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Abstract: Since the time of the HGP, research into next-generation sequencing, which can reduce
the cost and time of sequence analysis using computer algorithms, has been actively conducted.
Mapping is a next-generation sequencing method that identifies sequences by aligning short reads
with a reference genome for which sequence information is known. Mapping can be applied to
tasks such as SNP calling, motif searches, and gene identification. Research on mapping that utilizes
BWT and GPU has been undertaken in order to obtain faster mapping. In this paper, we propose
a new mapping algorithm with additional consideration for base swaps. The experimental results
demonstrate that when the penalty score for swaps was −1, −2, and −3 in paired-end alignment, for
the human whole genome, SOAP3-swap aligned 4667, 2318, and 972 more read pairs, respectively,
than SOAP3-dp, and for the drosophila genome, SOAP3-swap aligned 1253, 454, and 129 more read
pairs, respectively, than SOAP3-dp. SOAP3-swap has the same functionality as that of SOAP3-dp
and also improves the alignment ratio by taking biologically significant swaps into account for the
first time.
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1. Introduction

Since the time of the Human Genome Project (HGP) [1,2], next-generation sequencing,
which can reduce the cost and time of sequence analysis using computer algorithms,
has been a very active area of research [3,4]. Mapping is a next-generation sequencing
method that identifies sequences by aligning short reads with a reference genome for which
sequence information is known. It can be applied to various types of analyses of genetic
mutations and genetic polymorphisms, such as single-nucleotide polymorphism (SNP)
calling, motif searches, and gene identification [5,6]. Most mapping algorithms consist
of an indexing step, in which a data structure for a reference or reads is created, and an
alignment step, in which fast mapping is performed using the data structures generated.

In order to enhance mapping speed, studies utilizing various data structures have
been conducted. Burrows–Wheeler transform (BWT)-based mapping tools have been
developed [7–10]. Among them, Bowtie [7] performs mapping based on the Ferragina
and Manzini’s algorithm [11] and takes mismatches into account. The Burrows–Wheeler
aligner (BWA) [8] first generates a prefix trie for the reference sequence and then performs
mapping, taking mismatches and gaps into account with the use of a top-down traversal
method. SOAP2 [9] considers mismatches and gaps using a bi-directional BWT search
(or 2way-BWT search) [12] and the Smith–Waterman algorithm [13], and it reduces space
usage through a sampled suffix array. BWA-MEM [10] improved the performance of BWA
using the seed alignments with maximal exact matches (MEM) and the seed extensions
with the affine-gap Smith–Waterman algorithm. Meanwhile, tophat2 [14], considering very
large deletions, inversions on the same chromosome and translocations involving different
chromosomes were introduced.
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As the performance of graphics processing units (GPUs) has improved, several map-
ping studies that utilize this technology have been conducted [15–19]. SOAP3 [15] was
developed based on SOAP2, in which the memory access method of the auxiliary data
structure was improved with the consideration of the characteristics of Compute Unified
Device Architecture (CUDA). Hard patterns referring to the read that causes some of the
GPU processors to idle as a result of too many branches in alignment are processed, and
a coalesced memory access strategy is employed. Subsequently, SOAP3-dp [16], which
is based on SOAP3, improved the alignment ratio using the Smith–Waterman algorithm.
BarraCUDA [17] was developed based on BWA, utilizing the texture memory of CUDA
and a depth-first search algorithm. CUSHAW [18] uses 64 threads per thread block and
a shared memory to improve performance, and it uses a depth-first search algorithm
that considers the number of mismatches and the quality score of the mismatched base
positions. CUSHAW2-GPU [19] improved upon the CUSHAW2 [20] algorithm by utilizing
CUDA, a collaborative calculation of CPU and GPU, seed-based alignment, and a tile-based
Smith–Waterman algorithm.

Early mapping tools performed alignment only with exact sequence matches, but later
alignment algorithms allowed a limited number of mismatches to search for SNPs. In recent
years, mapping tools that consider not only mismatches but also gaps have been developed
to facilitate the analysis of various genetic mutations. Approximate string matching
algorithms that compare sequences in the presence of errors are used [5–9,12,15–20]. In
approximate string matching algorithms, distance functions are used for measuring errors.
Typical distance functions include the Hamming distance, edit distances, and weighted
edit distances [21]. Studies have also been conducted on the extended edit distance, which
takes into consideration swaps that change the positions of two adjacent bases [22–25]
(Figure 1). Swaps occur during genetic mutation and replication and are known to be
associated with spinal muscular atrophy [26,27].

Figure 1. An example of swaps when the swapped block size (the length of the swapped bases) is 2.

In this paper, we propose the SOAP3-swap, which is based on SOAP3-dp and performs
reference mapping with additional consideration for swaps. SOAP3-swap can produce
alignments in the presence of mismatches, small gaps, and swaps.

Previous Work

SOAP3-dp is a mapping tool that is an extension of SOAP3 [15], the first GPU-based
mapping tool. SOAP3 and SOAP3-dp use an improved memory access method and 2way-
BWT and allocate reads to different groups according to the amount of calculation required
when considering the characteristics of CUDA. SOAP3-dp has a similar execution time
to that of SOAP3 but performs an additional alignment of the reads not aligned during
the initial attempt using dynamic programming. The addition of this step leads to an
enhanced alignment ratio compared to that of SOAP3. While SOAP3 performs alignments
that only consider mismatches, SOAP3-dp performs alignments that consider mismatches
and also small gaps using the Smith–Waterman algorithm [13], a well-known sequence
comparison algorithm.
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When a paired-end alignment is carried out using SOAP3-dp, the alignment is first
performed through a 2way-BWT search considering only mismatches. For some read pairs
that do not align during this process, a search is made for the position with the highest
alignment score, which satisfies the interval condition between the pair, taking mismatches
and gaps into account. At this point, the region of the reference sequence in which the
corresponding read pair may exist is called the candidate region. When a read R (|R| = n)
likely to be aligned to a candidate region T (|T| = m) is provided, the sub-region of T
with the highest alignment score between the T’s sub-region and R is searched. Let T[i..j]
represent the subsequence from i to j in T. Among the subsequences of T[1..i], the alignment
score of the subsequence with the highest alignment score for R[1..j] is expressed as M(i, j).
I(i, j) refers to the alignment score that inserts R[j] next to T[1..i], and D(i, j) refers to the
alignment score that deletes T[i] from T[1..i]. Thus, the highest score at which R is aligned to
T is max1≤i≤m M(i, n). The starting position at which R is aligned to T can be calculated by
tracing back the errors used to align from max1≤i≤m M(i, n). The match score was expressed
as SMA, and the penalty scores for mismatches, gap openings, and gap extensions were
expressed as SMI , SGO, and SGE, respectively. The initial values of each alignment score are
as follows: I(i, 0) = −∞ (1 ≤ i ≤ m), D(0, j) = −∞ (1 ≤ j ≤ n), M(i, 0) = 0 (0 ≤ i ≤ m),
and M(0, j) = SGO + (j− 1)SGE (1 ≤ j ≤ n). Algorithm 1 shows the Smith–Waterman
algorithm for SOAP3-dp [16]. Here, δ(a, b) denotes the match or mismatch score between
two sequence elements a and b. If T[i] = R[j], then δ(T[i], R[j]) = SMA, and if T[i] 6= R[j],
then δ(T[i], R[j]) = SMI .

Algorithm 1 Compute I, D, and M.

1: Assign tables I, D, and M of size (m + 1)× (n + 1)
2: Initialize(I, D, M)
3: for i← 1 to m do
4: for j← 1 to n do
5: I(i, j)← max{M(i, j− 1) + SGO, I(i, j− 1) + SGE}
6: D(i, j)← max{M(i− 1, j) + SGO, D(i− 1, j) + SGE}
7: M(i, j)← max{M(i− 1, j− 1) + δ(T[i], R[j]), I(i, j), D(i, j)}
8: end for
9: end for

2. Materials and Methods

Consider two sequences, T and R. If T[(i− 2k + 1)..(i− k)] = R[(j− k + 1)..j] and
T[(i − k + 1)..i] = R[(j − 2k + 1)..(j − k)] (i, j ≥ 2k), we can determine that a swap of
length k took place at T[i] and R[j]. A swap of length k means that the order of two adjacent
subsequences with a length of k is changed. Let SSW be the penalty score for swaps. The
alignment score of the swap is calculated by adding SSW to the score before the swap
occurred. In Algorithm 2, which computes the tables for SOAP3-swap, the alignment
score M(i, j) is defined as the largest score among the alignment scores that considers
matches, mismatches, gaps, and swaps (line 9). In SOAP3-swap, swaps of length 1 to 3
can be considered, and the time complexity is the same as that of SOAP3-dp, as shown
in Algorithm 2.

The Sequence Alignment/Map (SAM) format is a text format for storing read align-
ments against reference sequences, and it supports short and long reads (up to 128 Mbp)
produced by different sequencing platforms [28,29]. The Binary Alignment/Map (BAM)
format is a binary representation of the SAM and keeps exactly the same information as
the SAM. To achieve fast random access in a zlib-compatible compressed file [30–33], the
BAM can be compressed using the BGZF library, a generic library developed by Handsaker
and modified by Li for remote file access and in-memory caching [28]. The SAM/BAM
format includes the Compact Idiosyncratic Gapped Alignment Report (CIGAR) string
format to describe how a read aligns to a reference. The CIGAR operations in SAM include
the following: ‘M’ for match/mismatch, ‘I’ for insertion compared with the reference, ‘D’
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for deletion, ‘N’ for skipped bases on the reference, ‘S’ for soft clipping where the clipped
subsequence is shown in the read sequence in the SAM format, ‘H’ for hard clipping where
the clipped subsequence is not shown in the read sequence in the SAM format, ‘P’ for
padding, ‘=’ for match, and ‘X’ for mismatch [28,29].

Algorithm 2 Compute I, D, and M considering swaps.

1: Assign tables I, D, and M of size (m + 1)× (n + 1)
2: Initialize(I, D, M)
3: for i← 1 to m do
4: for j← 1 to n do
5: I(i, j)← max{M(i, j− 1) + SGO, I(i, j− 1) + SGE}
6: D(i, j)← max{M(i− 1, j) + SGO, D(i− 1, j) + SGE}
7: M(i, j)← max{M(i− 1, j− 1) + δ(T[i], R[j]), I(i, j), D(i, j)}
8: if (i ≥ 2k) and (j ≥ 2k) and T[(i − 2k + 1)..(i − k)] = R[(j − k + 1)..j] and

T[(i− k + 1)..i] = R[(j− 2k + 1)..(j− k)]) then
9: M(i, j)← max{M(i, j), M(i− 2k, j− 2k) + SSW}

10: end if
11: end for
12: end for

Since a mapping tool that considers swaps was not available, no alignment information
regarding swaps was available in the CIGAR string. Therefore, the symbols representing
the swap were added to the CIGAR string of SOAP3-swap. When outputting the alignment
results in SAM format, the reads where a swap occurred are marked as ‘T’, ‘W’, and ‘B’
in the CIGAR string when the lengths of the two exchanged base sequences are 1, 2,
and 3, respectively.

3. Results

The data used in these experiments were the human genome sequence and the
drosophila genome sequence. The human genome sequence is GRCh38 (3.3 GB), and
100 bp-paired-end reads (SRR211279, 8.7 GB each) containing 25,467,888 reads in total. The
reads were generated by Illumina GAIIx from the Washington University Genome Sequenc-
ing Center. The drosophila genome sequence is DhydRS2 (148.5 MB, Drosophila hydei),
and 100 bp-paired-end reads (SRR6326389, 12.7 GB each) containing 38,873,031 reads in
total. The reads were generated by Illumina HiSeq 2500 from Texas A&M University.

In order to examine the performance and effectiveness of SOAP3-swap, the algo-
rithm was compared to SOAP3-dp, SOAP3, CUSHAW2-GPU, BarraCUDA, BWA, Bowtie2,
and CUSHAW2. The experimental conditions were as follows:

• CPU and RAM: AMD Ryzen 9 3950X (3.5 GHz), 64 GB RAM (2666 MHz);
• OS: Fedora 27 (64 bit);
• GPU: GeForce RTX 2080 Ti (11 GB memory);
• Development tools and language: C++ (GCC 7.4.0), CUDA (SDK 9.1).

SOAP3-swap, SOAP3-dp, CUSHAW2-GPU, and BarraCUDA were tested using 32 CPU
threads and one GPU device. SOAP3 was tested using six CPU threads, which were max-
imal and one GPU device. BWA, Bowtie2, and CUSHAW2 were tested using 32 CPU
threads. In SOAP3-swap and SOAP3-dp, SMA was set to 1, and SMI , SGO, and SGE were
set to −2, −3, and −1, respectively, as in [16]. In SOAP3-swap, SSW was tested at −1, −2,
and −3. Users can adjust the penalty scores to determine which operation is more likely to
occur. The average running time of 20 experiments was taken to represent the running time
of each tool. Tables 1 and 2 show the running times and alignment ratios of the paired-end
alignments produced by the various tools for the human genome and for the drosophila
genome, respectively.

Table 3 shows the number of read pairs including at least one swap according to the
swap cost and the swapped block size for the human genome and the drosophila genome.
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Table 1. Comparison of SOAP3-swap and other tools for the human genome.

Tools

Paired-End Reads

GPU-BasedRuntime Number of Aligned Difference from
(s) Reads (Ratio) SOAP3-dp

SOAP3-swap 186.98 25,105,846
+4667 Yes(Full SA, SSW = −1) (98.58%)

SOAP3-swap 178.79 25,103,497
+2318 Yes(Full SA, SSW = −2) (98.57%)

SOAP3-swap 181.08 25,102,151
+972 Yes(Full SA, SSW = −3) (98.56%)

SOAP3-dp 178.52 25,101,179
� Yes(Full SA) (98.56%)

SOAP3 212.22 22,613,051 −2,488,128 Yes(88.79%)

CUSHAW2-GPU 599.94 24,957,932 −143,247 Yes(98.00%)

BarraCUDA 947.67 24,551,512 −549,667 Yes(96.40%)

BWA 2731.73 24,598,492 −502,687 No(96.59%)

Bowtie2 1414.67 24,798,944 −302,235 No(Sensitive) (97.37%)

CUSHAW2 2084.69 24,133,013 −968,166 No(94.76%)

Table 2. Comparison of SOAP3-swap and other tools for the drosophila genome.

Tools

Paired-End Reads

GPU-BasedRuntime Number of Aligned Difference from
(s) Reads (Ratio) SOAP3-dp

SOAP3-swap 641.47 31,514,424
+1253 Yes(Full SA, SSW = −1) (81.07%)

SOAP3-swap 624.95 31,513,625
+454 Yes(Full SA, SSW = −2) (81.07%)

SOAP3-swap 623.67 31,513,300
+129 Yes(Full SA, SSW = −3) (81.07%)

SOAP3-dp 563.83 31,513,171
� Yes(Full SA) (81.07%)

SOAP3 698.08 24,409,682 −7,103,489 Yes(62.79%)

BarraCUDA 1131.08 30,380,166 −1,133,005 Yes(78.15%)

Bowtie2 1261.55 30,602,667 −910,504 No(Sensitive) (78.72%)

CUSHAW2 2697.97 30,099,066 −1,414,105 No(77.43%)
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Table 3. Number of read pairs including at least one swap according to the swap cost and the
swapped block size among all the read pairs aligned by SOAP3-swap.

Swap Cost
Swapped Block Size

1 2 3 Total

Human genome
SSW = −1 265,727 7631 21 273,379
SSW = −2 202,850 117 31 202,998
SSW = −3 145,054 57 6 145,117

Drosophila genome
SSW = −1 304,209 13,919 215 318,343
SSW = −2 212,278 627 273 213,178
SSW = −3 158,953 79 72 159,104

4. Discussion

The two main strengths of SOAP3-swap are its speed and its alignment ratio. As
shown in Tables 1 and 2, except for SOAP3-dp, SOAP3-swap was significantly faster than
the other tools in our experiments. With respect to alignment ratio, SOAP3-swap aligned
more read pairs than any of the other reference mapping tools. For example, when SSW
was set to −1, −2, and −3, for the human genome, SOAP3-swap aligned 4667 more read
pairs, 2318 more read pairs, and 972 more read pairs, respectively, than SOAP3-dp, and for
the drosophila genome, SOAP3-swap aligned 1253 more read pairs, 454 more read pairs,
and 129 more read pairs, respectively, than SOAP3-dp. Since the alignment results can be
the basis for reconstructing genomes and identifying mutations of genomes, the higher
alignment ratio can be more helpful to analyze genomes.

When SSW was set to −1, −2, and −3, for the human genome, SOAP3-swap aligned
273, 379, 202, 998, and 145, 117 read pairs, respectively, and for the drosophila genome,
SOAP3-swap aligned 318, 343, 213, 178, and 159, 104 read pairs, respectively, as shown in
Table 3. Since we performed the paired-end alignment in our experiment, we considered it
as a swap occurrence when a swap occurred in at least one read. This result shows that
some of the read pairs aligned by SOAP3-dp may actually have been aligned by swaps
rather than insertion/deletion. Therefore SOAP3-swap can provide a different alignment
result compared to SOAP3-dp because it performs alignment by considering all of the
mismatches, gaps, and swaps.

5. Conclusions

The SOAP3-swap proposed in this paper has the same functionality as that of SOAP3-
dp and also improves the alignment ratio by taking biologically significant swaps into
account for the first time. The reason why we considered the swaps with lengths of up to
three is because swaps with lengths longer than three hardly occur in our experiment.

Further research is necessary to develop more efficient alignment methods that can be
applied to situations including exchanges involving non-adjacent bases.
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