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Abstract: Many of the world’s productive Jurassic reservoirs are intensively bioturbated, including
the sediments of the Upper Jurassic Hanifa Formation. Hydrocarbon exploration and production from
such reservoirs require a reliable prediction of petrophysical properties (i.e., porosity, permeability,
acoustic velocity) by linking and assessment of ichnofabrics and trace fossils and determining their
impact on reservoir quality. In this study, we utilized outcrop carbonate samples from the Hanifa
Formation to understand the main controlling factors on reservoir quality (porosity and permeability)
and acoustic velocity of bioturbated carbonates, by using thin-section petrography, SEM, XRD, CT
scan, porosity, permeability, and acoustic velocity measurement. The studied samples are dominated
by Thalassinoides burrows that have burrow intensity ranging from ~4% to 27%, with porosity and
permeability values ranging from ~1% to 20%, and from 0.002 mD up to 1.9 mD, respectively. Samples
with coarse grain-filled burrows have higher porosity (average µ = 14.44%± 3.25%) and permeability
(µ = 0.56 mD ± 0.55) than samples with fine grain-filled burrows (µ = 6.56% ± 3.96%, and 0.07
mD ± 0.16 mD). The acoustic velocity is controlled by an interplay of porosity, bioturbation, and
mineralogy. Samples with relatively high porosity and permeability values (>10% and >0.1 mD)
have lower velocities (<5 km/s) compared to tight samples with low porosities and permeabilities
(<10% and <0.1 mD). The mineralogy of the analyzed samples is dominated by calcite (~94% of
total samples) with some quartz content (~6% of total samples). Samples characterized with higher
quartz (>10% quartz content) show lower velocities compared to the samples with lower quartz
content. Bioturbation intensity, alone, has no control on velocity, but when combined with burrow
fill, it can be easier to discriminate between high and low velocity samples. Fine grain-filled burrows
have generally lower porosity and higher velocities (µ = 5.46 km/s) compared to coarse grain-filled
burrows (µ = 4.52 km/s). Understanding the main controlling factor on petrophysical properties and
acoustic velocity of bioturbated strata can enhance our competency in reservoir quality prediction
and modeling for these bioturbated units.

Keywords: bioturbation; carbonates; petrophysical properties; acoustic velocity; upper Jurassic;
Saudi Arabia

1. Introduction

In many parts of the world, Jurassic strata contain extensive bioturbated intervals that
encompass significant hydrocarbon reservoirs such as the Fulmar Formation and Brent
Group, North Sea, UK [1,2]; the Ile Formation, Norway [3]; the Shaqra Group and the
Ghawar Field, Saudi Arabia [4–6]; and the Vaca Muerta Formation, Argentina [7]. Bioturba-
tion is defined as the biogenic (by benthic infauna) transport of sediment particles and pore
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water which destroys the sediment stratigraphy. These processes also impact the physical
properties of the sediment such as grain size spectrum, porosity, and permeability [8].
Benthic infauna can significantly modify the original sediments while generating new
structures through sediment mixing and redistribution of the grains. Such modification
may include sediment removal (bioerosion), sorting (biostratification), emplacement (biode-
position), and compaction [9]. Moreover, geochemical signatures of sediments may also be
modified by burrowing organisms through a combination of organic matter produced by
these organisms [6,10].

Bioturbation can have a significant influence on the petrophysical properties of hydrocar-
bon reservoirs. Several studies were carried out that demonstrated the impact of bioturbation
on improving and decreasing of petrophysical properties of siliciclastics [11–15], as well as
of carbonates [5–8]. Some studies demonstrated that bioturbation can enhance the reservoir
quality, mainly in permeability, to variable degrees [5,6,12,15–19]. All the aforementioned
studies have demonstrated that the impact of bioturbation on reservoir quality is dependent
on the bioturbation style and burrow attributes [20,21].

The acoustic velocity is the main controlling factor on seismic reflectivity of different
rock units. Seismic reflectivity is the basis for seismic reflection behavior, one of the most
important principles in hydrocarbon exploration. The acoustic velocity of carbonate sedi-
mentary strata is largely controlled by (i) the mineralogy, (ii) petrophysical properties, i.e.,
amount of porosity, pore type, pore distribution, and (iii) diagenetic processes modifying
the sediments [22–31]. Bioturbated strata are characterized by a complex distribution of
porosity and permeability, as the trace fossils can alter the pore-throat distribution and
the bioturbation traces may act as loci for dissolution and cementation processes during
early and late diagenesis [32]. These processes consequently influence the acoustic wave
propagation through these bioturbated units.

Bioturbation is common throughout the carbonate strata of the Middle-Upper Jurassic
of Saudi Arabia (Tuwaiq Mountain, Hanifa, Jubaila, and Arab formations), and they show
a significant control on fluid flow properties of these strata [4–6,33]. These studies have
shown that Thalassinoides burrows have enhanced flow properties of the dolomitic and
mud-dominated units of the strata of these formations, and contributed significantly to the
fluid flow properties of the Super-K Zone in the Ghawar field of Saudi Arabia [6].

The previous studies aimed at understanding the impact of bioturbation and ichnofab-
rics on reservoir quality, and specifically, permeability. However, the impact of bioturbation
on carbonate acoustic velocities was not reported in the literature so far. This study aims to
determine the main factors that control the reservoir quality (porosity and permeability)
and acoustic velocities of the Upper Jurassic bioturbated strata of the Hanifa Formation in
Central Saudi Arabia.

To determine the factors influencing the petrophysical properties and acoustic veloci-
ties of bioturbated strata, a series of outcrops along the Riyadh-Mecca road in the Darma
quadrangle (Figure 1) in Central Saudi Arabia were studied, sampled, and analyzed in
detail. Analyses include the characterization of all intrinsic and extrinsic features such
as mineralogical composition, texture, porosity and pore types, and permeability. Addi-
tionally, sample plugs were scanned using the computer tomography (CT scan) technique
to precisely estimate the bioturbation intensity of the strata studied. Finally, the acoustic
velocity was measured for all plugs under variable effective pressures (5–40 MPa) and
compared to the aforementioned intrinsic and extrinsic properties (porosity, permeability,
mineralogy, bioturbation intensity, and burrow infill).
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deposition of extensive shallow marine carbonates called “the Shaqra Group” over the 
Triassic mixed system [40,41]. 
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tervals in the Arabian Platform petroleum system [48,49]. The occurrence of the source 
rock interval (equivalent to the lower Hawtah member mudstone) synchronizes with a 
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waiq Mountain Formation [49,50]. The upper, Ulayya member is grainier than the Hawtah 
member, and represents the equivalent strata to a major hydrocarbon reservoir in the Mid-
dle East. The Ulayya member is overlain by the muddy limestones of the Jubaila For-
mation that make the main seal [51]. 

3. Materials and Methods 
3.1. Field Work 
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Figure 1. Geological sketch map showing the outcrop belts of Tuwaiq Mountain, Hanifa, and Jubaila formations in Central
Saudi Arabia. The measured section is highlighted by the yellow star to the west of Riyadh modified after [34].

2. Geological Setting

The Neotethys opened in the Late Permian following major extensional stresses that
affected the eastern part of the Arabian-Nubian Shield [35]. A series of rift basins evolved
that were infilled by shallow marine siliciclastics and carbonates [36].

Throughout the Phanerozoic, the Arabian Plate was moving in different directions
with different rates [37]. By the beginning of the Jurassic, the Arabian Plate approached
the tropical latitudes [38,39], and witnessed a major marine transgression that caused the
deposition of extensive shallow marine carbonates called “the Shaqra Group” over the
Triassic mixed system [40,41].

The Hanifa Formation is mainly of Oxfordian–Kimmeridgian age [42–46], and is
subdivided into two members; the basal Hawtah and the upper Ulayya member [47].
The strata of the Hanifa Formation were deposited in an open intrashelf basin, where
the organic-rich fine limestones that were deposited represent one of the major source
rock intervals in the Arabian Platform petroleum system [48,49]. The occurrence of the
source rock interval (equivalent to the lower Hawtah member mudstone) synchronizes
with a major transgressive event that separated the Hanifa Formation from the underlying
Tuwaiq Mountain Formation [49,50]. The upper, Ulayya member is grainier than the
Hawtah member, and represents the equivalent strata to a major hydrocarbon reservoir in
the Middle East. The Ulayya member is overlain by the muddy limestones of the Jubaila
Formation that make the main seal [51].

3. Materials and Methods
3.1. Field Work

Field work was carried out in the Riyadh area and incorporated geological charac-
terization of the Hanifa strata including color, thickness, sedimentary structures, bedding
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planes, and morphology. Twenty-eight samples were collected from the Riyadh-Mecca
road outcrop of the Upper Jurassic Hanifa Formation within the Darma Quadrangle at
24◦51′43.8” N 46◦26′17.4” E. The studied outcrop is located in the Ar-Riyadh area (Figure 1).
This location was selected because it shows a complete exposure of the sediments of the
Hanifa Formation at this locality, where all the strata, including the muddy intervals (which
are covered in other localities such as Wadi Nisah), are well exposed.

3.2. Thin-Section Petrography

Thin-sections of all samples were prepared to identify the texture, pore types, and
diagenetic features. Samples were impregnated with blue epoxy to define the pores and
highlight the geometry of the pore spaces. Alizarin Red S was used for partial stain
of the thin-section to differentiate between calcite and dolomite [52]. The depositional
textures were classified based on the Dunham [53] classification, modified by Embry and
Klovan [54]. Photomicrographs of the studied thin-sections were obtained using BX53M
Olympus petrographic microscopy with an Olympus Camera. In addition, pore types were
classified using the Choquette and Pray [55] classification scheme.

3.3. X-ray Diffraction Analysis (XRD)

Twenty-seven samples were crushed and ground to examine the mineralogy of
the studied samples using XRD analysis. The percentages of different minerals (calcite,
dolomite, quartz, and clays) were determined using the X’Pert3 system of Malvern Panan-
alytical. The database used in this analysis is ICDD PDF-4 2021, with Cu- anode and
measurement voltage of 45 kv. Each sample was placed in a sample holder with a 20 µm
square capacity. In order to cover a wide range of minerals, the scan range (2 theta) was
fixed from 10 to 90 degrees.

3.4. Scanning Electron Microscopy

A JEOL JSM-7900F scanning electron microscopy (SEM) with 20 kv accelerating
voltage was used on seven representative samples (covering a wide range of porosity and
permeability values), to determine microstructural features such as micro-porosity, pore
geometries and distribution, grain contacts and shapes, cementing material and texture,
and matrix. Fresh broken surfaces of selected samples were utilized to perform the SEM
analysis. Gold coating was applied on fresh surfaces of the samples to avoid sample
charging [56].

3.5. Porosity and Permeability

Porosity and permeability were measured for all samples to determine the air porosity
and permeability. Samples were obtained perpendicular to the bedding planes. A 1.5-
inch diameter, water-cooled, diamond drill bit was used to cut the plugs. Plugs were
leveled at the top and bottom to within 0.001 inch. To dry the samples, all plugs were
placed in an oven at 60 ◦C for 72 h. Porosity and permeability were measured, at 500-psi
pressure, for all the plugs using a pressure decay technique utilizing the AP-608 Automated
Permeameter-Porosimeter of Coretest System INC. Based on the sample dimensions and
measured porosity, bulk and grain densities were calculated for all samples.

3.6. Acoustic Velocity Measurement

Twenty-seven dry samples were used for acoustic velocity measurement (compres-
sional and shear velocity) using a NER 500 machine. The measurement was carried out
at four different confining pressures: 5, 10, 20, and 40 MPa. The NER 500 contains one
P-wave transducer and receiver and two orthogonal S-wave transducers and receivers.
Confining pressure is built through a connected oil reservoir that can provide pressure up
to 100 MPa. A computer and oscilloscope are attached to the NER 500 machine to translate
the signal to digital data that can be used to calculate the P- and S-wave velocities (VP and
VS, respectively).
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3.7. Computed Tomography

All the plugs were scanned using X-ray computer-aided tomography (CT scan) to
visualize the internal structure of the plugs and to estimate the bioturbation intensity in
each sample (Figure 2). All scans were conducted using a Toshiba Alexion TSX-032A
Medical CT scanner (spatial resolution = 1 mm). PerGeos software (FEI-ThermoFisher,
Hillsboro, OR, USA) was used to analyze the CT tomograms. Filtering and segmentation
were performed on the images to label the bioturbation structures and surrounding grains
based on the threshold. The segmented data were used to quantify the bioturbated volume
of each sample as well as the 2D and 3D visualization of the structures.
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4. Results
4.1. Texture and Lithofacies

The Hanifa Formation in the study area mainly consists of mudstone and bioclastic
wacke- to packstone in the lower part (Hawtah member), and pack-to grainstone units with
some coral reef fragments in the upper part (Ulayya member). A detailed description of
lithofacies and the depositional environment of the Hanifa Formation can be found in [57].
In this study, we tried to use the texture mainly to differentiate between lithofacies. Hence,
five lithofacies were identified:

1. Mudstone. Massive and thickly bedded, light grey to brown, burrowed mudstone.
Skeletal grains are common and in most cases are dominated by scattered sponge
spicules and scattered benthic foraminifera, and bivalve and brachiopod fragments
(Figure 3A).

2. Wackestone. White to beige massive beds with fine texture and high level of hardness.
The sediments of this facies are well distributed throughout the studied stratigraphic
section. The wackestones are rich in sponge spicules and in a few cases, show jasper
chert nodules. It also contains scattered fragments of bivalves, echinoderms, bra-
chiopods, and agglutinated foraminifera (especially the species Kurnubia palastiniensis)
(Figure 3B). However, in general, it is similar to the mudstone lithofacies but with a
higher abundance of skeletal grains, and the sediments show a higher bioturbation
intensity with abundant Thalassinoides burrows. Mudstones and wackestones are
more dominant in the lower part of the formation.

3. Packstone. Massive beige beds mainly comprising skeletal grains of foraminifera,
bivalves and sponge spicules, quartz grains, oncoids and peloids (Figure 3C). The
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percentage of each skeletal and non-skeletal grain type varies considerably based on
the associated lithofacies. The packstone lithofacies occur together with the sponge
spiculitic skeletal wackstones, the peloidal grainstones, and the reefal lithofacies.

4. Grainstone. This facies caps the sedimentary cycles in both the upper and lower parts
of the studied succession. However, their abundance is more frequent within the
upper cycles. The grainstone beds are massive, horizontally laminated and show
trough cross-bedding; and at times, the beds have an erosive base. The sediments
are brownish in color and mainly composed of peloids, combined with angular fine
quartz grains and scattered skeletal grains, mainly bivalves (Figure 3D).

5. Reefal lithofacies. The main reef builders found in the Oxfordian Hanifa succes-
sion are scleractinian corals in addition to demosponges, especially, stromatoporoids
(Figure 3E). These reef builders are found either in association forming a mixed
coral/stromatoporoid framestone, rudstone (Figure 3F), or do occur independently,
forming their own buildups. Both coral and stromatoporoid fragments are found scat-
tered in a floatstone texture, with a skeletal wackestone/packstone matrix. The reefal
limestone sometimes shows interbedding with the peloidal grainstone lithofacies.
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sponge spicules and agglutinated foraminifera (Kurnubia palastineinsis). (B) Wackestone facies com-
posed of monaxon and triaxon sponge spiculitic wackestone. Associating biocomponents are echino-
derm spines (E), and agglutinated foraminifera (F), and scattered fragments of sponge spicules (S).
(C) Packstone lithofacies dominated by skeletal grains (mainly bivalves), sub-rounded poorly-sorted
quartz grains and fine peloids. (D) Grainstone lithofacies composed of peloids with scattered quartz
grains, cortoids, and grapestones. (E) Polished slab of a highly cemented scleractinian coral head,
which is the main reef builder in the studied succession. (F) Oncoidal rudstone beds associating the
reefal limestone. Scale bar at bottom right.

4.2. Mineralogy

Based on XRD analysis, calcite is the dominant mineral in the studied samples (~94%
of total samples), with some quartz (~6% of total samples) that may reach up to 25% in
some samples (Appendix A). In addition to XRD, quartz abundance can also be observed
from thin-section (Figure 4). Dolomite is also present but in minor amounts of less than 1%.
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4.3. Pore Types

Using Choquette and Pray’s (1970) [55] classification, four pore types were identified
in the studied samples (Figure 5): inter-particle, intra-particle, fracture, and moldic pores.
In addition, we used the Cantrell and Hagerty [58] definition of microporosity (pores that
have a size of 10 micron or less) to describe and quantify the microporosity. Microporosity
is the most common pore type, as dissolution pores (moldic and vugs) are not frequent.
Other pore types such as interparticle pores are only found in grain-dominated samples
(Figure 5A). Moreover, dissolution-related pores (molds) are very rare in the studied
samples, with only two samples showing moldic pores resulting from the dissolution
of skeletal grains such as dasycladacean algae. Only one sample displays vugs as the
dominant pore type, which are partially filled with coarse-grained sediments, e.g., ooids
and peloids (Figure 5D).
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4.4. Bioturbation

Bioturbation by marine fauna is abundant throughout the Hanifa Formation (Figure 6),
especially in the Ulayyah member (upper part of the formation). All trace fossils belong
to the Cruziana ichnofacies [34]. The most common trace fossils are Thalassinoides burrow
networks penetrating a firm ground of mud-dominated carbonate strata [33,34] (Figure 6).
These burrows show different infill and either contain fine or coarse grains. At outcrop
scale, some of the burrows are still partially or completely open, and form connected or
non-connected vugs or tubes with a diameter varying between 0.4 and 3.0 cm (Figure 6B).
However, the majority of our collected samples are either filled by coarse, or fine sed-
iments. Moreover, burrows filled with fine sediments (fine-filled burrows) are more
frequent in grain-dominated units (Figure 6C), but are also present in mud-dominated
units. Similarly, burrows filled with coarse grains (coarse-filled burrows) are more frequent
in mud-dominated units (Figure 6D), but also occur in grain-dominated units. The filling
in the coarse-filled burrows is composed of peloids, ooids, oncoids, and skeletal fragments
(Figure 7).
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Figure 6. Thalassinoides burrows of the Hanifa Formation. Outcrop photos showing burrows filled
with coarser materials than matrix (A), or partially to completely unfilled burrows (B). Pen (A) and
hammer for scale (B). Scan of two of the studied samples showing burrows filled with (C) fine material
in grain-dominated matrix highlighted by red dotted lines, and (D) coarse fill in mud-dominated
matrix. Scale bar in cm in (C,D).

The bioturbation intensity (BI), which is the total volume of the sample that is occupied
by burrows or trace fossils, in the studied samples was measured using a CT scan (see
Section 3.7). The bioturbation intensity shows a very weak correlation, R2 < 0.2, with
both porosity and permeability (Figure 8A,B). However, the burrow filling material seems
to have a significant control on porosity and permeability values, with the coarse-filled
burrows having higher values (µ = 14.44% and 0.56 mD) than fine-filled burrows (µ = 6.56%
and 0.07 mD) (Figure 8C,D).
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coarse-grained material and (B) a coarse-filled burrow with coarse grains including oncoids, peloids
(p), and skeletal fragments (s).
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4.5. Porosity and Permeability

The porosity values of the studied samples (n = 27) range from ~1 to 20% with an
average µ of ~11% ± 5.3%. The samples are tight in terms of permeability with values
ranging from 0.002 to 1.9 mD; an average of ~0.3 mD ± 0.5. The porosity–permeability
relationship of the studied samples is shown in Figure 9A, with the data points being
classified based on their textural variations. Mud-supported samples (mudstone and
wackestone) have higher porosity (5.33–19.72%, µ = 13.74% ± 4.31%) and permeability
values (0.0035–1.91 mD, µ = 0.55 mD ± 0.54 mD) relative to grain-supported samples
(packstone, grainstone) (5.05–16.33%, µ = 9.99%± 4.2% for porosity, and 0.003–1.09 mD, µ =
0.24 mD ± 0.32 mD for permeability). Reefal lithofacies samples (rudstone and framestone)
possess the lowest porosity values (0.77–5.77%, µ = 2.89% ± 2.58%) combined with very
low permeability values (0.003–0.004 mD, µ = 0.004 mD ± 0.0003 mD) (Figure 9A). In
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addition, and as mentioned in the last part (Section 4.4), the coarse-filled burrows have
higher porosities and permeabilities than fine-filled burrows (Figure 9B).
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4.6. Factors Controlling Acoustic Velocity
4.6.1. Porosity, Permeability, Texture, and Mineralogy

The compressional acoustic velocities (VP) of the measured samples range from 3 to
6.5 km/s (Appendix A). The velocities display an inverse relation with both porosity and
permeability (Figure 10). However, a wide scatter of velocities at the comparable porosity
and permeability values can be observed (i.e., at 15% porosity, and at 0.6 mD permeability).
Samples with mud-dominated texture (mudstone and wackestone) show higher porosity
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and permeability values (Section 4.5), and thus, lower velocity values (µ = 4.58 ± 0.77
km/s) than samples with grain-dominated texture (packstone and grainstone) (µ = 5.02 ±
0.62 km/s), as shown in Figure 11A. However, some samples with grain-dominated texture
have high porosity and permeability values (up to ~16.3% and 1.1 mD), and low velocities
(Figure 11A).
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Based on XRD data (Section 4.2), the majority of the samples are dominated by calcite.
However, quartz is common throughout the studied section. In this study, the 10% quartz
content limit is used to differentiate between quartz-rich and quartz-poor samples. Quartz-
rich samples have lower velocity values relative to quartz-poor samples at any given
porosity (Figure 11B).

4.6.2. Pore Types

Based on thin-section petrography, microporosity is the most common pore type in
the studied samples of the Hanifa Formation. The velocity–porosity cross-plot of Figure 12
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displays that samples dominated by microporosity follow a tight velocity–porosity tra-
jectory. The only one sample that is dominated by vugs has the highest velocity, relative
to the other pore types with the same porosity. Samples characterized by fractures and
interparticle pores possess the lowest velocities.
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4.6.3. Bioturbation Intensity and Burrow Infill

Based on CT scan, bioturbation intensities in the studied samples range between 3 and
27%. The bioturbation intensity shows a very weak relation with the compressional velocity
(VP) (Figure 13A) with correlation coefficient R2 < 0.1. However, fine-filled burrows display
higher velocities than coarse-filled burrows (Figure 14B).

Similarly, the velocity–porosity cross plot (Figure 14) shows that the bioturbation
intensity (BI) has no major control on velocity, where samples with higher bioturbation
intensities (15–30%) have a wide range of porosities (5–20%) and about 1 km/s velocity
difference at the same porosity (at 5.5% porosity in Figure 14A). Similarly, samples with
medium BI (10–15%) have a wide scatter of velocity at the same porosity; compare velocities
at about 15% porosity in Figure 14A. Likewise, samples with low bioturbation intensities
(BI < 10%) show similar velocities although they have 10% porosity difference; compare
values at about 5.5 km/s Vp in Figure 14A. Nevertheless, when adding the burrow filling
material parameter, the results show that fine-filled burrows have lower porosity and
permeability values (µ = 6.56%, 0.66 mD), and higher velocity values (µ = 5.46 km/s),
relative to the coarse-filled burrows (µ = 14.44%, 0.56 mD, and 4.52 km/s) (Figure 14B).
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5. Discussion

Bioturbation can enhance or destroy the reservoir quality based on the trace fossil type,
size, sediment infill, and connectivity [14,17,59,60]. The positive impact of bioturbation on
reservoir quality was widely documented in recent studies [12,61].

As mentioned before, bioturbation can play a major role in controlling the petrophysi-
cal properties of carbonate strata (porosity and permeability). Hence, other properties that
are controlled by porosity (i.e., acoustic velocity) or permeability (flow properties) will also
be influenced by bioturbation.



Appl. Sci. 2021, 11, 5019 17 of 25

Bioturbated strata of the Hanifa Formation were used to investigate the bioturbation
impact on the petrophysics and acoustic velocities. Bioturbation intensity and burrow fill
impact on porosity and permeability will be discussed in the following context. Moreover,
in addition to the influence of porosity, permeability, mineralogy, and texture on acoustic
velocity, the impact of bioturbation and burrow fill will also be discussed.

5.1. Bioturbation and Burrow Fill Impact on Porosity and Permeability

The studied samples show a weak relationship between bioturbation and both poros-
ity and permeability, with an R2 < 0.2 (Figure 8A,B). However, when burrow fill is added,
it becomes evident that the coarse-filled burrows have higher porosity and permeability
values than the fine-filled burrows (compare Figure 8C,D). This means that burrow filling
material has a significant control on the porosity–permeability values (Figure 9B). The
positive relationship of porosity and bioturbation is well documented in literature dis-
cussing the enhancement of porosity and permeability of an otherwise impermeable matrix
through the passive infill of burrows by coarse material [8,14,32,59–62]. In addition, the
burrow networks can act as fluid conduits and may form loci for preferential dissolution
by meteoric water and these processes may modify the vertical and lateral flow proper-
ties [4,14]. Open and coarse-filled burrows provide preferred, permeable flow conduits in
otherwise less permeable intervals [61].

Eltom et al. [61] in their study of the Upper Hanifa Formation (Ulayyah member),
demonstrated that coarse material infilling the burrows in mud-dominated units indicate
that the filling material was deposited in a high-energy environment, unlike the host
material which was deposited under a low-energy depositional environment. Because of
the coarse-grained infill, the burrows are characterized by higher porosity and permeability
values than the host muddy units. Our data agree with their findings for the muddy
units (Figure 9B). However, [61] did not discuss the impact of bioturbation on the grain-
dominated units and subsequent infill with fine-grained sediments.

In grain-dominated units, bioturbation has a negative impact on porosity and perme-
ability as most of these units possess lower porosity and permeability values, compared
to mud-dominated units. This was attributed to cementation of inter-particle pore spaces,
and filling of burrows by fine-grained sediments, which act as baffles or barriers within an
otherwise porous and permeable zone [61]. Golab et al. [14] in their study of the influence
of bioturbation on the fluid flow system of the Lower Cretaceous Glen Rose limestone,
demonstrated that grainstone units have low ichnofabric indices (ii1 to ii2) and restrict the
fluid flow due to their low permeabilities. This restriction was attributed to cementation
of interparticle pores by sparry calcite cement. Likewise, [63] in his study on ichnofabric
impact on reservoir quality of the Permian-Triassic Khuff Formation, demonstrated that
some bioturbation burrows (dwelling burrows) may occur in grainy units with consider-
able amounts of mud. As result, these burrows reduce porosity and permeability and act
as barriers for fluid flow through these units. Our data agree with these findings [14,63];
the grain-dominated samples show both scenarios of extensive cementation (Figure 3D,E)
and burrow fill by muddy material (Figure 6C).

The microstructure of the micrite plays another significant role in controlling the
porosity, permeability, and acoustic velocity. Some mud-dominated samples are character-
ized by a subhedral porous micritic texture, leading to higher porosity, permeability, and
low velocity values (Figure 15A). In contrast, the burrow mud-fill of the grain-dominated
samples show a compact coalescent micritic texture (Figure 15B) associated with lower
porosity, permeability, and high acoustic velocity values. The coarse-filled burrows of the
mud-dominated units might have enhanced the fluid flow that resulted in micrite disso-
lution by meteoric water, resulting in a porous and permeable micritic structure [4,59,62].
Conversely, the absence of flow pathways for meteoric water within the grain-dominated
units, in addition to extensive cementation, resulted in the tight compact micritic texture
discussed above.
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5.2. Controlling Factors on Acoustic Velocity

Similar to the majority of sedimentary rocks [22,64,65], our data show VP–Porosity
and VP–Permeability inverse relations (Figure 10). However, a wide scatter of velocities at
comparable porosity and permeability values can be observed (i.e., at 15% porosity, and at
0.6 mD permeability). This scatter probably reflects the impact of other sediment-inherent
factors on the VP–Porosity and VP–Permeability relations, which include mineralogy and
bioturbation. The indirect relation between permeability and velocity is also discussed.

5.2.1. Mineralogy and Compressional Velocity

Although our data show a dominance of calcite, many samples are quartz-rich (>10%
quartz). As quartz has a lower mineral-acoustic moduli than calcite, the quartz-rich samples
do show lower velocities (Figure 11B). Similar results are documented in literature from
mixed carbonate-clastic systems [26,27,65,66], which all showed that for similar porosity
values, samples with higher quartz content have lower velocities relative to samples with
lower quartz content.

5.2.2. Bioturbation Impact on Acoustic Velocity

The impact of bioturbation on the acoustic wave velocities is not widely documented
in literature. However, earlier studies discussed the relationship between bioturbation and
sediment acoustic and geotechnical properties [67–70]. Those studies demonstrated, based
on recent sea-bottom derived box cores, that different bioturbation activities (i.e., dwelling,
grazing, feeding, etc.) have a different impact on the acoustic behavior of sediments, where
the individual processes can either increase or decrease the acoustic velocity. Our data
show a weak relationship between compressional wave velocity (VP) and bioturbation
intensity (Figure 13). Therefore, bioturbation intensity alone does not explain the velocity
variation, but the combination with the type of burrow filling material may explain the
variation in the petrophysical properties (porosity and permeability) as well as the acoustic
velocity.

However, the grain-dominated samples in our case show higher velocities (µ = 5.02
km/s ± 0.62 km/s) and lower porosity (µ = 9.99% ± 4.2%) and permeability values (µ =
0.24 md ± 0.32 md). Such observations can be attributed to the burrow infill of the grain-
dominated samples, by fine material in addition to the extensive calcite cementation of the
host matrix. In addition, samples that have open burrows (vugs) have higher velocities
relative to the samples with filled burrows (Figure 12). These results agree well with the
findings of [22,24,29,64,71] who demonstrated that carbonates with vuggy pores have
higher velocities relative to the other pore types.
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The mud-dominated samples (coarse-filled burrows) show lower compressional ve-
locities relative to those with fine-filled burrows (Figures 11A and 14B). This is mainly
attributed to the higher porosity of coarse-grained infill of the burrows within mud-
dominated units, and dissolution of micrite, resulting in a porous subhedral micrite texture
(Figure 15). These results agree to some extent with findings of [68], who reported an in-
verse relationship between rigidity and bioturbation intensity of A. marina and C. arenarium
trace fossils (open burrows), in sandy sediments of the coast of North Wales. Our data also
agree with the study of [69] for the Venezuela basin carbonate sediments, who documented
that an increase of Mulinia lateralis decreased the compressional velocity significantly. On
the other hand, ref. [69] attributed the increase of bulk modulus and Lame’s constant in
sediments dominated with Heteromaslus filiformis to the dewatering process by bioturbation,
which increased sediment compaction.

5.2.3. Permeability, Bioturbation, and Compressional Velocity

A series of studies investigated the relationship between acoustic velocity and per-
meability and tried to define the factors controlling acoustic velocity and permeability in
carbonates [64,71–75], and found that pore structure, size, connectivity, and distribution are
the main factors controlling acoustic velocity and permeability. The majority of these stud-
ies have shown an inverse relation between permeability and acoustic velocity, either as
direct or indirect relation. The aforementioned studies demonstrated that large pores with
a simple pore structure will have higher velocities and lower permeabilities compared to
small pores with a complex pore structure with lower velocities and higher permeabilities.

Similarly, our data show an inverse relationship between velocity and permeability,
where the samples with relatively higher permeability (>0.1 mD) have lower velocities
compared to samples with lower permeability values (<0.1 mD) (Figure 16). Our results
agree with findings of the aforementioned studies and the inverse relation between velocity
and permeability is evident in Figure 10B. However, the data discussed for this study
are different as bioturbation is controlling permeability and thus plays a significant role
in permeability enhancement of mud-dominated samples. In other words, bioturbation
burrows (empty or coarse-filled) act as fractures [32] by enhancing permeability and
reducing the acoustic velocity [71,76].
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Likewise, and as discussed in Section 5.1, the Thalassinoides burrows enhance perme-
ability of the mud-dominated units. Hence, it can be concluded from the inverse relation
between velocity and permeability that bioturbation will increase permeability while de-
creasing the velocity of bioturbated muddy strata that are dominated by Thalassinoides
burrows and filled by coarse grain material.

6. Conclusions

Outcrop samples of the Upper Jurassic Hanifa Formation were studied to under-
stand the main controlling factors on the petrophysical properties and acoustic velocity of
bioturbated carbonate strata. Our findings can be summarized as follows:

• The Upper Jurassic Hanifa Formation is composed of slightly to intensely bioturbated
strata that were deposited within an intra-shelf basin on a shallow-marine carbonate
platform.

• Porosity and permeability are controlled by bioturbation and burrow filling material,
where mud-dominated strata with coarse-filled burrows have higher porosity and
permeability values relative to the grain-dominated strata with fine-filled burrows.

• Acoustic velocity of Hanifa Formation sediments is controlled by the interplay between
porosity, permeability, mineralogy, bioturbation, and burrow filling material and
texture.

• Porosity and permeability are inversely related with acoustic velocity, where samples
with higher porosity and permeability values have lower acoustic velocities than
samples with low porosity and permeability.

• Mineralogy has a main control on acoustic velocity, with quartz-rich samples showing
lower velocities than quartz-poor samples.

• Burrow filling material and texture seem to have a significant control on petrophysical
properties (porosity and permeability) and acoustic velocity. Coarse-filled burrows
have higher porosity and permeabilities, and lower velocities compared to the fine-
filled burrows.
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Appendix A

Table A1. Porosity, permeability, texture, bioturbation intensity (BI) in %, burrow fill, mineralogy, compressional and shear wave velocity of the studied samples. Texture; (M = Mudstone,
W = Wackestone, P = Packstone, G = Grainstone, F = Framestone, R = Rudstone). Burrow Fill (F = Fine Fill, C = Coarse Fill).

ID
Porosity

(%)
Permeability

(mD)
Density
(gm/cc) Texture BI (%) Burrow

Fill
Mineralogy (%) Compressional Velocity Shear Velocity

Calcite Dolomite Quartz Vp 5 Vp 10 Vp 20 Vp 40 Vs 5 Vs 10 Vs 20 Vs 40

H2-2.2 5.33 0.0035 2.56 W 15.30 F 96.1 0.1 3.7 5.89 5.93 6.07 6.07 2.96 3.16 3.21 3.23

H2-4.6 15.29 1.91 2.28 W 8.44 C 99.8 0.1 0.1 5.22 5.26 5.29 5.32 2.61 2.60 2.70 2.71

H2-9.5 13.83 0.3362 2.34 M 11.56 C 98.6 0.1 1.3 4.96 5.07 5.02 5.02 2.47 2.52 2.58 2.71

H2-10.4 3.51 0.0019 2.60 P 8.01 F 80.7 0.2 19.1 5.84 5.91 6.02 6.05 3.24 3.26 3.26 3.26

H2-17 9.27 0.0098 2.41 W 6.54 F 98.5 0.1 1.1 4.08 4.10 4.15 4.28 2.29 2.32 2.36 2.40

H2-18 6.27 0.0064 2.51 M 9.73 F 98.7 0 1.3 5.24 5.31 5.35 5.42 2.81 2.88 2.93 2.94

H2-29 14.28 0.12 2.25 M 12.88 C 87.6 0 12.4 2.85 2.94 3.03 3.19 1.72 1.75 1.79 1.84

H2-36 5.39 0.0031 2.57 P 7.19 F 96.6 3.4 5.42 5.44 5.44 5.52 2.92 2.95 2.96 2.98

H2-37 11.91 0.1456 2.39 P 16.87 C 95.8 0 4.1 4.80 4.80 4.83 4.88 2.58 2.62 2.64 2.67

H2-40 12.23 0.0281 2.37 G 12.50 C 95.6 0 4.1 4.51 4.59 4.59 4.70 2.46 2.50 2.54 2.55

H2-41.8 9.13 0.0724 2.46 G 14.85 F 96.4 0.1 3.5 5.56 5.56 5.53 5.47 2.95 2.98 3.00 3.00

H2-44.4 17.95 0.6715 2.18 W 17.22 C 89.8 0 10.2 3.50 3.52 3.57 3.65 2.05 2.08 2.10 2.13

H2-47.9 5.27 0.0057 2.54 G 15.58 F 98 0 2 5.01 5.04 5.09 5.20 2.71 2.74 2.79 2.83

H2-49 14.77 0.5988 2.28 W 10.24 F 87.3 0 12.7 4.04 4.07 4.11 4.20 2.30 2.34 2.36 2.37

H2-54.4 12.64 0.1475 2.33 P 6.31 F 86.5 0 13.5 4.23 4.24 4.31 4.27 2.46 2.50 2.51 2.52

H2-58.7 5.05 0.0035 2.56 G 6.98 F 96.6 0.1 3.2 5.85 5.93 5.98 5.98 3.04 3.08 3.12 3.15

H2-62 17.28 0.5302 2.25 W 7.42 C 98.8 0.1 1 4.48 4.48 4.58 4.58 2.51 2.56 2.58 2.60

H2-64 14.86 0.4857 2.34 W 12.44 C 99.3 0.2 0.5 4.78 4.78 4.81 4.83 2.59 2.63 2.66 2.68

H2-64.6 5.77 0.0041 2.54 R 3.63 F 97.5 0.1 2.3 5.04 5.17 5.27 5.42 2.77 2.84 2.89 2.92

H2-68 12.35 0.0884 2.38 P 8.10 C 81.4 0 18.6 4.25 4.25 4.29 4.36 2.70 2.73 2.81 2.85
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Table A1. Cont.

ID
Porosity

(%)
Permeability

(mD)
Density
(gm/cc) Texture BI (%) Burrow

Fill
Mineralogy (%) Compressional Velocity Shear Velocity

Calcite Dolomite Quartz Vp 5 Vp 10 Vp 20 Vp 40 Vs 5 Vs 10 Vs 20 Vs 40

H2_94.1 16 0.5988 2.29 W 9.29 C 97.7 0.1 2.1 4.33 4.39 4.42 4.56 2.53 2.54 2.55 2.61

H2-95.6 16.33 1.0905 2.67 P 10.94 C 98.7 0 1.1 4.34 4.38 4.44 4.50 2.43 2.46 2.48 2.50

H2-97 13.73 0.5532 2.33 M 13.98 C 98.1 0 1.9 4.34 4.36 4.41 4.44 2.64 2.65 2.68 2.66

H2-99.6 19.72 1.3002 2.18 W 27.03 C 97.8 0 2 3.99 3.95 4.04 4.03 2.18 2.21 2.24 2.32

H2-102.8 0.77 0.0036 2.68 F 10.00 F 89.2 0.3 10.5 6.54 6.60 6.54 6.61 3.19 3.27 3.31 3.34

H2-103-Head 2.14 0.0035 2.62 F 14.03 F 98.2 0.1 1.7 6.24 6.35 6.44 6.51 3.23 3.33 3.36 3.39

H2-109.4 6.34 0.0108 2.69 G 7.94 C 75.1 0.1 24.7 5.21 5.24 5.27 5.24 2.83 2.91 2.94 2.95
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