
applied
sciences

Article

Integrating Predictive Maintenance in Adaptive Process
Scheduling for a Safe and Efficient Industrial Process

Orhan Can Görür 1,* , Xin Yu 2 and Fikret Sivrikaya 3

����������
�������

Citation: Görür, O.C.; Yu, X.;

Sivrikaya, F. Integrating Predictive

Maintenance in Adaptive Process

Scheduling for a Safe and Efficient

Industrial Process. Appl. Sci. 2021, 11,

5042. https://doi.org/10.3390/

app11115042

Academic Editor: Sofie Van Hoecke

Received: 30 April 2021

Accepted: 25 May 2021

Published: 29 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 DAI-Labor, Technische Universität Berlin, 10587 Berlin, Germany
2 Ericsson, SE-221 00 Lund, Sweden; xin.a.yu@ericsson.com
3 GT-ARC gGmbH, 10587 Berlin, Germany; fikret.sivrikaya@gt-arc.com
* Correspondence: goeruer@tu-berlin.de

Abstract: Predictive maintenance (PM) algorithms are widely applied for detecting operational
anomalies on industrial processes to schedule for a maintenance intervention before a possible
breakdown; however, much less focus has been devoted to the use of such prognostics in process
scheduling. The existing solutions mostly integrate preventive approaches to protect the machines,
usually causing downtimes. The premise of this study is to develop a process scheduling mechanism
that selects an acceptable operating condition for an industrial process to adapt to the predicted
anomalies. As PM is largely a data-driven approach (hence, it relies on the setup), we first compare
different PM approaches and identify a one-class support vector machine (OCSVM) as the best
performing option for the anomaly detection on our setup. Then, we propose a novel pipeline
to integrate maintenance predictions into a real-time, adaptive process scheduling mechanism.
According to the abnormal readings, it schedules for the most suitable operation, i.e., optimizing
for machine health and process efficiency, toward preventing breakdowns while maintaining its
availability and operational state, thereby reducing downtimes. To demonstrate the pipeline on the
action, we implement our approach on a small-scale conveyor belt, utilizing our Internet of Things
(IoT) framework. The results show that our PM-based adaptive process control retains an efficient
process under abnormal conditions with less or no downtime. We also conclude that a PM approach
does not provide sufficient efficiency without its integration into an autonomous planning process.

Keywords: predictive maintenance; predictive maintenance-based process scheduling; real-time
anomaly detection

1. Introduction

Industry 4.0 (I4.0) revolutionizes the industry by adopting new paradigms like the
Internet of Things (IoT), Cyber-Physical Systems (CPS), cloud computing, and machine
learning [1]. Through the CPS concept and an IoT framework, manufacturing processes
can be monitored and controlled remotely, even autonomously, at the device-level. Fur-
thermore, the cloud computing and machine learning techniques enable storing, analysing,
predicting, and classifying massive data for further optimization of the process in real-time.
Predictive maintenance, being one of these optimization processes, is our focus in this
study. In modern production lines, small defects can easily cause a chain reaction and
paralyze the production line for weeks [2]. Preventive maintenance has been a commonly
used approach to avoid such breakdowns, which is performed periodically on the devices
to replace or run a regular maintenance check based on mean-time-to-failure (MTTF) or
mean-time-between-failures (MTBF) of the devices [3]. However, considering the cases
when a device wears out faster or slower than usual and when there is an external dis-
turbance affecting a process, this approach falls short in adapting. For that, predictive
maintenance (PM) algorithms have been proposed to predict possible system failures in
the future from the sensor readings and the historical data patterns [2].

Appl. Sci. 2021, 11, 5042. https://doi.org/10.3390/app11115042 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5140-5580
https://orcid.org/0000-0003-0067-4761
https://www.mdpi.com/article/10.3390/app11115042?type=check_update&version=1
https://doi.org/10.3390/app11115042
https://doi.org/10.3390/app11115042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115042
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 5042 2 of 24

Since PM is a relatively new application field, how to incorporate predicted machinery
states (prognostics) into online decision processes is a rather less discovered area of research.
In general, maintenance planning consists of scheduling maintenance intervention based on
the state of machinery and carrying out operational decisions to retain or restore a system
to an acceptable operating condition [4]. Our research into the online analysis of PM has
shown that little to no focus has been given to the latter, that is, the scheduling of operational
decisions to adapt better to the changing states of machinery—we refer to this as adaptive
process scheduling. Many approaches into prognostics only schedule maintenance through
simple control measures like condition-based maintenance (CBM) [5], which may also be
categorized as preventive solutions [6]. With the advances in PM, recent studies offer
prognostic health management (PHM) applications that run online prognostics to predict
the remaining useful life (RUL) of a machine to better schedule maintenance intervention
based on fault predictions [6–8]. Even though these approaches protect the machines
and greatly reduce breakdowns, we believe that they need to be complemented with
operational decisions to adapt to the predicted conditions for a more efficient process, until
a maintenance intervention is issued.

The advantages of taking PM-based operational decisions can be, for example, delay-
ing a scheduled maintenance intervention by retaining an acceptable operating condition,
autonomously recovering when some transient abnormal behavior disappears by itself
(e.g., if it is due to a short-lived external disturbance), and finding a new operating condi-
tion that may avoid the abnormal behavior and possibly cancel the scheduled intervention.
In general, many maintenance interventions and long downtimes could be reduced by
such an adaptive process scheduling that optimizes an operation mode. Nevertheless, the
conventional process scheduling mechanisms provide dynamic solutions toward main-
taining the desired performance, which then usually disregard a machine’s health and
maintenance actions. We state that a holistic approach to process scheduling should be
developed so that an industrial process jointly optimizes for a more efficient and safe mode
of operation until a maintenance intervention is issued.

Our premise in this study is to develop and deploy an adaptive process scheduling that
integrates PM analysis as a safety component in scheduling for an operation mode. First of
all, we develop a digital twin of an industrial process, in our case a conveyor belt system
run by a servo motor (https://github.com/cangorur/servo_motor_simulation, accessed
on 30 April 2021), providing massive data to generate a “fingerprint” (i.e., a large collection
of nominal operational behavior data) for the system that is used both to train for a more
accurate PM and to calculate the expected system behavior for a requested operation during
runtime. For our implementation of a PM approach, we conduct a comparative analysis to
select the best fitting algorithm to our setup since the performance of an anomaly detection
algorithm depends on the pattern of the generated data. We implement commonly-used
anomaly detection approaches and compare their performances in terms of training time,
classification time, and classification accuracy to finally select and integrate one-class
support vector machine (OCSVM) approach as the basis of our real-time PM.

Our main contribution is a novel PM-based adaptive process scheduling pipeline
that incorporates obtained PM analysis as feedback to select a new operation mode for an
industrial process that prevents machine breakdowns while keeping the operation running
with minimum performance degradation. We believe that this pipeline can complement
various industrial processes as high-level decision-making to regulate the process toward
a safe operation with maximum efficiency. Our mechanism is a closed-loop system that
continuously runs PM analysis and each time an abnormal behavior is predicted, a PID
error is calculated to analyze the deviation of current system behavior from its nominal
behavior, that is, the expected system behavior at a requested operation. An example would
be that the expected power drainage at a requested conveyor speed can be calculated by
the digital twin during runtime and our system monitors how much the current drainage
deviates from it. A process scheduler then schedules an operation that compensates for this
deviation in behavior: the new plan reduces the performance (e.g., the running speed of

https://github.com/cangorur/servo_motor_simulation

Appl. Sci. 2021, 11, 5042 3 of 24

the conveyor) as close to the original request as possible provided that the power readings
are within the allowed safe region of a newly scheduled operation. In this way, the risk of
causing further damages to the system is reduced while maximum possible performance is
still maintained. As for the scheduling, we are agnostic to the algorithm used. We select
a state-of-the-art genetic algorithm (GA) as it is one of the most commonly used meta-
heuristic adaptive control techniques [9]. Each chromosome in the GA model describes a
different operation mode, in our case a range of nominal speed and power values for the
conveyor to safely operate, which are obtained from the fingerprint. The scheduler, i.e.,
the GA, decides on one of these operation modes according to the optimization criteria,
that is, system safety and performance. The pipeline also allows a user to adjust the
optimization goals by selecting either a performer mode (more weight on maximum speed)
or a protective mode (more weight on minimum power), both of which still optimize to
protect the machine’s health.

To demonstrate the applicability of our pipeline, we implement it on a small-scale
conveyor belt as part of a project called CHARIOT (https://chariot.gt-arc.com/, accessed
on 30 April 2021) [10], which aims at the holistic inter-networking of a heterogeneous set of
devices and human actors through unified IoT middleware and data models. As a core part
of the middleware, a knowledge management system provides services for data storage and
access as well as cloud-based machine learning and data analysis services. Our study is an
important use-case of CHARIOT, utilizing the framework to obtain data from the connected
devices (e.g., servo motors, current sensors, load sensors) and to run PM analysis and our
adaptive process scheduler. This enables real-time data analysis and responses, making it
possible to demonstrate the applicability of our solution and evaluate it at runtime. We open
the access to our knowledge management system that also implements the experimented
PM approaches (https://github.com/GT-ARC/chariot-ml-engine, accessed on 30 April
2021). To demonstrate the effectiveness of incorporating PM analysis into automated
process control, we compare our system with a reactive, rule-based approach (preventive
maintenance) as a baseline and show that such PM-based scheduling provides an efficient
operation and can still protect the system. Additionally, we conclude that a PM approach
alone does not provide sufficient efficiency if it is not integrated into an automated planning
process, which paves the road to industrial automation with maintenance-in-the-loop.

In the rest of this article, after an overview of the related literature (in Section 2),
we outline our PM-based adaptive scheduling pipeline (in Section 3.1) and describe the
digital twin model (in Section 3.2), followed by the details of our predictive maintenance
implementation (in Section 3.3) and the adaptive process control mechanism that describes
how PM results are integrated into a process scheduling algorithm (in Section 3.4). In
Section 4, we first present our CHARIOT framework used in evaluations (in Section 4.1)
and then the experiment setup (in Sections 4.2 and 4.3). For the results, we start with a
comparative analysis for predictive maintenance implementation (in Section 4.4), analyze
the performance of our adaptive control system (in Section 4.5), and finally present its
comparison with a rule-based approach (in Section 4.6). Section 5 concludes the article
with a summary and future work.

2. Related Work

In recent years, thanks to the advances in machine learning and computational tech-
nologies, anomaly detection algorithms have been widely applied in fraud detection,
intrusion detection and fault detection in many different domains, including predictive
maintenance in industrial processes [11–14]. Predictive maintenance methods can be clas-
sified into three main categories: model-based approaches, case-(rule-)based approaches
and data-driven approaches [15]. Over the years, data-driven predictive maintenance
approaches have progressed and become crucial towards Industry 4.0 [16]. Recently, it
has been shown that machine learning techniques increase the feasibility and availability
of predictive maintenance, allowing its broad application including the fields that are
previously considered hard to conduct maintenance [14,17,18].

https://chariot.gt-arc.com/
https://github.com/GT-ARC/chariot-ml-engine

Appl. Sci. 2021, 11, 5042 4 of 24

Various machine learning approaches for clustering, classification and regression are
widely applied for PM and proven to be effective [14,18–20]. This includes different PM
applications, such as the calculation of the Remaining Useful Life (RUL) [7,21] or condition
monitoring to prevent premature failures [3]. In this work, in order to exploit real-time
information from massive data obtained from our conveyor belt and its peripheral devices,
we apply an online condition monitoring that falls into the domain of anomaly detection. It
refers to the problem of finding data points that do not follow the expected behavior. Such
data points are usually named as anomalies, exceptions, outliers or novelties in different
applications [22]. When a training dataset only involves “normal conditions,” the trained
model should be capable of detecting whether a new observation belongs to the model. In
that case, it is called a novel pattern that is then incorporated into the normal model after
its detection. Any other previously unseen observation that is not categorized as novelty
is then considered as an anomaly [23]. In our setup, since we have access mostly to the
normal behavior data, we need a novelty detection algorithm that is also considered as a
semi-supervised learning anomaly detection as it is a one-class classification problem [22].
Our goal is to classify new data as a novelty (part of normal behavior data) or as an anomaly
(abnormal behavior data) if the test data does not relate to the training set [24].

There are various novelty detection techniques, which can be mainly categorized as
distance-based, reconstruction-based, domain-based, and probabilistic methods. A widely
used distance-based approach is k-nearest neighbor (k-NN) and is based on the assumption
that normal data points all have close neighbors. Then, if a data point is far away from its
neighbors, it is regarded as an anomaly [25]. An example of a domain-based novelty detec-
tion is one-class support vector machine (OCSVM). It is an unsupervised learning method
that clusters only one class, which makes it suitable for a PM application detecting rare
events with very small amount of abnormal behavior samples [26]. A decision boundary
is calculated to indicate the area where most of data points are located. The area outside
of this boundary is regarded as a novelty region. Kernel principle component analysis
(PCA), on the other hand, is a reconstruction-based approach. It calculates a reconstruction
error between the original and the reconstructed dataset, compares with a predefined
threshold and decides the novelty of a new observation. Even though there are many other
available approaches, they mostly suffer from problems such as excessive computational
power requirements during the training stage if the dataset is large or not being sensitive to
nonlinear data. Since a PM application is specific to data formats and patterns of different
devices, we develop and compare most commonly applied methodologies that are suitable
for our conveyor belt setup. For the purpose, we compare a k-NN, an OCSVM and a kernel
PCA; and select the best performer to be adopted in our system.

Application of PM is a necessary step, but the utilization of its analysis in an indus-
trial operation to autonomously adapt to an estimated abnormal condition is a rather
undiscovered area of research. PM analysis (prognostics) are usually used by prognostic
health management applications to calculate RUL of machines and schedule more efficient
maintenance interventions [8]. Regarding the process scheduling of a machinery system,
the focus has been mostly towards estimating and improving the efficiency of a machine
operation. The “adaptive scheduling” concept is proposed to solve the parametric un-
certainty problems, such as when there is an extra noise or an operation environment is
dynamic [9]. In other words, the goal is to estimate or learn machine parameters online
that lead to control signals for a desired performance [27]. There are only a handful of
studies implementing data-driven adaptive control using machine learning. In [28], a
neural network is constructed to acquire the motor controller gains for a parallel robot
manipulator. In [29], the PID controller parameters are constantly modified by an Artificial
Neural Network to obtain an optimal performance. Machine learning-based control has
been proven to be effective; however, it requires training a model beforehand. This limits
its adaptation when the environment is drastically changing. Another approach to data-
driven adaptive control is through meta-heuristic methods. In [30,31], the authors compare
various meta-heuristic methods to tune PID parameters offline. As an example to online

Appl. Sci. 2021, 11, 5042 5 of 24

methods, Lin et al. [32] propose a genetic algorithm for PID tuning on a linear induction
motor to achieve a minimal position control error. Despite their good performance and
wide use, one drawback of meta-heuristic methods [9] is their long convergence time. This
may introduce delays in updating a system control signal in real-time.

In general, existing process scheduling approaches are towards satisfying an efficient
operation, yet they mostly discard the safety factor. Whereas, there are preventive ap-
proaches like condition-based maintenance that prevent machines from harm but they
are not efficient due to long downtimes. Our goal, for the first time to our knowledge,
is to integrate these approaches using PM analysis as a safety component coupled to an
adaptive industrial process scheduling mechanism to optimize for operating condition.
Then, the system adapts towards a more efficient and a safer operation mode using PM
analysis to protect a machine with less or no downtimes. In particular, we believe that a
PM implementation without its analysis integrated into a closed-loop system would not
show its full potential, whereas a sole performance-driven adaptive control would discard
the machine health. A holistic adaptive control and maintenance ecosystem taking PM
analysis as feedback to optimize an operation is necessary for the future of PM applications
in autonomous systems.

3. Methodology and Overall Framework

3.1. System Architecture

Our PM-based adaptive process scheduling pipeline is depicted in Figure 1. The archi-
tecture consists of a machinery system (in our case, a conveyor belt run by a servo motor),
its digital twin, predictive maintenance mechanism, and adaptive control mechanism.

Figure 1. The predictive maintenance (PM)-based adaptive process scheduling pipeline.

A digital twin model of the conveyor system is developed using the specifications
of the servo motor and the conveyor belt, which is then further approximated with the
actual values collected from the real system (covered in Section 3.2). In order to reach
better classification accuracy for the predictive maintenance, the twin generates normal
operation data as well as data under abnormal conditions that are hard to observe and
may be harmful for the real machine. The generated (synthetic) data, along with the real
motor data, are used in PM classification model training. The data in our case includes
speed, power and torque readings from the servo motor driving a conveyor belt. We refer
to the collection of data generated under nominal operating conditions as the “fingerprint”
of the system. The training step for PM generates a nonlinear decision boundary over
the fingerprint data, which is done initially offline and can be updated frequently. That

Appl. Sci. 2021, 11, 5042 6 of 24

is, with the newly collected data during run-time, our pipeline allows for continuously
updating the fingerprint of the system in case the nominal operating conditions for the
process changes. This then triggers the training to generate a new decision boundary model.
This is a supervised and procedural step since our pipeline cannot automatically detect
drastic changes in the nominal (boundary) conditions that may arise from various factors
including manual updates in the process, for example, replaced components, changing
requirements, carrying heavier loads on the conveyor.

The real-time PM takes place in the Anomaly Detection stage in Figure 1. It takes
speed and power readings from the motor as input and uses the trained decision boundary
to perform anomaly predictions on the new data in real-time (covered in Section 3.3).
Our adaptive control contains two components. First, after an anomaly is detected, the
Maintenance Analysis (error calculation) block further analyzes the abnormal readings by
calculating the error, that is, the deviation from an expected value under a requested
operation (covered in Section 3.4). We call these expected values “nominal values”. During
run-time, we use the twin model to calculate the nominal values for the requested operation.
After that, the Operation Control block makes a decision by scheduling a new operation
mode. We use a state-of-the-art genetic algorithm for this purpose. An operation mode
is, in our case, an allowed speed interval to run the conveyor belt motor and it is selected
with the optimization criteria of achieving maximum possible performance (speed) while
ensuring a safe operation on the system. A user may adjust the optimization goal by giving
more weight on more performance or on less power, that is, more protection (covered
in Section 3.4.1).

3.2. The Digital Twin Model

We need twin models of the machinery system to be able to simulate and obtain
nominal conditions of the system during an operation, as well as abnormal conditions for
training and testing purposes. A commonly used approach in modeling the operation of
servo motors under changing load is to model the relationship between speed, torque and
input power readings. Therefore, our goal is to obtain a mathematical approximation of the
real system that is able to generate a power reading given a speed and a torque (load) value.
For this purpose, we start from an existing servo motor simulation configured with the
datasheet specifications of our servo motor and the conveyor belt mechanism to generate
data under ideal conditions. Since the load on the real system is dynamic and nonlinear,
we also collect many data from the conveyor setup under various nominal operating
conditions, that is, various expected loads under various operation requests. Both the ideal
case data and the real data collected are used to obtain an approximation model. The model
is generated using polynomial regression over the obtained final readings of speed, torque
and power, using a curve fitting approach. The polynomial approximation that serves as
the final twin model generating nominal values is given in (1).

P(v, τ) = a + b · v + c · τ + d · v2 + e · v · τ + f · τ2, (1)

where v is the rotation speed of the conveyor belt, τ is the torque (load) on the motor
and a, b, c, d, e, f stand for the constants derived after curve fitting. During runtime, to
calculate a nominal power (Pnom) approximation given the current operation, we use the
function above with the requested speed value (vreq) and the current load (τcur) carried
on the conveyor system, that is, Pnom = f (vreq, τcur). However, the actual torque on the
motor driving the belt is assumed unknown during the operation due to several abnormal
conditions like glitches on the gears of the motor or extra friction on the belt. Therefore,
we generate speed-power curves for different allowed loads on the conveyor using the
data generated from the digital twin model and the real system under normal conditions
(as depicted in Figure 2). The combination of all nominal data is named as the fingerprint
of our conveyor system, which is then used in the training of the predictive maintenance
algorithm, as explained in the next section.

Appl. Sci. 2021, 11, 5042 7 of 24

(a) Power-speed curve of the real conveyor system (b) Power-speed curve obtained from the digital twin model

Figure 2. The fingerprint, i.e., nominal power-speed characteristics, of the system under various torque (load) conditions.

3.3. Predictive Maintenance on a Conveyor Belt

Finding a suitable machine learning approach for a PM operation depends on the
applied system, that is, through the pattern of generated data and machine specifications.
For the purpose, we examine three commonly used methods, that is, one class SVM, k-NN
and kernel PCA, to generate a classification model (i.e., a decision boundary) over the
system fingerprint given in Figure 2. PM operation is then an anomaly detection process,
checking if a new data is classified as an abnormal or a normal behavior. In this section, we
briefly describe the application of these methods to the problem of predictive maintenance.
In Section 4.4 we provide a comparative analysis along with a discussion on our selection
for the final use.

3.3.1. Anomaly Detection with One-Class SVM

One-class support vector machine (OCSVM) is a popular domain-based novelty
detection algorithm, based on support vector machine (SVM) classification. OCSVM
acquires a decision boundary on a labeled data and predicts if a new data point belongs to
the class defined by the boundary or not. Instead of maximizing the margin between two
groups of data points, the algorithm tries to maximize the margin between the data points
and the origin using a hyperplane. In OCSVM, the parameters ν (hyperparameter of the
OCSVM algorithm) and γ (hyperparameter of the kernel function, which is radial basis
function, i.e., RBF, in our case) largely affect the performance of the OCSVM algorithm.
The parameter ν defines the upper bound of the fraction of outliers and a lower bound of
the number of samples that are used as the support vector. It controls the upper bound of
the target data that are excluded, which is usually tuned to reject the noise. The parameter
γ, on the other hand, controls the smoothness of the decision boundary; the bigger γ is, the
more jagged the boundary is [33].

Parameter estimation, in general, is done using grid search with cross validation. It
helps figuring out how the algorithm performs when there is new data and also prevents
the trained model from over-fitting. However, in anomaly detection, the “abnormal data”
is usually not available or lacking in terms of data amount and diversity. A typical way
to solve this problem is to generate artificial outlier data [12]. k-NN-based edge pattern
detection (EPD) is a method to identify several data points that define the edge pattern
of the trained models [34]. Based on the EPD algorithm, the “negative shifting” method
is proposed to generate high quality outliers [33]. For this purpose, the identified edge
pattern is shifted away from the target data by a short distance. Towards higher qualities,
the shifting direction should target data density’s negative gradient, where the density of
target data drops at the fastest rate. Similarly, “positive shifting” is proposed this time to
generate pseudo target data as a validation set to avoid time-consuming cross validation.
The pseudo target data can be generated by shifting every target data point along the
direction where target data density grows at its fastest rate, which is exactly the opposite

Appl. Sci. 2021, 11, 5042 8 of 24

direction of the negative shifting. Moreover, the shifting distance should be the minimum
projection distance of the k-nearest neighbors of the data point on the shifting direction.

For the fine tuning of all three unsupervised algorithms (Sections 3.3.1–3.3.3) we apply
negative shifting and positive shifting on our training dataset so that we obtain artificial
outliers using the former and pseudo target data using the latter (as shown in Figure 3).

(a) Pseudo outliers (b) Pseudo target data

Figure 3. Pseudo outliers and pseudo target data.

The two hyperparameters of OCSVM, ν and γ, is tuned with the calculated overall
error rate using a grid search over the generated dataset. The best parameters in our case
are ν = 0.02 and γ = 10, and the corresponding trained model with the parameters is
demonstrated in Figure 4a. From the graph, we can see that the decision boundary tightly
surrounds the training data, the generated artificial outliers are predicted as abnormal
and the pseudo target data are classified as normal. However, with this parameter setting,
OCSVM is prone to the accuracy of the training data (real data collected under normal
conditions). Due to the fluctuations of this data, some jagged edges already occur on the
decision boundary. If the training data are contaminated with abnormal behaviors, the
accuracy of the model would decrease. Therefore, we conduct an online update of the
system fingerprint occasionally, which will automatically update the decision boundary
for OCSVM, assuming that the machinery system behavior may change over time (see the
request-based training update we implement on our pipeline in Figure 1).

3.3.2. Anomaly Detection with k-NN

The k-NN approach is a distance-based novelty detection method, a suitable algo-
rithm for our application due to its performance in classification under irregular decision
boundaries. It is based on the assumption that all normal data points have close neighbors.
Therefore, if a data point is far away from its neighbors, it is regarded as an anomaly [25].
Generally, the k-NN-based anomaly detection first finds the k-nearest neighbors for every
data point in the training dataset. The distances to the nearest neighbors are used as a
novelty score for each data point. Then, a novelty threshold is decided as the largest novelty
score among the entire dataset. Finally, to predict whether a new coming data point is
a novelty (normal behavior data) or an anomaly, the algorithm inserts the point into the
training dataset, finds its k-nearest-neighbors, calculates its novelty score and compares
the score with the threshold.

Key parameters for k-NN include the number of the nearest neighbor, k, and the leaf
size, lea f _size, of the calculated BDtree or BallTree. The bigger the k is, the smoother the
decision boundary gets; therefore, this can also be used to suppress noise. The selection of
k value largely depends on the nature of the problem, whereas the lea f _size defines the
minimum cell size in KDTree or BallTree. A smaller leaf size indicates a more complicated
tree, whereas a larger lea f _size leads to a faster tree construction time and less memory
space allocation. Our application of k-NN has shown that the lea f _size does not affect

Appl. Sci. 2021, 11, 5042 9 of 24

the classification accuracy significantly under the current settings. On the other hand, k
value directly affects the performance. When a very small value is chosen, for example,
k = 2, we notice that there are areas towards lower speed values on the fingerprint that
are not encompassed even though the decision boundary surrounds most of the training
data. This can be regarded as over-fitting. On the contrary, when k becomes larger, the
decision boundary is too far away from the training set; hence, it usually causes prediction
of false positives. After running a grid search using the pseudo outliers and targets as
shown in Figure 3, a trained model with the best combination is obtained for k = 3 and
lea f _size = 5. The final model is shown in Figure 4b.

(a) OCSVM anomaly detection model (b) k-NN anomaly detection model

(c) The kernel PCA anomaly detection model

Figure 4. The detection models with final decision boundaries.

3.3.3. Anomaly Detection with Kernel PCA

Kernel PCA has previously been proposed as a novelty detection algorithm [35].
The novelty detection is carried out by transforming the data from the original feature
space to the infinite-dimensional space and vice versa, after which the reconstruction
error generated is considered as a novelty measure. Using the same approach, we train a
model, transform the input data to infinite-dimensional space and inverse transform the
data back to the original space. The reconstruction error is then calculated. Additionally,
the influences of the hyperparameter γ in RBF kernel and the hyperparameter α of the
ridge regression that learns the inverse transform on the performance of the algorithm
are also tested and compared. The parameter α stands for regularization strength in ridge
regression; the larger α is, the less variance the estimates have. In other words, decreasing
the value of α will lead to higher model complexity whereas γ serves the same purpose as
explained in OCSVM in Section 3.3.1.

Appl. Sci. 2021, 11, 5042 10 of 24

Using the same set shown in Figure 3, we run a grid search and calculate the overall
error rates to select the best parameter values as α = 0.005 and γ = 15. The corresponding
trained model is demonstrated in Figure 4c. The grid search algorithm favors bigger γ and
smaller α to obtain a better performance around the decision boundary. A side effect of this
parameter combination is that some jagged edges already appear on the decision boundary.

In summary, the parameter effects and the approaches mentioned above are taken into
account to redesign all three algorithms for our PM application. Our goal is then to pick
the best performing algorithm with respect to the training speed, prediction time and the
prediction accuracy. The experiment results, as discussed in Section 4.4, show that OCSVM
outperforms the others in our case; hence, it is selected as our final PM algorithm.

3.4. Adaptive Process Scheduling

Predictive maintenance provides a fast and sensitive method for detecting the potential
faults or unexpected behaviors in the system. However, detecting such anomalies is not
enough if further actions are not taken to protect the device/machine/process from a
possible damage. We provide a methodology that incorporates PM results as feedback in
mitigating the anomalies autonomously in order to keep the process running as efficient
as possible, while protecting the system from damage. This approach also saves time
for further inspection and maintenance planning. In general, our PM-based adaptive
scheduling mechanism analyzes a predicted abnormal condition to calculate an error that
is defined as the deviation of the current system behavior from an expected behavior. We
calculate a PID error for this purpose, which is commonly used in industrial control to
calculate the deviation between a desired state and a measured state.

Our adaptive scheduling process is shown in Figure 5. First, we calculate the input
power error of the conveyor system, which is a direct indicator of abnormal loads or
behaviors, for example, glitches on the motor, extra friction on the conveyor belt or extra
load on the conveyor system. The PID error (Errop) is calculated between the real-time
power reading (Preal) and the nominal power expected to be drained by the system (Pnom)
under a requested condition. This calculation is done by the digital twin using the requested
operational speed (vreq) and a carried load (τcur) as covered in Section 3.2. If Errop is larger
than a pre-defined threshold, a new scheduling for the operation mode is initiated. The
threshold value can be optimized according to the operational requirements, for example,
a cautious operation would require a bigger threshold value to act quick to even small
deviations. Hence, we set it proportional to the allowed operational limits defined in the
selected operation mode to allow rescheduling as soon as the mode is obsolete for the
environmental conditions (see the operational limits and their analysis in Section 4.5.2).
Finally, an optimal operation mode is adaptively scheduled (according to the error), which
provides allowed speed and power intervals for the conveyor belt to run without damaging
the system (detailed in Section 3.4.1).

Figure 5. The general process of the adaptive scheduling algorithm.

3.4.1. Process Scheduling using a Genetic Algorithm

We implement an adaptive selection algorithm that decides for a system operation
mode, that is, speed interval in our case, according to a changing energy consumption. This
selection is towards protecting the system from abnormal conditions as well as keeping
a maximum possible operational performance. Given these two optimization conditions,
the selection of optimization weights is left to the user to pick a desired balance between
power-saving (protective mode) or time-saving (performer mode).

Appl. Sci. 2021, 11, 5042 11 of 24

The chromosome space contains four genes, which are lower bound speed (vmin),
upper bound speed (vmax), lower bound power (Pmin) and upper bound power (Pmax), as
indicated in Table 1. During the operation, we consider the actual torque on the motor as
an unknown parameter as it also reflects the abnormal and unknown conditions, that is,
disturbances, along with the real load on the conveyor system. Therefore, we use intervals
of possible power and speed values in a chromosome design, allowing the load torque to
change within that interval. Generating a population of such a chromosome model is not
easy on the real system setup as there needs to be almost all possible conditions executed
for various values of speed, power and torque (load). We use the generated fingerprint for
this purpose, which already covers almost all nominal cases, as depicted in Figure 6, thanks
to the digital twin. We note that the power values are directly calculated from the speed
values for different torques meaning that they are dependent variables, that is, P = f (v, τ)
(as described in Section 3.2). We take intervals from the fingerprint each of which define
a chromosome, as shown in Figure 6. In this case, the interval size changes the amount
of chromosomes in a population, which then affects the performance of the system. This
effect is evaluated in Section 4.5.1.

Table 1. The layout of a chromosome.

Gene 1 2 3 4

Label vmin vmax Pmin Pmax

Figure 6. The upper and lower bound of power given a speed interval define a chromosome.

The goal is to maximize a fitness function, that is, the optimization algorithm, by
seeking a chromosome suggesting a speed value closest to a requested one, and a lowest
power value. In other words, the speed should follow the initial operational request
whereas the power should be lowered as there is a predicted abnormal load on the system.
The fitness function is given in (2).

F = α · (vchr − vreq) + β
′ · (Preal − Pchr) (2)

Subject to:
α + β

′
= 1, (3)

where vreq is the initially requested speed value by the system operator and vchr and Pchr
values are provided by a chromosome. vchr is the average speed using the gene values
of vmin and vmax, and Pchr is the average of Pmin and Pmax. Finally, Preal is the current
(real-time) power reading coming from the system. We note that Pchr values are a function
of vchr, so they are proportionally dependent (see in Equation (1)). α and β

′
are normalized

weights of speed and power, respectively.
The β

′
in Equation (2) is an adaptive parameter:

β
′
= β · (1 +

∣∣∣∣Errop

C

∣∣∣∣), (4)

Appl. Sci. 2021, 11, 5042 12 of 24

which changes with the calculated PID error, Errop. C is a constant to control the changing
magnitude of β

′
and can be tuned by the user. Such an adaptive parameter calculation is

devised in order to increase the weight of the power optimization for protection purposes.
As the error (i.e., the deviation from a nominal power value) becomes larger, the goal
is then to select a lower power value to maximize the fitness value. For instance, if the
current requested speed causes much more power consumption than in a nominal case, a
chromosome with lower power requirement is selected, which also means a lower speed
value. In other words, the system autonomously sacrifices from the operational speed for
the sake of protecting the system. As it is clear from Equations (2) and (3), the selection of
α and β values depends on a user’s choice of an operation with more risks or a less risky
behavior with a slower operational speed.

An intermediate crossover is used for the genetic algorithm process. It generates
values for an offspring around and between the variable values of its parents. As for the
mutation, a random number from a normal distribution is added to the genes using the
following formula:

Varo = Vari + σ · N(0, 1), (5)

where σ is the standard deviation of a normal distribution, which is defined as 0.2 in the
current settings. We also use a tournament selection that several candidates compete with
each other and the best have the right to breed. In our case, four candidates compete with
each other during the selection process. This method guarantees that the worst individual
never gets a chance to reproduce. Last but not least, an elitism mechanism is implemented
in the algorithm to keep the fittest individual in the next generation.

4. Experiments and Evaluation

4.1. IoT Knowledge Management: CHARIOT

Our PM-based adaptive control mechanism running a conveyor system have been
developed and integrated as part of the CHARIOT project. The CHARIOT framework
allows real-time data-driven control through its four-layer structured, namely, physical
layer, middleware layer, agent layer, and knowledge layer, as shown in Figure 7. The physical
layer is part of the CHARIOT runtime environment integrating many different runtime
environments, such as, Robotic Operating System (ROS) (https://www.ros.org/, accessed
on 30 April 2021) and KURA (http://www.eclipse.org/kura/, accessed on 30 April 2021).
CHARIOT runtime environment is able to integrate simple and resourceful devices, where
the former runs on, for example, a raspberry PI and the latter already has its own com-
putational resources. The physical layer directly runs on the device nodes and it installs
libraries and interfaces for the devices. The device drivers of our conveyor system scenario
run on ROS. The middleware layer serves as a bridge between the physical layer and the
CHARIOT framework, where the device agents interface the ROS agents in the physical
layer using a websocket protocol (i.e., a fast enough protocol for real-time control).

The device agents physically run on the distributed devices; however, they are a part
of the CHARIOT middleware, that is, the agent framework. They act as an abstraction of
the real devices and as an interface to the agent layer. The low-level planning and motor
control still run on the physical layer (i.e., on ROS drivers) whereas the application agents
on the agent layer make high-level decisions and send command signals for the devices, for
example, a speed request, through their device agents. Additionally, as a part of the runtime
environment, each device runs a data gateway. To provide a real-time access to device
data and satisfy a continuous data analysis, we use publish/subscribe type communication
from the device to the CHARIOT database through the data gateway components. The
knowledge layer provides machine learning functions as services for generic use. An
application agent requests for a certain machine learning training and/or prediction on
a certain data. For example, the PM Application Agent requests for an anomaly detection
on the conveyor motor data, receives the result from the cloud and notifies the Adaptive
Control Application Agent. The services are made available through Chariot Cloud API, and

https://www.ros.org/
http://www.eclipse.org/kura/

Appl. Sci. 2021, 11, 5042 13 of 24

once a machine learning request is created, the results (we call knowledge) are available to
any other agents running on the CHARIOT framework. Thanks to this framework, we are
able to run our distributed conveyor system with heterogeneous devices and PM-based
adaptive control mechanism in real-time.

Figure 7. An IoT framework: CHARIOT project architecture.

4.2. Experiment Setup

We develop our solutions on an automated conveyor belt system running in a smart
factory testbed, which features a small-scale production line with a 3D printer, a conveyor
belt, a robot arm and containers for the products, as shown in Figure 8. The products
printed are conveyed through one conveyor belt, where a robot arm sorts and places them
onto the container area (colored pads). In regular operation, an IR sensor detects the objects,
the conveyor belt stops, the robot picks the object and scans it through the color sensor
and finally places the object onto a container according to the colors defined by a task. The
predictive maintenance application constantly checks for any abnormal behavior on the
conveyor, for example, due to excessive load, a glitch or any disturbance on the motor, from
the motor readings and notifies the adaptive control application for a new operation mode.

Appl. Sci. 2021, 11, 5042 14 of 24

Figure 8. The experiment setup.

4.3. Abnormal Behavior Data Generation

Abnormal behavior occurs mostly due to an unexpected load on the motor running
the conveyor system. The behavior of this unexpected load could be periodic (e.g., a gear
in the motor is causing extra friction when it is on a certain angular position), constant
(e.g., something rubbing the belt) or random. On the real setup, it is hard to create such
unexpected torque requests on the motor; however, we use a friction pad placed under the
belt to emulate an abnormal behavior. Whereas on the digital twin, such torque behaviors
are simulated through five different functions including step, ramp, linear, logarithm,
exponential and sinusoidal. In our experiments, we mainly use a sinusoidal disturbance
(in Equation (6)) as it emulates a periodic behavior and it allows to test the system’s adapta-
tion capability, flexibility and smoothness of its responses when a disturbance is introduced
and removed.

τdist =
a
2
· sin(

2π

b
· t + 3π

2
) +

a
2

, (6)

where a and b are two parameters defining the magnitude (i.e., the wavelength) and τdist is
the sinusoidal torque disturbance that is added to the system load torque at time t.

4.4. Predictive Maintenance: Comparative Analysis for Anomaly Detection

In this section, we compare the performance of three anomaly detection candidates.
Since we are using the same artificial outliers and pseudo target datasets for all of the
algorithms, we can directly compare their performance through the calculated error rates
and the training/prediction times. We use the most optimal parameter sets decided for
each algorithm in Section 3.3. The results are shown in Table 2.

Table 2. The performance comparison of OCSVM, k-NN and kernel PCA.

Items Error Rate (%) Training Time (s) Predicting Time for Pseudo Target Data (s)

OCSVM 2.919 2.232 0.735
k-NN 5.932 4.514 4.349

kernel PCA 4.722 74.616 1.513

Although the kernel PCA achieves a relatively low error rate, it consumes considerable
amount of time even when trained with only 1/8 of the full dataset as opposed to the full
size used in training the other two algorithms. Therefore, it is not suitable for real-time
applications. As for k-NN, despite its reasonable error rate, it suffers from over-fitting

Appl. Sci. 2021, 11, 5042 15 of 24

under the current parameter combination. As it can also be seen from Figure 4 that OCSVM
provides a more reliable decision boundary for our application. It not only has the lowest
error rate, but also spans the shortest training and prediction time.

4.5. Adaptive Scheduling: Performance Analysis

This section details our evaluations and analysis to optimize the scheduling process,
specifically, how the chromosome design and the weights of power and speed in the fitness
function of our GA algorithm influence the performance of the scheduling process. First of
all, in this experiment, we use the digital twin (the simulated model) in order to remove
the effect of random and unknown factors that could be introduced on the real conveyor
system, such as, unbalanced frictions or inaccurate sensor readings. The simulation also
allows us to simulate a wide range of abnormal conditions, which is hard and dangerous
to realize on the real system. A speed range of 6 to 32 r/min is used during this experiment
as this is the recommended speed range of the real conveyor system according to its
motor specifications.

To effectively evaluate the performance of the algorithm under different conditions,
we propose a customized efficiency calculation having both power (energy) and speed
(distance) as the evaluation metrics with the selected weights of importance (i.e., α and β).
The evaluation metrics are selected to reflect our optimization goals of safety (minimum
power) and performance (maximum speed). It is defined as follows:

η = (1− E∆

Enom
) · α +

Sreal
Snom

· β, (7)

where α and β are the same weights of the fitness function in Equation (2), that is, the
weights of speed and power components. E∆ is the absolute deviance between the energy
consumption under a constant requested speed (i.e., the nominal energy consumed, Enom)
and the real energy consumption during an operation. Sreal is the actual amount of
travelling distance of the conveyor belt during an operation. Enom is calculated using the
total expected traveling distance under a requested speed, Snom. Since the real-time power
consumption is changing all the time, E∆ can be calculated by the integral of absolute
power difference over time:

E∆ =
∫ t0+∆t

t0

∫
|Preal − Pnom|dt, (8)

where Preal is the real power value measured during an operation and Pnom is the nominal
power value expected under the given conditions. Sreal can be calculated by the integral of
real-time speed over time:

Sreal =
∫ t0+∆t

t0

vrealdt, (9)

where vreal is the measured speed values. Enom and Snom can be calculated as:

Enom = Pnom · ∆t (10)

Snom = vreq · ∆t. (11)

In our case, a good adaptive control algorithm should provide a reliable response to
a load torque increase and decrease. In other words, when a disturbance is introduced
and/or withdrawn, the goal is to keep the speed as close as possible to the originally
requested one while keeping the motor in a safe operation (lesser power consumption
when there is an abnormal behavior predicted). The control mechanism should also satisfy
a smooth behavior during the operation by not allowing sudden increase or decrease on
the speed when the load drastically changes.

Appl. Sci. 2021, 11, 5042 16 of 24

4.5.1. The Effect of Fitness Function Weights on the Performance

In this part, we evaluate the effect of normalized fitness function weights, α (for speed)
and β (for power), on the performance of the system. How to optimally respond to a
predicted maintenance need (i.e., an abnormal condition) depends on the user preferences,
which is depicted as a balance between the operational speed and the power drained.
However, since the chromosomes are formed from the fingerprint (nominal operation)
of the system, each selection ensures a safe operation. Based on the fitness function
in Equation (2), to get a fitness as large as possible, the algorithm tends to select an
individual with a closer speed value to the requested one as well as a lower allowed
power interval to save the motor from the abnormal conditions (details are in Section 3.4.1).
Therefore, different combinations of α and β can largely affect the performance of the
system. The comparison results of different α and β are shown in Figure 9. The black
sinusoidal signal with a period of T = 50 s indicates the torque disturbance introduced on
the system. Our intention is to simulate a periodic friction that can happen on the angular
motion of the motor, for example, a glitch on a part of the gear. The cyan color shows the
requested speed, power or efficiency in different graphs. The other colored curves are
the actual behavior of our PM-based adaptive control mechanism running with different
parameter values.

The speed behaviours in Figure 9a show that most of the speed curves inversely follow
the disturbance torque curve, which indicates that the algorithm controls the motor speed
to compensate the changes on the torque. A smaller α means more importance is given to
reduce the power consumption; hence, the speed values are selected to be lower when the
applied load torque increases. In addition, smaller α also means the algorithm gives less
importance to match the requested speed when there is a disturbance applied and when it
is withdrawn. This can be verified for the case of α = 0.25 and β = 0.75, where the system
is not able to restore the requested behavior when the disturbance drops (see in Figure 9a).
For the maximum α, the system always satisfies the initially requested speed; however, this
time it leads to an excessive power consumption as shown in Figure 9b.

As for the power consumption, results in Figure 9b indicate that our algorithm re-
sponds towards neutralizing the power increase caused by the abnormal torque. Bigger
values of β favors for a safe operation as the power is kept very low during the abnormal
conditions. However, we also want to maintain the operation so we are not pursuing
a minimum power (i.e., a minimum speed) but a proximity to the requested operation.
On the other hand, smaller values of β causes the power to dangerously increase and
fluctuate a lot to keep the speed as requested. As the balance between preserving speed
or power is very sensitive, we use the efficiency algorithm in Equation (7). The calculated
efficiency values are shown in Figure 9c. From the graphs, we deduce that the pairs of
α = 0.55, β = 0.45 and α = 0.6, β = 0.4 have the highest efficiencies. The selection of the
final values is subject to the user preferences. In our case, a safer option would be to pick
the pair of α = 0.55, β = 0.45 as it kept the power consumption below the expected one
during the abnormal condition, whereas the pair of α = 0.6, β = 0.4 may lead to a better
preservation of the operational speed. With that, we ensure that the fitness function is well
formulated and provides the user with the option of optimizing for the operational needs.

Appl. Sci. 2021, 11, 5042 17 of 24

(a) The speed behaviors for various α and β combinations

(b) The power behaviors for various α and β combinations

(c) The efficiency for various α and β combinations

Figure 9. System behaviors for α and β combinations under an abnormal load condition.

4.5.2. The Effect of Different Operational Limits on the Performance

This experiment is intended to evaluate the performance of different chromosome
designs, that is, different operational limits that are defined as the allowed speed interval
to operate between vmin and vmax values. We create populations with the speed intervals
of sizes 0.25, 0.5, 1, 2 and 8 r/min, that is, each operation mode (chromosome) selected
only allows for a speed change defined by the interval value and it is the same for all
chromosomes. For the experiments, initially requested speed is 25 r/min and the same
sinusoidal disturbance in the parameter tests is applied on the system. For this experiment,
we pick the parameters of α = 0.55 and β = 0.45 as discussed in Section 4.5.1. The
experiment results (speed, power, and efficiency) of different sizes of intervals are shown
in Figure 10.

Appl. Sci. 2021, 11, 5042 18 of 24

(a) The comparison of speed among various intervals

(b) The comparison of power among various intervals

(c) The comparison of efficiency among various intervals

Figure 10. Performance comparisons among various intervals.

In Figure 10a we show that systems with bigger interval sizes (allowed speed intervals)
react slower than the ones with smaller sizes. This is mainly due to their larger allowed
speed and power changes, causing longer reaction times to changing environmental con-
ditions. Since the threshold to trigger for a new scheduling is also set proportional to the
allowed interval, a larger interval makes the system more resistive to mode changes (see
in Figure 5). Another finding is that the decreased rate of speed is almost the same for
different cases. This is because when the speed is decreasing, the calculated PID error is
usually much larger than the threshold causing faster genetic algorithm calls. Finally, the
cases with smaller intervals exhibit better system recoveries, that is, when the torque is
completely withdrawn they show better approximation to the original speed request. As
a comparison, when interval = 8 the speed is not able to increase after the disturbance
becomes zero. This is also reflected in power consumption (in Figure 10b) and in the
efficiency analysis (in Figure 10c).

Appl. Sci. 2021, 11, 5042 19 of 24

The average efficiencies calculated by Equation (7) are shown in Table 3. From the table,
we conclude that the smaller the interval size, the higher the efficiency. This is expected, as
a small interval size indicates a more fine-grained control. The system schedules for another
chromosome faster and more frequently since suggested interval sizes are smaller and so
exceeded faster. For a better comparison, we run ANOVA (anaylsis of variance) on each two
neighboring intervals. The results suggest that, starting from the interval of 0.5, there are sig-
nificant differences between the efficiencies (F(1, 3671) = 26.99, p = 2.16E− 7). However,
the significance disappears between 0.25 and 0.5 intervals (F(1, 3671) = 0.5084, p = 0.4759).

Table 3. The efficiency values under different chromosome designs, i.e., different speed intervals.

Interval size 0.25 0.5 1 2 8

Efficiency (%) 74.5 74.6 72.8 68.7 57.2

The similarity on the efficiency of interval groups 0.25 and 0.5 can be explained
by the computational bottleneck. Normally, with the interval of 0.25 and smaller we
should see a more fine-grained control as discussed. However, in practice, since the
scheduling by the genetic algorithm takes time, that is, in this case it is particularly not
fast enough to respond to such frequent calls, the advantage of smaller interval size
disappears due to the slower response times. This also causes fluctuations on the curves.
Since the torque is very dynamic, it constantly changes causing the system to regularly
trigger for a new mode selection. In an allowed interval, the system increases the speed
and the power consumption; however, a continuous change in the torque triggers the
adaptive control switching to a different operation mode (different limitations on the
speed). These fluctuations should be theoretically compensated by smaller interval sizes
but the computation time of the genetic algorithm is a limiting factor. In our case, the
selection of interval 0.5 would be the best option (also computationally lightweight);
however, a better computational resource would allow for smaller interval sizes and so
less fluctuations.

4.6. PM-Based Adaptive Scheduling vs. A Rule-Based Preventive System

In conventional systems, rule-based and preventive approaches are used to detect
and recover from abnormal behaviors. In general, our system adds more fine-grained
control over such conventional approaches thanks to the predicted operational deviations
calculated in real-time. Hence, to demonstrate the effectiveness of incorporating PM
analysis into such automated control systems, we compare our approach (with the selected
settings of speed interval = 0.5 r/min, α = 0.55, β = 0.45, see in Sections 4.5.1 and 4.5.2)
with a rule-based mechanism as a baseline. We run the two mechanisms on the digital
twin motor to be able to simulate harsh abnormal conditions. The experimented rule-based
mechanism, as its name suggests, slows down the motor speed based also on PM analysis
and on certain rules. In our experiment settings, we set the rule as follows: when the
power exceeds 1.5 times of the expected power, the speed drops to 50% of the originally
requested speed. If it is more severe, then the system stops. The rule is set as the base
performance of our adaptive control mechanism, that is, with a very high speed interval
size in chromosomes (13 r/min) that in theory should resemble a rule-based approach. As
discussed in Section 4.5.2, when the interval size becomes relatively large, the system is
expected to respond to predicted anomalies with a poor sensitivity. The selection of the
interval of 13 r/min is due to the available speed range (from 6 to 30 r/min), where there
are only two chromosomes generated, one recommending a center speed of 12.5 r/min.
This is exactly 50% of the initially requested speed of 25 r/min; hence, we obtain a similar
behavior to the rule-based mechanism.

The results of the speed performance in Figure 11a indicate that our adaptive control
with the interval of 0.5 has a very a sensitive adaptation that it can react fast to torque
increase, starting at 5.414 s (seconds). Rule-based mechanism reacts first at 15.786 s after the

Appl. Sci. 2021, 11, 5042 20 of 24

predefined power threshold is reached. We note that the rule-based mechanism’s reaction
speed purely depends on the power threshold, a smaller threshold would lead to a shorter
reaction time; however, it would show less tolerance to the power increase by directly
dropping the speed. On the other hand, our PM-based adaptive control mechanism at the
interval of 13 r/min reacts the slowest, at 19.275 s, since the error calculation has a very
large threshold. Even though the PM algorithm throws a notification, as the same PM
algorithm runs in the case of interval = 0.5, a large interval indicates a large threshold,
and so a longer waiting time. This shows that although a PM algorithm detects problems
earlier, the system behaves just like a rule-based preventive mechanism with the lack of a
fine-grained adaptive control, leading to a slow response and a poor protection.

(a) System speed in time

(b) System power consumed in time

(c) System efficiency in time

Figure 11. Performances of our PM-based adaptive control with interval = 0.5 r/m, 13 r/m and the
rule-based system.

Appl. Sci. 2021, 11, 5042 21 of 24

In addition, the rule-based exhibits bad flexibility in terms of speed, that is, the
operational speed is not restored back when the disturbance is withdrawn. This is because
a rule-based mechanism is usually designed fail-safe to protect a machine. The same effect
is also observable with interval = 13 due to its large error threshold (in Figure 11a). This
indicates that such preventive and/or coarsely designed adaptation mechanisms causes
longer downtimes on a system even though the disturbance is withdrawn and despite
they run a PM. Whereas, our fine-grained PM-based adaptive control mechanism recovers
well after the abnormal torque is withdrawn even for a short time (between 40 s and
60 s). The performance of our mechanism is also shown in Figure 11b through the power
consumption. The power level is kept almost at the expected level, even slightly below,
by changing the speed relatively. The poor reaction times of the other two systems cause
a steep increase in the power after the disturbance is introduced. Finally, the efficiency
results are shown in Figure 11c and in Table 4. Our mechanism has the best efficiency
performance on average. All the systems exhibit a significant efficiency drop caused by an
increase in power consumption or a decrease in speed at the beginning of the operation.
The significance of our system is visible through restoring the operation relatively well
when the disturbance starts dropping, which is directly related to the adaptation skills of
our solution.

Table 4. The average efficiency values of our PM-based adaptive control with interval = 0.5 r/min,
13 r/min and the rule-based system.

System PM-Based Adaptive
Control (interval = 0.5)

PM-Based Adaptive
Control (interval = 13)

Rule-Based
Preventive Control

Efficiency(%) 74.657 67.008 66.566

One drawback of our system is the fluctuations in the speed during the speed control,
as shown in Figure 11. This is a result of our chromosome design, which takes intervals
of allowed speed and power as an operation mode (further analysis are in Section 4.5.2).
The smaller the interval is the more the system response approaches to a continuous
control. Our mechanism lies at the task-level operational decisions; therefore, a decision
is selected only when the system predicts an abnormal condition. Our test conditions are
the hardest due to a continuous, large and dynamic disturbance; therefore, a new decision
needs to be taken in a real-time frequency for the most efficient operation. Our PM-based
adaptive control system is able to provide this behavior; however, the response time of
the genetic algorithm introduces a computational limitation. A smaller interval size (more
chromosomes) with a more computational resource would compensate the fluctuations as
mentioned in Section 4.5.2.

In general, we show that incorporating PM as a feedback into automated control
mechanisms has significant advantages in terms of increased efficiency while still ensuring
the safety of the operation, and that our approach successfully achieves it. By comparing
our fine-grained PM-based control with a coarse version of it, that is, a PM-based adaptive
control with an allowed operational speed interval of 13 r/min (an approximation to a
rule-based system), we demonstrate that a predictive maintenance strategy alone will
not be as effective unless it is incorporated into a more sophisticated decision-making
algorithm that takes the prognostics, further analyzes the system deviation, and adaptively
schedules a new safe and efficient operational decision. Otherwise, a preventive system
that schedules for a maintenance intervention still performs similarly with or without a
PM analysis at hand.

5. Conclusions

In this work, we aim to design and showcase an adaptive process scheduling mech-
anism that incorporates predictive maintenance results as an input to take autonomous
decisions that regulate an industrial process to minimize downtimes while keeping its
operation safe and efficient. Our goal is to show that such a coupled autonomous planning

Appl. Sci. 2021, 11, 5042 22 of 24

mechanism is needed to complement a PM mechanism, which alone would not provide
a significant improvement in the efficiency of the operation when there are no relevant
decisions taken accordingly. For this purpose, we propose a pipeline to incorporate PM
analysis into conventional industrial process scheduling, complementing maintenance
planning approaches based on prognostics (e.g., prognostic health management, i.e., PHM,
solutions). In our closed-loop system, each PM notification triggers an error analysis based
on a PID error calculation, to find the system deviation from the nominal operation calcu-
lated by a twin model in real-time. The rest incorporates this deviation in scheduling an
optimal operation mode. We state that our pipeline is agnostic to the scheduling algorithm
selected. In our application, we select GA as it is one of the mostly used scheduling algo-
rithm in industrial operations. The fitness function takes into account the calculated error
and jointly optimizes on the operation speed (i.e., less or no downtime towards keeping the
requested operation) and on the power consumed by the system (i.e., to compensate extra
disturbances on the system for protection). We leave the optimization criteria optional to
system users, that is, a user can select a protective mode (more weight on preserving power
and the machine) or a performer mode (more weight on keeping an initially requested
operation). In general, the larger the deviation from an expected operation, the more
protective the system gets.

In order to show the impact and the necessity of incorporating PM analysis into an au-
tomated adaptive process scheduling, we compared our final system with a rule/condition-
based decision mechanism also relying on the same PM analysis as a baseline. That is,
after every PM notification a rule-based decision system is triggered, replacing our GA-
based adaptive scheduling, that schedules for a maintenance intervention and induces
drastic changes on the system for protection. This experiment showed that without such
integration, a PM algorithm with a fail-safe, rule-based mechanism would almost perform
with the same efficiency of a complete preventive approach. This supports the necessity of
complementing PM algorithms with such autonomous adaptive scheduling mechanisms
and shows that our approach is capable of doing it. Finally, we compared the performance
of our PM-based adaptive scheduling with a conventional rule-based preventive mecha-
nism and showed that it significantly improves the efficiency (by 12.15%) and decreases
downtime through adaptive recovery from transient abnormal conditions.

During run-time, we use the twin model to calculate the nominal values for the
requested operation. If developing a twin model is not applicable, which might be the case
for more complex industrial processes, the nominal conditions can also be obtained from
the fingerprint of the system. In that case, the fingerprint can only provide expected lower
and upper bounds for the requested operation (see Figure 6). This, however, leads to less
accurate error calculations, compared to the case with a twin model that provides precise
nominal values. That said, we recommend obtaining a twin model of the process in order
to have a more sensitive control. Nevertheless, our proposed pipeline is still functional
with a more coarse system model, for example, a fingerprint model only defining input-
output relation of the system. Even though the digital twins are deemed part of the future
of industrial automation, we acknowledge that the need for such a complex model is a
bottleneck of our solution.

One drawback of our system is the computational limitation introduced by the re-
sponse time of the genetic algorithm. If the algorithm runs a scheduling with the update
frequency of the anomaly detection then we encounter a latency. To compensate for it,
we triggered a scheduling action with lower frequencies of updates or with higher error
thresholds, that is, after larger deviations from the nominal operation. This provided
sufficient performance to demonstrate the effectiveness of our pipeline. However, for a
real industrial application, responding to every PM result is needed as it provides a much
smoother control (i.e., fewer fluctuations in the control signals). As future work, we plan
to improve the performance of GA and experiment with another scheduling algorithm
having low computational requirements for comparison. Additionally, we only consider
the operational speed as the performance component and the power drained as the safety

Appl. Sci. 2021, 11, 5042 23 of 24

component for the optimization criteria. We are aware that more complex systems may
introduce more optimization factors; yet, our goal was to show the effectiveness of intro-
ducing PM analysis as one of them. We believe that this pipeline can be integrated into
various industrial processes, even if they are very complex, as a complementary solution
running on top of the process to ensure their safe and efficient operations toward less or
no downtimes. In the future, we will deploy the pipeline on different industrial processes
to examine how it scales. For a broader impact, we plan to customize and implement our
approach based on the suggestions and findings on another system setup and show its
wider applicability and effectiveness.

Author Contributions: Writing—original draft, O.C.G., X.Y.; Writing—review & editing, O.C.G.,
F.S.; Conceptualization, O.C.G.; Methodology, O.C.G., X.Y.; Formal analysis, O.C.G., X.Y.; Data
curation, X.Y., O.C.G.; Software, X.Y., O.C.G.; Validation, O.C.G., X.Y., F.S.; Visualization, X.Y., O.C.G.;
Supervision, O.C.G.; Investigation, O.C.G., F.S.; Project administration, O.C.G., F.S.; Resources, F.S.;
Funding acquisition, F.S., O.C.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded in part by the German Federal Ministry of Education and
Research (BMBF) in the context of CHARIOT project with grant number 01IS16045. We acknowledge
support by the German Research Foundation and the Open Access Publication Fund of TU Berlin.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 49th Hawaii International

Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937.
2. Isaacs, D.; Diaz, J.; Astarola, A.; Arejita, B. Making Factories Smarter Through Machine Learning. IIC J. Innov. 2017, 12. Available

online: https://www.iiconsortium.org/news/joi-articles/2017-Jan-Making-Factories-Smarter-through-Machine-Learning.pdf
(accessed on 30 April 2021).

3. Mobley, R.K. An Introduction to Predictive Maintenance, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2002.
4. Liu, Q.; Dong, M.; Chen, F.; Lv, W.; Ye, C. Single-machine-based joint optimization of predictive maintenance planning and

production scheduling. Robot. Comput. Integr. Manuf. 2019, 55, 173–182. [CrossRef]
5. Jardine, A.K.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based mainte-

nance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [CrossRef]
6. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL

prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [CrossRef]
7. Calabrese, F.; Regattieri, A.; Botti, L.; Mora, C.; Galizia, F.G. Unsupervised Fault Detection and Prediction of Remaining Useful

Life for Online Prognostic Health Management of Mechanical Systems. Appl. Sci. 2020, 10, 4120. [CrossRef]
8. Calabrese, F.; Regattieri, A.; Bortolini, M.; Gamberi, M.; Pilati, F. Predictive Maintenance: A Novel Framework for a Data-Driven,

Semi-Supervised, and Partially Online Prognostic Health Management Application in Industries. Appl. Sci. 2021, 11, 3380.
[CrossRef]

9. Rodríguez-Molina, A.; Villarreal-Cervantes, M.B.; Aldape-Pérez, M. An adaptive control study for a DC motor using meta-
heuristic algorithms. Soft Comput. 2019, 23, 13114–13120. [CrossRef]

10. Akpolat, C.; Sahinel, D.; Sivrikaya, F.; Lehmann, G.; Albayrak, S. CHARIOT: An IoT Middleware for the Integration of
Heterogeneous Entities in a Smart Urban Factory. In Proceedings of the Federated Conference on Computer Science and
Information System (FedCSIS), Prague, Czech Republic, 3–6 September 2017; pp. 135–142.

11. Goldstein, M.; Uchida, S. A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data.
PLoS ONE 2016, 11, e0152173. [CrossRef] [PubMed]

12. Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249.
[CrossRef]

13. Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S.X. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards
Mechanical Big Data. IEEE Trans. Ind. Electron. 2016, 63, 3137–3147. [CrossRef]

14. Susto, G.A.; Schirru, A.; Pampuri, S.; McLoone, S.; Beghi, A. Machine Learning for Predictive Maintenance: A Multiple Classifier
Approach. IEEE Trans. Ind. Inform. 2015, 11, 812–820. [CrossRef]

15. Cheng, F.; Qu, L.; Qiao, W. A case-based data-driven prediction framework for machine fault prognostics. In Proceedings of
the IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 3957–3963.
[CrossRef]

16. Yan, J.; Meng, Y.; Lu, L.; Li, L. Industrial big data in an industry 4.0 environment: Challenges, schemes, and applications for
predictive maintenance. IEEE Access 2017, 5, 23484–23491. [CrossRef]

https://www.iiconsortium.org/news/joi-articles/2017-Jan-Making-Factories-Smarter-through-Machine-Learning.pdf
http://doi.org/10.1016/j.rcim.2018.09.007
http://dx.doi.org/10.1016/j.ymssp.2005.09.012
http://dx.doi.org/10.1016/j.ymssp.2017.11.016
http://dx.doi.org/10.3390/app10124120
http://dx.doi.org/10.3390/app11083380
http://dx.doi.org/10.1007/s00500-017-2797-y
http://dx.doi.org/10.1371/journal.pone.0152173
http://www.ncbi.nlm.nih.gov/pubmed/27093601
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1109/TIE.2016.2519325
http://dx.doi.org/10.1109/TII.2014.2349359
http://dx.doi.org/10.1109/ECCE.2015.7310219
http://dx.doi.org/10.1109/ACCESS.2017.2765544

Appl. Sci. 2021, 11, 5042 24 of 24

17. Kanawaday, A.; Sane, A. Machine learning for predictive maintenance of industrial machines using IoT sensor data. In
Proceedings of the 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
24–26 November 2017; pp. 87–90. [CrossRef]

18. Amruthnath, N.; Gupta, T. A research study on unsupervised machine learning algorithms for early fault detection in predictive
maintenance. In Proceedings of the 5th International Conference on Industrial Engineering and Applications (ICIEA), Singapore,
26–28 April 2018; pp. 355–361.

19. Abbasi, T.; Lim, K.H.; Rosli, N.S.; Ismail, I.; Ibrahim, R. Development of Predictive Maintenance Interface Using Multiple Linear
Regression. In Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur,
Malaysia, 13–14 August 2018; pp. 1–5.

20. Huuhtanen, T.; Jung, A. Predictive Maintenance of Photovoltaic Panels via Deep Learning. In Proceedings of the IEEE Data
Science Workshop (DSW), Lausanne, Switzerland, 4–6 June 2018; pp. 66–70. [CrossRef]

21. Aivaliotis, P.; Georgoulias, K.; Chryssolouris, G. A RUL calculation approach based on physical-based simulation models
for predictive maintenance. In Proceedings of the 2017 International Conference on Engineering, Technology and Innovation
(ICE/ITMC), Madeira Island, Portugal, 27–29 June 2017; pp. 1243–1246. [CrossRef]

22. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
23. Markou, M.; Singh, S. Novelty detection: A review—Part 1: Statistical approaches. Signal Process. 2003, 83, 2481–2497. [CrossRef]
24. Domingues, R.; Michiardi, P.; Barlet, J.; Filippone, M. A comparative evaluation of novelty detection algorithms for discrete

sequences. Artif. Intell. Rev. 2020, 53, 3787–3812. [CrossRef]
25. Hautamaki, V.; Karkkainen, I.; Franti, P. Outlier detection using k-nearest neighbour graph. In Proceedings of the 17th

International Conference on Pattern Recognition (ICPR), Cambridge, UK, 26 August 2004; IEEE: Piscataway, NJ, USA, 2004;
Volume 3, pp. 430–433.

26. Schölkopf, B.; Williamson, R.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support Vector Method for Novelty Detection. In Proceedings of
the 12th International Conference on Neural Information Processing Systems (NIPS), NIPS’99, Denver, CO, USA, 29 November–4
December 1999; MIT Press: Cambridge, MA, USA, 1999; pp. 582–588.

27. Landau, I.D.; Lozano, R.; M’Saad, M.; Karimi, A. Adaptive Control: Algorithms, Analysis and Applications; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2011.

28. Li, Y.; Tong, S.; Li, T. Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via
backstepping. Nonlinear Anal. Real World Appl. 2013, 14, 483–494. [CrossRef]

29. Jacob, R.; Murugan, S. Implementation of neural network based PID controller. In Proceedings of the 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 2769–2771.
[CrossRef]

30. Fister, D.; Fister, I.; Fister, I.; Šafarič, R. Parameter tuning of PID controller with reactive nature-inspired algorithms. Robot. Auton.
Syst. 2016, 84, 64–75. [CrossRef]

31. Villarreal-Cervantes, M.G.; Alvarez-llegos, J. Off-line PID Control Tuning for a Planar Parallel Robot Using DE Variants. Expert
Syst. Appl. 2016, 64, 444–454. [CrossRef]

32. Lin, F.J.; Shieh, H.J.; Shyu, K.K.; Huang, P.K. On-line gain-tuning IP controller using real-coded genetic algorithm. Electr. Power
Syst. Res. 2004, 72, 157–169. [CrossRef]

33. Wang, S.; Liu, Q.; Zhu, E.; Porikli, F.; Yin, J. Hyperparameter selection of one-class support vector machine by self-adaptive data
shifting. Pattern Recognit. 2018, 74, 198–211. [CrossRef]

34. Li, Y.; Maguire, L. Selecting Critical Patterns Based on Local Geometrical and Statistical Information. IEEE Trans. Pattern Anal.
Mach. Intell. 2011, 33, 1189–1201. [CrossRef]

35. Hoffmann, H. Kernel PCA for novelty detection. Pattern Recognit. 2007, 40, 863–874. [CrossRef]

http://dx.doi.org/10.1109/ICSESS.2017.8342870
http://dx.doi.org/10.1109/DSW.2018.8439898
http://dx.doi.org/10.1109/ICE.2017.8280022
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.sigpro.2003.07.018
http://dx.doi.org/10.1007/s10462-019-09779-4
http://dx.doi.org/10.1016/j.nonrwa.2012.07.010
http://dx.doi.org/10.1109/ICEEOT.2016.7755199
http://dx.doi.org/10.1016/j.robot.2016.07.005
http://dx.doi.org/10.1016/j.eswa.2016.08.013
http://dx.doi.org/10.1016/j.epsr.2004.03.013
http://dx.doi.org/10.1016/j.patcog.2017.09.012
http://dx.doi.org/10.1109/TPAMI.2010.188
http://dx.doi.org/10.1016/j.patcog.2006.07.009

	Introduction
	Related Work
	Methodology and Overall Framework
	System Architecture
	The Digital Twin Model
	Predictive Maintenance on a Conveyor Belt
	Anomaly Detection with One-Class SVM
	Anomaly Detection with k-NN
	Anomaly Detection with Kernel PCA

	Adaptive Process Scheduling
	Process Scheduling using a Genetic Algorithm

	Experiments and Evaluation
	IoT Knowledge Management: CHARIOT
	Experiment Setup
	Abnormal Behavior Data Generation
	Predictive Maintenance: Comparative Analysis for Anomaly Detection
	Adaptive Scheduling: Performance Analysis
	The Effect of Fitness Function Weights on the Performance
	The Effect of Different Operational Limits on the Performance

	PM-Based Adaptive Scheduling vs. A Rule-Based Preventive System

	Conclusions
	References

