter network [11]. The network originally had 65 nodes and 223 ally links, but we only
took its largest connected component of 59 characters and 218 connections. Note that enemy
relation was not considered. We assumed that the network was partially observed: the
links and non-links for all characters except “Harry Potter” (the cyan star) were assumed
to be fully known, and for Harry Potter, only his relationship with “Rubeus Hagrid” (the
green plus) was observed as linked and with “Lord Voldemort” (the red x) as unlinked.
The goal was to predict the status of the unobserved node pairs, i.e., whether the other
nodes (the circles) were allies of “Harry Potter”. Suppose we have a budget to query five
unobserved relationships. We thus want to select the five most informative ones.

ALPINE can quantify the informativeness of the unknown link statuses, using different
query strategies. Shown in Table 1 are the top five queries selected by strategies max-deg.,
max-prob., and max-ent., which are defined in Section 4. Nodes mentioned in the table
are highlighted with character names in Figure 1. Strategy max-deg. suggests to query
the relationships among Harry and the high-degree nodes—those who are known to have
many allies. Strategy max-prob. selects nodes that are highly likely to be Harry’s friends
based on the observed part of the network. Finally, max-ent. proposes to query the most
uncertain relationships. A more detailed discussion of these results and a thorough formal
evaluation of ALPINE are left for Section 5, but the reader may agree that the proposed
queries are indeed intuitively informative for understanding Harry’s social connections.

Sirius Black

Albus Dumbledore

Hermione Granger

Minerva McGonagall

Severus Snape

Ginny Weasley

Ron Weasley

Aragog

Grawp

Harry Potter

Rubeus Hagrid

Lord Voldemort

other nodes

Figure 1. Harry Potter network with suggestions from Table 1 highlighted.
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Table 1. Top 5 query selections for the three strategies of ALPINE.

Strategy Max-Deg. Max-Prob. Max-Ent.

1 Ron Weasley Ron Weasley Albus Dumbledore
2 Albus Dumbledore Hermione Granger Grawp
3 Hermione Granger Albus Dumbledore Minerva McGonagall
4 Ginny Weasley Grawp Severus Snape
5 Sirius Black Minerva McGonagall Aragog

Contributions. The main contributions of this paper are:

• We proposed the ALPINE framework for actively learning to embed partially observed
networks by identifying the node pairs with an as-yet unobserved link status of which
the link status is estimated to be maximally informative for the embedding algorithm
(Section 3).

• To identify the most informative candidate link statuses, we developed several ac-
tive learning query strategies for ALPINE, including simple heuristics, uncertainty
sampling, and principled variance reduction methods based on D-optimality and
V-optimality from experimental design (Section 4).

• Through extensive experiments (the source code of this work is available at https://
github.com/aida-ugent/alpine_public, accessed on 17 October 2020), (1) we showed
that CNE adapted for partially observed networks was more accurate for link pre-
diction and more time efficient than when considering unobserved link statuses as
unlinked (as most state-of-the-art embedding methods do), and (2) we studied the be-
haviors of different query strategies under the ALPINE framework both qualitatively
and quantitatively (Section 5).

2. Background

Before introducing the problem we studied and the framework we proposed, in this
section, we first survey the relevant background and related work on active learning and
network embedding.

2.1. Active Learning and Experimental Design

Active learning is a subfield of machine learning, which aims to exploit the situation
where learning algorithms are allowed to actively choose (part of) the training data from
which they learn, in order to perform better. It is particularly valuable in domains where
training labels are scarce and expensive to acquire [12–14], and thus where a careful
selection of the data points for which a label should be acquired is important. The success
of an active learning approach depends on how much more effective its choice of training
data is, when compared to random acquisition, also known as passive learning. Mapped onto
the context of our work, the unlabeled “data points” are node pairs with an unknown link
status, and an active learning strategy would aim to query the link statuses of those that are
most informative for the task performed by the network embedding model. Of particular
interest to the current paper is pool-based active learning, where a pool of unlabeled data
points is provided, and a subset from this pool may be selected by the active learning
algorithm for labeling by a so-called oracle (this could be, e.g., a human expert or a
biological experiment). In the present context, this would mean that the link status of only
some of the node pairs can be queried.

Active learning is closely related to optimal experimental design in statistics [15], which
aims to design optimal “experiments” (i.e., the acquisition of training labels) with respect
to a statistical criterion and within a certain cost budget. The objective of experimental
design is usually to minimize a quantity related to the (co)variance matrix of the estimated
model parameters or of the predictions this model makes on the test data points. In models
estimated by the maximum likelihood principle, a crucial quantity in experimental design
is the Fisher information: it is the reciprocal of the estimator variance, thus allowing one

https://github.com/aida-ugent/alpine_public
https://github.com/aida-ugent/alpine_public
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to quantify the amount of information a data point carries about the parameters to be
estimated.

While studied for a long time in statistics, the idea of estimator variance minimization
first showed up in the machine learning literature for regression [16], and later, the Fisher
information was used to judge the asymptotic values of the unlabeled data for classifica-
tion [17]. Yet, despite this related work in active learning and the rich and mature statistical
literature on experimental design for classification and regression problems, to the best
of our knowledge, the concept of variance reduction has not yet been studied for link
prediction in networks or network embedding.

2.2. Network Embedding and Link Prediction

The confluence of neural network research and network data science has led to
numerous network embedding methods being proposed in the past few years. Given a
(undirected) network G = (V, E) with nodes V and edges E ⊆ (V

2), the goal of a network
embedding model is to find a mapping f : V → Rd from nodes to d-dimensional real
vectors. The embedding of a network is denoted as X = [x1, x2, . . . , xn]

T ∈ Rn×d. In
short, network embedding methods aim to find embeddings such that first-order [10] or
sometimes higher order [18,19] proximity information between nodes is well approximated
by some distance measure between the embeddings of the nodes. In this way, they aim
to facilitate a variety of downstream network tasks, including graph visualization, node
classification, and link prediction.

For the link prediction task, a network embedding model uses a function g : Rd ×
Rd → R evaluated on xi and xj to compute the probability of nodes i and j being linked. In
practice, g can be found by training a classifier (e.g., logistic regression) on a set of linked
and unlinked node pairs, while it can also follow directly from the network embedding
model. The method CNE, on which most of the contributions in the present paper were
based, belongs to the latter type. With A ∈ {0, 1}n×n the adjacency matrix of a network
G = (V, E) (i.e., aij = 1 if {i, j} ∈ E and zero otherwise), the goal of CNE is to find an
embedding, denoted as X∗, that maximizes the probability of the network given that
embedding [10]:

P(G|X) = ∏
{i,j}∈E

P(aij = 1|X) · ∏
{k,l}/∈E

P(akl = 0|X), (1)

where P(aij = 1|X) = g(xi, xj) for a suitably defined g (see [10] for details).
A problem with all existing network embedding methods we are aware of is that they

treat unobserved link statuses in the same way they treat unlinked statuses. For example,
in methods based on a skip gram with negative sampling, such as DeepWalk [18] and
node2vec [19], the random walks for determining node similarities traverse via known
links, avoiding the unobserved node pairs and thus treating them in the same way as the
unlinked ones. Similarly, the more recently introduced Graph Convolutional Networks
(GCNs) [20] allow nodes to recursively aggregate information from their neighbors, again
without distinguishing unobserved from unlinked node pair statuses. We argue that
this makes existing methods suboptimal for link prediction in the practically common
situation when networks are only partially observed. This has gone largely unnoticed in
the literature, probably because partially observed networks do not tend to be used in the
empirical evaluation setups in the papers where these methods were introduced.

The failure to recognize the crucial distinction between unobserved and unlinked
node pair statuses has also precluded research on active learning in this context. Indeed,
the pool will be a subset of the set of unobserved node pairs, and an unlinked result of
a query will add value to the embedding algorithm only if the unobserved status was
not already treated as unlinked. Thus, in order to do active network embedding for link
prediction, it is essential to distinguish the two links’ status.

While CNE was not originally introduced for embedding partially observed networks,
it is easily adapted for this purpose (this is not the case, e.g., for skip gram-based methods
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based on random walks). We will show how this is performed in Section 3.1. This is an
important factor contributing to our choice for using this model in this paper.

2.3. Related Work

Our work sits at the intersection of three topics: active learning, network embedding,
and link prediction. There exists work on the combinations of any two, but not all three of
them. Most prominently, link prediction is a commonly considered downstream task of
network embedding [1], but active learning has not been studied in this context. Research
on active network embedding has focused on node classification [13,21,22], but link predic-
tion was not considered as a downstream task in this literature. Finally, active learning for
link prediction is not new either [6,7,9], but so far, it has been studied in combination with
more classical techniques than network embedding. Thus, to the best of our knowledge,
the present paper is the first one studying the use of active learning for network embed-
ding with link prediction as a downstream task. Given the promise network embedding
methods have shown for link prediction, we believe this is an important gap to be filled.

Work on active learning for graph-based problems has focused on node and graph
classification, as well as on various tasks at the link level [14,23]. The graph classification
task considers data samples as graph objects, useful, e.g., for drug discovery and subgraph
mining [24], while the node classification aims to label nodes in graphs [25–28]. Active
learning has also been used for predicting the sign (positive or negative) of edges in signed
networks, where some of the edge labels are queried [6]. Similarly, given a graph, Jia
et al. [8] studied how edge flows can be predicted by actively querying a subset of the
edge flow information, to help with sensor placement in water supply networks. All these
methods are only laterally relevant to the present paper, in that their focus is not on link
prediction.

The methods most strongly related to our work are ActiveLink [7] and HALLP [9].
ActiveLink is designed for link prediction in knowledge graphs and has as its aim to

speed up the training of the deep neural link predictors by actively selecting the training
data [7]. More specifically, the method selects samples from the multitriples constructed
according to the training triples. As link prediction in a knowledge graph with only one
relation (one predicate) is equivalent with link prediction in a standard graph as considered
in this paper, ActiveLink appears to be a meaningful baseline for our paper. However,
when applied to a standard graph in this way, ActiveLink would work by querying all
node pairs involving a set of selected nodes (or, in terms of the adjacency matrix, it would
query entire rows or columns). Thus, this strategy would learn the entire neighborhood of
the selected nodes, but very little about the rest of the network. While this strategy may
be sensible in the case of a knowledge graph where information about one relation may
also be informative about other relations, it is clearly not useful for standard graphs. This
excludes ActiveLink as a reasonable baseline.

HALLP, on the other hand, proposes an active learning method for link prediction
in standard networks [9], demonstrating a benefit over passive learning. However, both
HALLP’s link prediction method (based on a support vector machine [29]) and its active
learning query strategy utilize a pre-determined set of features rather than a learned model
such as a network embedding. The query strategy attempts to select node pairs for which
the link prediction is most uncertain. Specifically, HALLP considers two link prediction
models for calculating these uncertainties for the candidate node pairs, defining the utility
of a candidate node pair as follows:

uA(i, j) = c1ulocal(i, j) + c2uglobal(i, j). (2)

Here, ulocal(i, j) is the so-called local utility that measures the uncertainty of a linear
SVM link prediction model, uglobal(i, j) is the so-called global utility based on the hierar-
chical random graph link predictor [30], and c1 and c2 are two coefficients. Interestingly,
HALLP uses all unlinked node pairs as candidate node pairs. Thus, HALLP also does not
distinguish between the unlabeled and unlinked statuses, and the discovery of non-links is
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of no use because they will continue to be treated as unlinked. Despite these qualitative
shortcomings, HALLP can be used as a baseline for our work, and we included it as such
in our quantitative evaluation in Section 5.3.

3. The ALPINE Framework

In this section, we first show how CNE can be modified to use only the observed
information, after formally defining the concept of a partially observed network. Then, we
introduce the problem of active link prediction using network embedding and propose
ALPINE, which tackles the problem.

3.1. Network Embedding for Partially Observed Networks

Network embedding for partially observed networks differs from general network
embedding in the way it treats the unknown link statuses. It uses only the observed links
and non-links to train the model, where the unobserved part does not participate. We
defined an (undirected) Partially Observed Network (PON) as follows:

Definition 1. A Partially Observed Network (PON) is a tuple G = (V, E, D) where V is a set of
n = |V| nodes and E ⊆ (V

2) and D ⊆ (V
2) the sets of node pairs with observed linked and observed

unlinked status, respectively, where E∩D = ∅. Thus, K , E∪D represents the observed (known)
part, and U , (V

2) \ K is the set of node pairs for which the link status is unobserved.

For convenience, we may also represent a PON by means of its adjacency matrix A,
with A ∈ {0, 1, null}n×n and aij at row i and column j equal to null if {i, j} ∈ U, to one if
{i, j} ∈ E, and to zero if {i, j} ∈ D.

Most network embedding methods (and methods for link prediction more generally)
do not treat the known unlinked status differently from the unknown status, such that the
networks are embedded with possibly wrong link labels. This appears almost inevitable
in methods based on random walks (indeed, it is unclear how one could, in a principled
manner, distinguish unlinked from unknown statuses in random walks), but also many
other methods, such as those based on matrix decompositions, suffer from this shortcoming.
We now proceed to show how CNE, on the other hand, can be quite straightforwardly
modified to elegantly distinguish unlinked from unknown status, by maximizing the
probability only for the observed part K of the node pairs:

P(G|X) = ∏
{i,j}∈E

P(aij = 1|X) · ∏
{k,l}∈D

P(akl = 0|X). (3)

In this way, we do not have to assume that the unobserved links are absent, as state-
of-the-art methods do. Furthermore, the link probability in CNE is formed analytically
because the embedding is found by solving a Maximum Likelihood Estimation (MLE)
problem: X∗ = argmaxX P(G|X). Based on this, later in Section 4, we will show how it
also allows us to quantify the utility of an unknown link status for active learning.

3.2. Active Link Prediction Using Network Embedding—The Problem

After embedding the PON, we can use the model to predict the unknown link statuses.
Often, however, an “oracle” can be queried to obtain the unknown link status of node
pairs from U at a certain cost (e.g., through an expensive wet lab experiment). If this is the
case, the query result can be added to the known part of the network, after which the link
predictions can be improved with this new information taken into account. By carefully
querying the most informative nodes, active learning aims to maximally benefit from such
a possibility at a minimum cost. More formally, this problem can be formalized as follows.

Problem 1 (ALPINE). Given a partially observed network G = (V, E, D), a network embedding
model, a budget k, a query-pool P ⊆ U, and a target set T ⊆ U containing all node pairs for which
the link statuses are of primary interest, how can we select k node pairs from the pool P such that,
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after querying the link status of these node pairs, adding them to the respective set E or D depending
on the status, and retraining the model, the link predictions made by the network embedding model
for the target set T are as accurate as possible?

The pool P defines the candidate link statuses, which are unobserved but accessible
(i.e., unknown but can be queried with a cost), while the target set T is the set of link statuses
that are directly relevant to the problem at hand. Of course, in solving this problem, both
the link prediction task and the active learning query strategy should be based only on the
observed information K = E ∪ D.

The problem is formalized in its general form and can become specific depending on
the data accessibility (represented by P) and the link prediction task (represented by T).
The pool P may contain all the unobserved information or only a small subset of it. Sets T
and P may coincide, overlap non-trivially, or be disjoint, depending on the application. We
experiment with various options in our quantitative evaluation in Section 5.3.

3.3. The ALPINE Framework

To tackle the problem of active network embedding for link prediction, we proposed
ALPINE, a pool-based [14] active link prediction approach using network embedding and,
to the best of our knowledge, the first method for this task. Our implementation and
evaluation of ALPINE was based on CNE, but we stress that our arguments can be applied
in principle to any other network embedding method of which the objective function can be
expressed analytically. The framework works by finding an optimal network embedding
for a given PON G = (V, E, D), selecting one or a few candidate node pairs from the pool
P ⊆ U with U = (V

2) \ (E ∪ D) to query the connectivity according to a query strategy,
updating the PON with the new knowledge provided by querying the oracle, and re-
embedding the updated PON. The process iterates until a stopping criterion is met, e.g.,
the budget is exhausted or the predictions are sufficiently accurate.

The PON can be embedded by the modified CNE, and the active learning query
strategy, which evaluates the informativeness of the unlabeled node pairs, is the key to our
pool-based active link prediction with network embedding. Defined by a utility function
uA,X : V ×V → R, the query strategy ranks the unobserved link statuses and selects
the top ones for querying. The utility quantifies how useful knowing that link status is
estimated to be for the purpose of increasing the link prediction accuracy for node pairs in
T. Specifically, each query strategy will select the next query for an appropriate uA,X as:

argmax
{i,j}∈P

uA,X(i, j).

In practice, not just the single best node pair (i.e., argmax) is selected at each iteration,
but the s best ones, with s referred to as the step size.

In summary, given a PON G = (V, E, D), a network embedding model, a query
strategy defined by its utility function uA,X , a pool P ⊆ U, a target set T ⊆ U, a step size
s, and a budget k (number of link statuses in P that can be queried), ALPINE iteratively
queries an oracle for the link status of s node pairs, selected as follows:

• At iteration i = 0, initialize the pool as P0 = P, and the set of node pairs with known
link status as K0 = E ∪ D, and initialize G0 = G and A0 = A;

• Then, repeat:

1. Compute the optimal embedding X∗i for Gi;
2. Find the set of queries Qi ⊆ Pi of size |Qi| = min(s, k) with the largest utilities

according to uAi ,X∗i
(and T);

3. Query the oracle for the link statuses of node pairs in Qi, set Pi+1 ← Pi \ Qi,
and set Gi+1 equal to Gi with node pairs {i, j} ∈ Qi added to the set of known
linked or unlinked node pairs (depending on the query result), then set Ai+1
accordingly;
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4. Set k← k− |Qi|, and break if k is zero.

In this formulation, ALPINE stops when the budget is used up. An optional criterion
is surpassing a pre-defined accuracy threshold on T.

4. Query Strategies for ALPINE

Now, we introduce a set of active learning query strategies for ALPINE, each of
which is defined by its utility function uA,X . For reference, an overview of all strategies is
provided in Table 2.

The first four (page-rank. max-deg., max-prob., and min-dis.) are heuristic ap-
proaches that use the node degree and link probability information. The fifth (max-ent.) is
uncertainty sampling, and the last two (d-opt. and v-opt.) are based on variance reduction.
These last three strategies are directly inspired by the active learning and experimental
design literature for classical prediction problems (regression and classification). From the
utility functions in the last column of the table, we see that the first two strategies do not
depend on the embedding model, while the other five are all embedding based. Only for
the last strategy (v-opt.) is the utility function a function of the target set T.

Table 2. Summary of the query strategies for ALPINE.

Strategy Definition Utility Function

page-rank. PageRank score sum uA(i, j) = PRi + PRj

max-deg. Degree sum uA(i, j) = ∑k:(i,k)∈E aik + ∑l:(j,l)∈E ajl

max-prob. Link probability uA,X∗ (i, j) = P(aij = 1|X∗)

min-dis. Node pair distance uA,X∗ (i, j) = −||x∗i − x∗j ||2

max-ent. Link entropy uA,X∗ (i, j) = −∑aij=0,1 P(aij|X∗) log P(aij|X∗)

d-opt. Parameter variance reduction uA,X∗ (i, j) = ux∗i (i, j) + ux∗j (i, j)

v-opt. Prediction variance reduction uA,X∗ (i, j) = ∑k:(i,k)∈T uik(i, j) + ∑l:(j,l)∈T ujl(i, j)

4.1. Heuristics

The heuristic strategies includes the degree- and probability-based approaches for
evaluating the utility of the candidate node pairs. Intuitively, one might expect the con-
nections between high-degree nodes to be important in shaping the network structure;
thus, we proposed two degree-related strategies: page-rank. and max-deg. Meanwhile, as
networks are often sparse, queries that result in the discovery of new links—rather than
the discovery of non-links—are considered more informative, and this idea leads to the
max-prob. and min-dis. strategies.

With strategy page-rank., each candidate node pair is evaluated as the sum of both
nodes’ PageRank scores [31]: uA(i, j) = PRi +PRj, while for max-deg., the utility is defined
as the sum of the degrees: uA(i, j) = ∑k:{i,k}∈E aik + ∑l:{j,l}∈E ajl . The probability-based
strategies both tend to query node pairs that are highly likely to be linked. This is true by
definition for max-prob.: uA,X∗(i, j) = P(aij = 1|X∗) and approximately true for min-dis.:
uA,X∗(i, j) = −||x∗i − x∗j ||2, as nearby nodes in the embedding space are typically linked
with a higher probability.

4.2. Uncertainty Sampling

Uncertainty sampling is perhaps the most commonly used query strategy in active
learning [14]. It selects the least certain candidate to label, and entropy is widely used as
the uncertainty measure. In active network embedding for link prediction, a node pair
with an unknown link status can be labeled as unlinked (zero) or linked (one). According
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to the link probabilities obtained from the learned network embedding model, the entropy
of a node pair’s link status is:

uA,X∗(i, j) = −P∗ij log(P∗ij)− (1− P∗ij) log(1− P∗ij),

where P∗ij = P(aij = 1|X∗). It defines the max-ent. strategy that selects the most uncertain
candidate link status to be labeled by the oracle. Intuitively, knowing the most uncertain
link status maximally reduces the total amount of uncertainty in the unobserved part,
although indirect benefits of the queried link status on the model’s capability to predict the
status of other node pairs are not accounted for.

4.3. Variance Reduction

In the literature on experimental design, a branch of statistics that is closely related
to active learning, the optimality criteria are concerned with two types of variance: the
variance of the parameter estimates (D-optimality) and the variance of the predictions using
those parameter estimates (V-optimality) [15]. We proposed to quantify the utility of the
candidate link statuses, based on how much they contribute to the variance reduction that
was of our interest. D-optimality [32] aims to minimize the parameter variance estimated
through the inverse determinant of the Fisher information. V-optimality [33,34] minimizes
the average prediction variance over a specified set of data points, which corresponds to
the target set T for our problem. Since both optimality criteria largely depend on the Fisher
information matrix, we give details on the Fisher information for CNE first. Then, the two
variance reduction query strategies is formally introduced.

4.3.1. The Fisher Information for the Modified CNE

In ALPINE, the modified CNE finds a locally optimal embedding X∗ as the Maxi-
mum Likelihood Estimator (MLE) for the given PON G = (V, E, D), i.e., X∗ maximizes
P(G|X) in Equation (3) w.r.t. X. The variance of an MLE can be quantified using the Fisher
information [35]. More precisely, the Cramer–Rao bound [36] provides a lower bound on
the variance of an MLE by the inverse of the Fisher information: Var(X∗) � I(X∗)−1. Al-
though the Fisher information can often not be computed exactly (as it requires knowledge
of the data distribution), it can be effectively approximated by the observed information [37].
For the modified CNE, this observed information for the MLE x∗i , the embedding of node i,
is given by (proof in Appendix A):

I(x∗i ) = γ2 ∑
{i,j}/∈U

P∗ij(1− P∗ij)(x∗i − x∗j )(x∗i − x∗j )
T , (4)

where γ is a CNE parameter. Thus, the variance of node i’s MLE embedding x∗i is bounded:
Var(x∗i ) � I(x∗i )

−1.

4.3.2. Parameter Variance Reduction with D-Optimality

D-optimality stands for the determinant optimality, with which we want to minimize
the estimator variance, or equivalently maximize the determinant of the Fisher information,
through querying the labels of the candidate node pairs [15,32]. The estimated parameter
in CNE is the embedding X. The utility of each candidate node pair {i, j} is determined by
the estimated variance reduction it causes on the estimator—in particular the embeddings
of both nodes i and j. As those estimated variances are lower bounded by the inverse of
their Fisher information, the d-opt. strategy seeks to minimize the bounds by maximizing
the Fisher information.

Intuitively, the determinant of the Fisher information measures the curvature of the
likelihood with respect to the estimator. A large curvature means a small variance as
Var(xi) � I(xi)

−1, corresponding to a large value of D-optimality. The smaller the bound
of the parameter variance, or equivalently the more information, the more stable the
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embedding, and thus, the more accurate the link predictions. This motivates the d-opt.
strategy.

The estimated information increase of knowing a candidate link status, which we
also called the informativeness of that link status, can thus be quantified by the changes
in the determinants of the Fisher information matrices of the embeddings of both nodes.
Querying the link status of node pair {i, j} ∈ P will reduce the variance matrix bounds
I(x∗i )

−1 and I(x∗j )
−1, as it creates additional information on their optimal values. For x∗i ,

its new Fisher information assuming {i, j} ∈ P has a known status, is denoted as I j(x∗i )
in Equation (5), and similarly for x∗j leading to I i(x∗j ). Using Equation (4), it is easy to see

that I j(x∗i ) can be calculated as an additive update to I(x∗i ):

I j(x∗i ) = I(x∗i ) + γ2P∗ij(1− P∗ij)(x∗i − x∗j )(x∗i − x∗j )
T . (5)

That estimated information increase is caused by the difference of determinants
between the old and the new Fisher information of x∗i (and similarly for x∗j ), shown in
Equation (6). As it is a rank one update in Equation (5), we can apply the matrix determinant
lemma [38] and write this amount of information change as in Equation (7):

ux∗i
(i, j) = det

[
I j(x∗i )

]
− det[I(x∗i )], (6)

= γ2P∗ij(1− P∗ij)(x∗i − x∗j )
TI(x∗i )

−1(x∗i − x∗j )det[I(x∗i )]. (7)

Combining the information change from both nodes, the utility function of d-opt. for
a node pair {i, j} ∈ P is formally defined as:

uA,X∗(i, j) = ux∗i
(i, j) + ux∗j

(i, j). (8)

Finally, using Equation (7), the estimated information increase caused by knowing the
status of {i, j} ∈ P proves to be always positive and equal to:

uA,X∗(i, j) =

γ2P∗ij(1− P∗ij)(x∗i − x∗j )
T
[
det[I(x∗i )]I(x∗i )

−1 + det
[
I(x∗j )

]
I(x∗j )

−1
]
(x∗i − x∗j ).

4.3.3. Prediction Variance Reduction with V-Optimality

V-optimality aims to select training data so as to minimize the variance of a set of
predictions obtained from the learned model [15,33,34]. The definition naturally fits the
active network embedding for link prediction problem definition, where we only care
about the predictions of the target node pairs in T. Therefore, the goal of the v-opt. strategy
is to minimize the link prediction variance for the target set T.

With CNE, the link prediction function g follows naturally from the model P∗ij ,
g(x∗i , x∗j ) = P(aij = 1|X∗). What the V-optimality utility function quantifies is then the esti-
mated reduction that a candidate link status in the pool can have on all the target prediction
variance—Var(P∗ij) for (i, j) ∈ T. The challenge to be addressed is thus the computation of
the reduction in the variance Var(P∗ij). We outline how this can be performed in two steps:

1. First, generate the expression of the prediction variance;
2. Then, define the query strategy as the utility function that quantifies the variance

reduction.

The prediction variance Var(P∗ij) can be computed using the first-order analysis (details
in Appendix B) and decomposed into contributions from both end nodes, as in Equation (9):

Var(P∗ij) = Varx∗i
(P∗ij) + Varx∗j

(P∗ij) + 2Covx∗i ,x∗j
(P∗ij). (9)
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Then, the bounds on the parameter variance can be used to bound the variance on the
estimated probabilities—Varx∗i

(P∗ij)—as in Equation (10):

Varx∗i
(P∗ij) ≥

[
γP∗ij(1− P∗ij)

]2
(x∗i − x∗j )

TI(x∗i )
−1(x∗i − x∗j ), (10)

and similarly for Varx∗j
(P∗ij).

Now, we can quantify the reduction caused by knowing the link status of a candidate
node pair. As discussed before, knowing the link status of a node pair {i, j} ∈ P, repre-
sented by Equation (5), leads to a reduction of the bounds I(x∗i )

−1 and I(x∗j )
−1, thus on

Varx∗i
(P∗ij) and Varx∗j

(P∗ij), and on Var(P∗ij) due to Equation (9). The last term Covx∗i ,x∗j
(P∗ij)

in Equation (9) does not result in any variance change, so it can be ignored. Putting things
together allows defining the V-optimality utility function for v-opt. and proves a theorem
for computing it.

Definition 2. The V-optimality utility function uA,X∗ evaluated at {i, j} ∈ P quantifies the
reduction in the bound on the sum of the variances Var(P∗kl) (see Equation (9) and (10)) of all P∗kl
for {k, l} ∈ T, achieved by querying {i, j}.

Theorem 1. The V-optimality utility function is given by:

uA,X∗(i, j) = ∑k:{i,k}∈T uik(i, j) + ∑l:{j,l}∈T ujl(i, j),

where:

uik(i, j) = (γP∗ik(1− P∗ik))
2(x∗i − x∗k )

T(I(x∗i )
−1 − I j(x∗i )

−1)(x∗i − x∗k ),

ujl(i, j) = (γP∗jl(1− P∗jl))
2(x∗j − x∗l )

T(I(x∗j )
−1 − I i(x∗j )

−1)(x∗j − x∗l ).

Due to the fact that the Fisher information update in Equation (5) is rank one, we can
apply the Sherman–Morrison formula [39] to I(x∗i )

−1 − I j(x∗i )
−1 and rewrite uik(i, j) (and

similarly for ujl(i, j)) as:

uik(i, j) =
γ4P∗ij(1− P∗ij)

1 + γ2P∗ij(1− P∗ij)djj(x∗i )
[P∗ik(1− P∗ik)]

2dkj(x∗i )
2,

where djj(x∗i ) = (x∗i − x∗j )
TI(x∗i )

−1(x∗i − x∗j ) and dkj(x∗i ) = (x∗i − x∗k )
TI(x∗i )

−1(x∗i − x∗j ).
Unsurprisingly, the variance reduction is always positive.

5. Experiments and Discussion

To evaluate our work, we first studied empirically how partial network embedding
with the modified CNE benefited the link prediction task. Then, we investigated the
performance of ALPINE with the different query strategies qualitatively and quantitatively.
Specifically, we focused on the following research questions in this section:

Q1 What is the impact of distinguishing an “observed unlinked” from an “unobserved”
status of a node pair for partial network embedding?

Q2 Do the proposed active learning query strategies for ALPINE make sense qualitatively?
Q3 How do the different active learning query strategies for ALPINE perform quantitatively?
Q4 How can the query strategies be applied best according to the results?

Data: We used eight real-world networks of varying sizes in the experiments:

1. The Harry Potter network (used also in Section 1) is from the corresponding novel.
We used only the ally relationships as edges and its largest connected component,
which yielded a network with 59 nodes for the most important characters and 218
ally links among them [11];
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2. Polbooks is a network of 105 books about U.S. politics among which 441 connections
indicate the co-purchasing relations [40];

3. C. elegans is a neural network of C. elegans with 297 neurons and 2148 synapses as
the links [41];

4. USAir is a network of 332 airports connected through 2126 airlines [42];
5. MP_cc is a Twitter network we gathered in April 2019 for the Members of Parlia-

ment (MP) in the U.K., which originally contained 650 nodes. We only used its
largest connected component of 567 nodes and 49,631 friendship (i.e., mutual follow)
connections;

6. Polblogs_cc is the largest connected component of the U.S. Political Blogs Net-
work [40], containing 1222 nodes and 16,714 undirected hyperlink edges;

7. PPI is a protein–protein interaction network with 3890 proteins and 76,584 interac-
tions [43], and we used its largest connected component PPI_cc of 3852 nodes and
37,841 edges after deleting the self-loops;

8. Blog is a friendship network of 10,312 bloggers from BlogCatalog, containing 333,983
links [44].

5.1. The Benefit of Partial Network Embedding

An important hypothesis underlying this work is that distinguishing an “observed
unlinked” status of a node pair from an “unknown/unobserved” status, as opposed to
treating both as absent, which is commonly performed, will enhance the performance of
network embedding. We now empirically investigated this hypothesis by comparing CNE
with its variant that performs partial network embedding: (1) the original CNE defined
by its objective function in Equation (1), which does not make this distinction, and (2) the
modified version that optimizes Equation (3), which we called CNE_K (i.e., CNE for the
Knowns), which does make the distinction. Specifically, we compared the model fitting
time and the link prediction accuracy for both:

1. CNE: fit the entire network where the unobserved link status is treated as unlinked;
2. CNE_K: fit the model only for the observed linked and unlinked node pairs.

Setup: To construct a PON, we first initialized the observed information by randomly
sampling a node pair set K0 = E ∪ D that contained a proportion r0 of the complete
information. The complete information means the total number of links in the complete
graph for a given number of nodes. For example, r0 = 10% means that 10% of the
network link statuses are observed as either linked or unlinked: if the network has n
nodes, |K0| = 10%× n(n−1)

2 . The observed K0 is guaranteed connected as this is a common
assumption for network embedding methods. Then, we embedded the same PON using
both CNE and CNE_K on a machine with an Intel Core i7 CPU 4.20 GHz and 32 GB RAM.

Results: From the results shown in Figure 2, we see that CNE_K was not only more
time efficient, but also provided more accurate link predictions. The ratio r0 of observed
information varied for datasets because the larger the network, the more time consuming
the computations are. The time differences for a small observed part were enough to
highlight the time efficiency of CNE_K. The two measures examined were: AUC_U—the
prediction AUC score for all unobserved node pairs (i, j) ∈ U containing 1− r0 network
information; and t(s)—the model fitting time in seconds. Both values are averaged—for
each r0 averaged over 10 different PONs and each PON with 10 different embeddings (i.e.,
CNE has local optima) for the first four datasets—while it is 5× 5 for the fifth and sixth
and 3× 3 for the last dataset.
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Figure 2. Comparison of CNE_K and CNE.

It is not surprising that the fitting time of CNE_K was almost always shorter than
the original CNE as CNE_K only fits the observed information. One exception was the
Polbooks network, on which both methods used similar amounts of time, because the
network size was not large. However, as the network size increased, CNE_K showed
increasing time efficiency. Especially for the Blog network: with r0 = 0.05%, CNE_K was
76 times faster than CNE. CNE_K thus enabled network embedding to scale more easily to
large networks.

In addition to time efficiency, CNE_K always achieved a higher AUC than CNE, since
CNE will try to model the absence of an edge even where there might actually be an
(unobserved) edge. In other words, CNE was trained on data with a substantial amount of
label noise: 0 labels (absent edge) that actually must be a 1 (present edge), while CNE_K
only used those labels that were known to be correct. Partial network embedding for
the knowns is especially useful in settings where only a small part of a large network is
observed and the goal is to predict the unobserved links.

5.2. Qualitative Evaluation of ALPINE

In Section 1, we used the Harry Potter network to illustrate the idea of ALPINE
with three of our query strategies, which focused on predicting the unknown links for
a target node—“Harry Potter”—who has very limited observed information to the rest
of the network. Now, we complete this qualitative evaluation with the same setting for
other strategies: page-rank., d-opt., and v-opt.; min-dis. was omitted as it approximates
max-prob.
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Table 3 shows the top five suggestions, and the relevant characters are highlighted
in Figure 3 with their names. Since CNE achieved different local optima, here, we used a
different two-dimensional visualization to better display the names. All the suggestions
were reasonable and could be explained from different perspectives, proving that ALPINE
with those query strategies made sense qualitatively. Similar to max-deg. and max-prob.,
page-rank. and d-opt. had the same top three suggestions: Hermione, Ron, and Albus,
which are essential allies of Harry. Knowing whether Harry is linked to them will give a
clear big picture of his social relations. The results can further be analyzed according to the
strategy definitions.

Vincent Crabbe Sr.

Albus Dumbledore

Hermione Granger

Neville Longbottom

Severus Snape

Arthur Weasley

Charlie Weasley
Ginny Weasley

Ron Weasley

Fluffy

Harry Potter

Rubeus Hagrid

Lord Voldemort

other nodes

Figure 3. Harry Potter network with suggestions from Table 3 highlighted.

Table 3. Top 5 query selections for the other three strategies of ALPINE.

Strategy Page-Rank. d-opt. v-opt.

1 Ron Weasley Hermione Granger Arthur Weasley
2 Albus Dumbledore Ron Weasley Fluffy
3 Hermione Granger Albus Dumbledore Charlie Weasley
4 Vincent Crabbe Sr. Severus Snape Albus Dumbledore
5 Neville Longbottom Ginny Weasley Ron Weasley

Strategy page-rank., as max-deg., aims to find out Harry’s relationships with the
influencers—nodes that are observed to have many links. With this type of strategy, we
learned which influencers Harry is close to, as well as his potential allies connecting to them;
and conversely for his unlinked influencers.

The d-opt. strategy selects queries based on the parameter variance reduction. It
implies that by knowing whether Harry is linked to the suggested nodes, the node embed-
dings will have a smaller variance, such that the entire embedding space is more stable,
and thus, the link predictions are more reliable. For example, Severus, who ranks the
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fourth here (also the fourth with max-ent.), was not an obvious ally of Harry, but he helps
secretly and is essential in shaping the network structure. The suggestions were considered
uncertain and contributed to the reduction of the parameter variance.

The v-opt. strategy quantifies the informativeness of the unobserved link statuses by
the amount of estimated prediction variance reduction they cause. It suggests that Harry’s
relationships to the Weasley family are informative for minimizing the prediction variance
for him. It makes sense as this family is well connected with Rubeus, who is Harry’s known
ally, and also connects well with other nodes. As for Fluffy, it was observed to be connected
only to Rubeus and unlinked to all other nodes except Harry. Knowing whether Fluffy
and Harry are linked greatly reduced the variance on the prediction for the unobserved,
because there was no other information for it.

We concluded that, intuitively, the query strategies resulted in expected behavior,
although we caution against overinterpretation of this subjective qualitative evaluation.
The next, quantitative, evaluation, provided an objective assessment of the merits of the
query strategies, relative to passive learning, to each other, and to the single pre-existing
method of which we we are aware.

5.3. Quantitative Evaluation of ALPINE

In the quantitative evaluation, we mainly wanted to compare the performance of
different query strategies from Section 4 with passive learning, as well as with the state-of-
the-art baseline method HALLP [9]. Passive learning is represented by the random strategy
that uniformly selects node pairs from the pool. As for HALLP, we implemented its query
strategy shown in Equation (2) (since the source code is not publicly available), and set
c1 and c2 both to one. Note that, as we wanted to compare query strategies in the fairest
possible way, the link prediction was performed using CNE_K also for HALLP.

Setup: As before, we constructed a PON by randomly initializing the observed node
pair set K0 with a given ratio r0, while making sure K0 was connected. Then, we applied
ALPINE with different query strategies for a budget k and a step size s. More specifically,
we investigated three representative different cases depending on the pool P and the target
set T:

1. P = U and T = U: all the unobserved information was accessible, and we were
interested in knowing all link statuses in U;

2. P ⊂ U and T = U: only part of U was accessible, and we still wanted to predict the
entire U as accurately as possible;

3. P ⊂ U, T ⊂ U, and T ∩U = ∅: only part of U was accessible, and we were interested
in predicting a different set of unobserved link status that was inaccessible.

For all datasets, we investigated four values of r0: [3%, 10%, 30%, 80%], to see how the
percentage of the observed information affected the strategy performance. All quantitative
experiments used a step size depending on the network size: 1% of the network information.
For a network with n nodes, it means that s = 1% ∗ n(n−1)

2 unobserved candidate link
statuses will be selected for querying in each iteration. Then, the budget k, pool size |P|,
and target set size |T| were multiples of s for different cases. The random strategy was
a baseline for all three cases, while the HALLP strategy was only used in the first case
because it was designed only for this setup.

Below, we first discuss our findings for each of the three cases on the five smallest
datasets. After that, we discuss some results on the two larger networks for the most
scalable query strategies only.

5.3.1. Case 1: P = U and T = U

In the first case, we had the pool of all unobserved link statuses and wanted to predict
all the unknowns. Shown in Figure 4 are the results, in which each row represents a dataset
with its step size and each column corresponds to one r0 value. For every individual
subplot, the AUC_U is the AUC score for all the initially unobserved link statuses—those
not included in K0. The budget k was set to 10 steps, i.e., k = 10s, resulting in 10 iterations.
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Iteration 0 was the initial performance before the active learning, so there were always
k
s + 1 scores. In other words, given the budget k = 10s, even for r0 = 80%, we did not
query the entire pool and reached only 90% of the network information. The AUC scores
were averaged over several different random PONs, and each PON defined by a K0 was
initialized with different random embeddings (10× 10 for the first four networks and
5× 5 for the last and largest one). Each random strategy score was further averaged over
three runs.
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Figure 4. ALPINE: P = U and T = U. Row 1: Polbooks (s = 54); Row 2: C. elegans (s = 439); Row 3:
USAir (s = 549); Row 4: MP_cc (s = 1604); Row 5: Polblogs_cc (s = 7460).

In general, the active learning strategies outperformed the rand. strategy. We saw that
when the observed part was relatively small—3% or 10%— the degree-related strategies
that did not depend on the embedding usually performed very well, and the random
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strategy was not always the worst. As more information was observed when r0 increased
(see the plots from the left to the right in each row), we did not only see that the active
learning strategies, such as v-opt. and max-ent., began to dominate and passive learning
became the worst, but also the increase of the starting AUC_U. Zooming in to individual
subplots, we saw that ALPINE boosted link prediction accuracy with far fewer queries for
the active learning strategies, compared to passive learning. Overall, when the observed
information was very limited, the embedding-independent strategies page-rank. and
max-deg. outperformed the others; while for sufficiently enough information, v-opt. and
max-ent. were the better choices. We speculated that this was the case as the embedding
must be of sufficient quality for the embedding-dependent strategies to work, which
requires a certain minimum amount of data. Worth noticing is that d-opt. showed similar
performance across different values of r0, which will be discussed further in Section 5.4.

As for the HALLP strategy, which aimed to query the most uncertain node-pairs and
thus was similar in spirit to max-ent., the performance was very variable. In some cases,
it performed quite well, as shown in the top right subplot, beating v-opt. in the first few
iterations, while on the MP_cc network, it was one of the worst strategies. In addition to
that, the runtime of HALLP was much longer than that of the other strategies; thus, some
of the subplots do not have the HALLP result. The runtime analysis for one iteration of
the query process on a server with an Intel Xeon Gold CPU 3.00 GHz and 256 GB RAM is
shown in Table 4 below. The results were averaged in the same way as in Figure 4 for the
four values of r0 and then further averaged over the r0 values. Across different datasets,
HALLP was by far the most computationally expensive strategy as it had to run two link
predictors.

Table 4. Runtime for one query in seconds—Case 1.

Data Rand. Page-Rank. Max-Deg. Max-Prob. Min-Dis. Max-Ent. d-opt. v-opt. HALLP

Polbooks 0.001 0.031 0.008 0.004 0.027 0.004 0.093 0.482 12.33
C. elegans 0.005 0.108 0.042 0.028 0.18 0.029 0.675 5.469 148.4

USAir 0.006 0.134 0.052 0.035 0.231 0.036 0.881 7.309 232.6
MP_cc 0.016 0.707 0.16 0.117 0.693 0.125 2.746 28.90 1074

Polblogs_cc 0.092 1.153 0.707 0.675 3.264 0.709 12.31 226.0 12022

5.3.2. Case 2: P ⊂ U and T = U

In the second case, we applied ALPINE with a smaller pool, while we were still
interested in predicting all the unknown link statuses. The experiment setting was similar
to the previous case, but the pool size |P| was set to 10 times the step size—10s—and the
budget k = 5s, i.e., only five iterations were performed. The candidates in the pool were
randomly sampled from the unobserved part for each PON in our experiments.

Figure 5 shows the results for this case. Compared to the first case, the AUC_U was
lower for each individual subplot as the accessible information in the pool was more
limited. The results confirmed again that all active learning strategies were better than
passive learning, Shown more clearly in the last row in Figure 5 on the Polblogs_cc network
is that the three strategies page-rank., max-deg., and d-opt. were the winning group for
the first two r0 values. However, in the third and fourth subplot in the same row, v-opt.,
max-ent., and d-opt. performed best. The d-opt. strategy stayed as one of the top strategies
across different percentages of the observed information.

5.3.3. Case 3: P ⊂ U, T ⊂ U, and T ∩U = ∅

We imposed further constraints in the third case: not only the pool P of node pairs
that could be queried was limited, but also the set T of target node-pairs for which we
wanted to predict the status was limited. Moreover, both sets were not intersecting. As in
the second case, the budget was set to k = 5s and |P| = 10s. The target set size was now
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taken to be |T| = 5s. Both P and T were sampled randomly from U before the querying
started.
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Figure 5. ALPINE—P ⊂ U and T = U. Row 1: Polbooks (s = 54); Row 2: C. elegans (s = 439); Row
3: USAir (s = 549); Row 4: MP_cc (s = 1604); Row 5: Polblogs_cc (s = 7460).

The results in Figure 6 confirmed again that active learning outperformed passive
learning. One might expect v-opt. to perform the best in this case because it was the
only strategy that explicitly considered T. Although it was shown to perform quite well
in some subplots especially for the first iteration, the quality of the embedding affected
its performance. Indeed, as we observed before, the reliability of all embedding-based
strategies depended largely on how well the network was embedded, which became much
better as r0 increased.
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Figure 6. ALPINE: P ⊂ U, T ⊂ U, and T ∩U = ∅. Row 1: Polbooks (s = 54); Row 2: C. elegans
(s = 439); Row 3: USAir (s = 549); Row 4: MP_cc (s = 1604); Row 5: Polblogs_cc (s = 7460).

Compared to the previous two cases, the results here were not as smooth even after
averaging. The reason was that the score AUC_T depended not only on P, but also
largely on T, which were both randomly sampled. Whether P contained candidate node
pairs that were informative for T affected the score. Overall, the embedding-independent
strategies—page-rank. and max-deg.—had the top performance when r0 was small; and
the embedding-based strategies became increasingly competitive if more information
was observed.

5.3.4. Evaluations on Two Larger Networks

Finally, we conducted a quantitative evaluation on two larger networks: PPI_cc and
Blog. The results are shown in Figures 7 and 8 and confirmed the observations we made
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on the five smaller networks. Figure 7 shows the PPI_cc results for the three cases with
seven query strategies, excluding v-opt. and HALLP, as they were computationally too
expensive. The AUC scores were averaged over five sets of random initial K0, P, and T,
and each set with five initial embeddings. The last column looks bumpy since the score was
already very high and small randomness in the embedding could cause a slight difference.
Figure 8 shows the results for the second and third case with three values of r0. Case 1
was omitted because embedding the Blog network with a large observed part was already
quite expensive, and evaluating all the unobserved candidates when r0 was small made it
computationally too demanding.
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Figure 7. ALPINE on PPI_cc with s = 74170. Row 1: Case 1; Row 2: Case 2; Row 3: Case 3.

5.4. Discussion

Our experiments showed that ALPINE in its general form can be adapted for various
problem settings, and active learning performed consistently and substantially better than
passive learning regardless of which of the investigated query strategies was applied. Now,
we discuss how the strategies can be optimally applied based on our observations, with
advice and insights that may help a practitioner select the best query strategy given the
properties of the data and available computational resources.
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Figure 8. ALPINE on Blog with s = 531,635. Row 1: Case 2; Row 2: Case 3.

Among the seven active learning query strategies we developed, page-rank. and
max-deg. did not depend on the network embedding while the other five were embedding
based. Thus, as with limited observed information, the network embedding might be of
poor quality, in such cases, page-rank. and max-deg. were seen to outperform the others.

The embedding-based strategies began to dominate when more information was
observed and the embedding quality improved. The max-ent. and v-opt. had the top
performance, but d-opt. had a more stable high performance across different values of
r0. Based on those observations, we recommend a mixed strategy that starts from the
degree-related and then switches to other embedding-based strategies.

The complexity of the utility computation depended on the sizes of P and T, as well
as the network. Normally, the larger the pool, the more expensive the computations were,
as we had to consider more candidate node pairs. All query strategies, including rand.,
required a similar computing time when given the same size of P. A notable exception is
v-opt., which was computationally more expensive. Yet, if we had a sufficiently accurate
network embedding model, e.g., see the last columns in Figures 4–6, v-opt. was almost
always the most accurate, especially for the first few iterations. Thus, when the cost of
querying was high as compared to the cost of computations, v-opt. was preferable as
soon as enough data were available such that the embedding was sufficiently accurate. If
computational cost was a bottleneck though, max-ent. and d-opt. were computationally
less expensive substitutes for v-opt., with comparable accuracies.

The experiments aimed to show how active learning, compared to passive learning,
benefited the network embedding based link prediction, namely CNE. Therefore, following
the line of research in active learning, we restricted our baselines to only the random
and the state-of-the-art active learning strategies for link prediction [7,9,14,25]. However,
it would also be interesting to compare ALPINE with CNE against other types of link
prediction methods to gain more insights. For example, a comparison of our work with
a state-of-the-art link prediction approach (e.g., SEAL [45] according to [46,47]) could
be used to show whether the differentiation between the unknown and the unlinked
status together with active learning would improve the link prediction accuracy in general.
Note that this type of comparison can be biased as we had three types of link statuses,
while other link prediction methods usually have only two. There are also other network
embedding methods that can be used in combination with the ALPINE framework; thus
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the comparison among CNE and other base models can be considered. That leaves many
possible opportunities for research to be built on this work.

6. Conclusions

Link prediction is an important task in network analysis, tackled increasingly using
network embeddings. It is particularly important in partially observed networks, where
finding out whether a node pair is linked is time consuming or costly, such that for a large
number of node pairs, it is not known if they are linked. We proposed to make use of active
learning in this setting and studied the problem of active learning for link prediction using
network embedding in this paper.

More specifically, we proposed the ALPINE framework, a method that actively learns
to embed partially observed networks to achieve better link predictions, by querying the
labels of the most informative unobserved link statuses. We developed several utility
functions for ALPINE to quantify the utility of a node pair: some heuristically motivated
and some derived as variance reduction methods based on D-optimality and V-optimality
from optimal experimental design.

We implemented ALPINE in combination with Conditional Network Embedding
(CNE). To accomplish this, we first adapted CNE to work for partially observed networks.
Through experimental investigation, we found that this modified version of CNE was
not only more time efficient, but also more accurate for link prediction—an important
side-result of the present paper.

We then empirically evaluated the performance of the utility functions we developed
for ALPINE, both qualitatively and quantitatively, providing insights into the merits of
ALPINE and advice for practitioners on how to optimally apply this method to different
problem settings.

More broadly, the application of active learning to the link prediction problem in gen-
eral, which is usually for partially observed networks, could help us to build more realistic
and practical methods. Taking this work as a starting point, we see interesting future
directions, including the investigation of a mixed strategy, batch mode active learning
for ALPINE, and the application of ALPINE to the cold-start problem in recommender
systems. Meanwhile, a thorough comparison of ALPINE with CNE against general link
prediction methods, as well as the choice of the base network embedding model to be used
with the ALPINE framework remain to be further investigated.
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Appendix A. The Observed Fisher Information Matrix

CNE is defined as in Equation (1), aiming to find an embedding that maximizes the
graph probability. To compute the Fisher information of CNE, we first need to compute the
score, which is the partial derivative of the log likelihood function log P(G|X) with respect
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to the parameter. The parameters in CNE is the embedding matrix X ∈ Rn×d; thus, the
score for one node embeddings xi for i ∈ V is [10]:

s(xi) =
∂P(G|X)

∂xi
= γ ∑

j 6=i
(Pij − aij)(xi − xj), (A1)

where γ = 1
σ2

1
− 1

σ2
2

is a parameter in CNE and Pij represents P(aij = 1|X).

Then, the Fisher Information, defined as the variance of the score, is I(xi) = E
[
s(xi)s(xi)

T]:
I(xi) = γ2 ∑

j 6=i
Pij(1− Pij)(xi − xj)(xi − xj)

T . (A2)

The observed Fisher information that takes into account only the observed part is
thus,

I(xi) = γ2 ∑
{i,j}/∈U

Pij(1− Pij)(xi − xj)(xi − xj)
T . (A3)

Full Hessian: When considering the entire embedding matrix X, its Fisher information
is its full Hessian H ∈ Rnd×nd consisting of n× n blocks of size d× d. The diagonal blocks
Iii(X) = I(xi) and the off-diagonal blocks Iij(X) are defined as:

Iij(X) = E
[

∂P(G|X)

∂xi

∂P(G|X)

∂xj

T
]
= γ2Pij(1− Pij)(xi − xj)(xj − xi)

T . (A4)

Appendix B. The Prediction Variance

As mentioned, the prediction variance is computed via a first-order analysis of the
prediction, and we provide the details here. The prediction Pij = P(aij = 1|X) is a function
of xi and xj, denoted f (xi, xj), and it can be approximated by its first-order Taylor expansion
at the MLE X∗:

f (xi, xj) = f (x∗i , x∗j ) +
∂ f (x∗i , x∗j )

∂xi
(xi − x∗i ) +

∂ f (x∗i , x∗j )

xj
(xj − x∗j ). (A5)

Therefore, the prediction variance Var(Pij) is:

Var(Pij) =
∂ f (x∗i , x∗j )

∂xi

T

Var(xi)
∂ f (x∗i , x∗j )

∂xi
+

∂ f (x∗i , x∗j )

∂xj

T

Var(xj)
∂ f (x∗i , x∗j )

∂xj

+ 2
∂ f (x∗i , x∗j )

∂xi

T

Cov(xi, xj)
∂ f (x∗i , x∗j )

∂xj
. (A6)

According to Var(Pij), Var(P∗ij) at the MLE then is:

Var(P∗ij) =
∂P∗ij
∂xi

T

Var(x∗i )
∂P∗ij
∂xi

+
∂P∗ij
∂xj

T

Var(x∗j )
∂P∗ij
∂xj

+ 2
∂P∗ij
∂xi

T

Cov(x∗i , x∗j )
∂P∗ij
∂xj

. (A7)

If we write the three terms in the equation above in a simpler form for brevity, i.e., as
Varx∗i

(P∗ij), Varx∗j
(P∗ij), and Covx∗i ,x∗j

(P∗ij), we get the expression of Var(P∗ij) in Equation (9).
Now we look at the bounds and take the first term for example, for which we first need to

compute
∂Pij
∂xi

[10].
∂Pij

∂xi
= Pij

∂ log Pij

∂xi
= γPij(1− Pij)(xi − xj). (A8)
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Then, we have the first term Varx∗i
(P∗ij) as follows, and it comes to the bound in

Equation (10).

Varx∗i
(P∗ij) =γ2

[
P∗ij(1− P∗ij)

]2
(x∗i − x∗j )

TVar(x∗i )(x∗i − x∗j ), (A9)

≥γ2
[

P∗ij(1− P∗ij)
]2
(x∗i − x∗j )

TI(x∗i )
−1(x∗i − x∗j ). (A10)
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