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Abstract: It is well known that temperature is a factor that significantly influences the accuracy of
machine tools. Compensation enables machine errors to be reduced, even for a moderately accurate
machine tool. The first step in compensation is to estimate the thermal characteristics of the machine
part. Thermal models with distributed parameters provide high accuracy of estimation. In these
thermal models, the environmental thermal fluctuations influencing the temperature may be taken
into account as the time-dependent heat-transfer coefficient. The finite elements method facilitates
simulation of the machine system geometry, but is computationally expensive. One approach is to
use the simplified thermal model at an early stage of development, which allows the investigation of
the temperature field and the possible influence of the environment at any point of the model. In this
article, it is proposed to use the spectral method based on the expansion of the temperature function
in a Fourier series to analyze the thermal model distributed along the axial coordinate presented in
PDE form. To maintain the similarity of thermal processes and the model, the dimension parameters
of the model should be chosen such that the Biot and Fourier coefficients would be the same for the
model and the machine part. The proposed method allows the PDE to be represented as an indefinite
system of linear algebraic equations for the coefficients of the Fourier series, which are the amplitudes
of the space–time modes of the temperature function. The solution has the advantage of an analytical
solution because it provides information about the model’s temperature at any point.

Keywords: machine system; distributed system; spectral method; Fourier series; system of linear
algebraic equations

1. Introduction

Constant demand exists for permanent accuracy improvement in machine tool manu-
facturing technology, aiming to eliminate errors caused by different deformations. There
are two approaches to solving this problem. First, all sources of erroneous movements can
be considered to produce perfect equipment with a reasonable assignment of stiffness, and
optimal addition of damping, material selection, and symmetrical structure design [1,2].
In this case, regardless of how well a machine may be designed, the accuracy is limited
because of thermal or other deformations that are not accounted for [3]. Alternatively, it is
possible to analyze erroneous movements and eliminate them with compensation [4]. This
technique allows the accuracy to be increased even for a moderately accurate machine tool.

The causes of errors were analyzed and classified in [5]. The authors distinguished
three sources of errors: geometric and kinematic errors, thermal errors, and cutting force
errors. The most significant factor is the thermal error, which causes 40–70% of machine
tool errors [6]. It is known that up to 75% of overall geometrical errors can be induced by
thermal effects [7]. The sources of thermal influence are listed in [6]: heat caused by the
cutting process; heat generated in the machine system due to friction, engines, etc.; heating
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or cooling provided by the cooling system; and thermal memory from the previous state.
The machine’s moving parts generate heat, which results in an inaccurate position of the
cutting tool end in the thermoplastic machine system. These erroneous movements are
unavoidable and significantly affect the accuracy [5].

Error compensation consists of choosing a model, determining the optimal position of
the sensors, measuring each of the error components, determining the current position of
the instrument and temperature, calculating corrective actions, and reducing the deviation.
The first step in this list is choosing a thermal model and quantitatively estimating the
machine part’s thermal characteristics. Ref. [8] reviews the actual methods of machine tool
modeling: linear polynomial models, neural network models, approaches based on linear
regression analysis, probabilistic methods, frequency domain analysis, and others. The
authors propose the linear state-space representation of the lumped mathematical model.

A promising approach to predicting temperature distribution and estimating thermal
errors is to use models of systems with distributed parameters. Distributed parameter
thermal models have been found to predict temperature distribution and estimate thermal
errors with high accuracy. The heating and cooling devices also may be arranged for
temperature stabilization. The calculation of the temperature error can also be performed
based on measurements and a dynamic model, and used to calculate corrective movements
by applying the actuators.

In most cases, we are interested in improving the main assemblies, for example,
spindle or feed, so we can use the models of these assemblies, which is much less time
consuming [7]. The models of assemblies in PDE form consider their distributed nature
and allow them to be described with higher accuracy.

Heat transfer coefficients may vary with time, and their variations can be random
or periodic [9]. The factors that influence the heat transfer coefficient are the tempera-
ture distribution of the structure, ambient effects, and temperature-dependent material
properties [10]. In the case of preliminary assessment of system behavior based on ana-
lytical solutions, time-varying parameters make the PDE nonstationary and difficult for
analytical analysis. In [11], the influence of the transfer coefficient values on the machine
tool thermal behavior is investigated, and the changing convection regime is observed
using finite element method simulation. It is shown that the machine error depends on the
transfer coefficient.

Different methods of distributed systems analysis exist. For example, in [12–14]
heat transfer process analysis using the finite difference method is considered. In [15–17]
the problem of heat conduction is solved using polynomial approximation. The authors
show that their solution is more accurate than the solution obtained by the finite differ-
ence method. Refs. [18–20] considers the solution of the heat conduction problem by the
perturbation method. The disadvantages of these methods are a very rapid increase in
computational complexity with a rise in the problem dimension and the limited application
area. According to [8], the use of the finite element method is limited for a number of
reasons, including environmental factors such as variable room temperature conditions or
convection coefficients.

The study of methods for analyzing temperature fields based on models in PDE form
allows us to draw the following conclusion: although it is preferable to use a model that is
not overly complicated, this model should consider most of the possible effects. A similar
deduction is beautifully illustrated in [21]. The standard complexes based on the finite
element method facilitate simulation of the spindle geometry, but they are computationally
expensive. It is preferable to have an effective thermal model for analyzing the system
behavior at an early stage of development.

This paper describes an approach for the analysis of a distributed system. It is
proposed to pass from a PDE to an indefinite system of linear algebraic equations for the
coefficients of the Fourier series for the temperature function, using the spectral method [22],
and, in some cases, reduce the number of computational operations. This method allows
investigating the models with the coefficients dependent on time. The proposed method
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has the advantage of analytical solution methods because it provides information about
the model’s temperature at any point. In contrast, numerical methods make it possible to
calculate the temperature only at preselected points.

2. Mathematical Model of the System

The mathematical model of transient heat transfer is based on a boundary value
problem with some restrictions:

1. The spindle bearings are the source of the most active heat generation and heat supply
to the spindle. They are considered in the model as boundary conditions of the
second kind.

2. Heat radiation to the surrounding is ignored.
3. The temperature depends only on the axial spatial variable. It is possible to expand

the model and take into account the dependence of temperature on the radial co-
ordinate [22]. In this case, the mathematical description of the complex shape is
represented as the system of PDEs with the corresponding boundary conditions.
This restriction does not limit the proposed analysis method but greatly simplifies
calculations and allows a graphic result to be obtained.

To ensure the similarity of thermal processes and the model under the third assump-
tion, the dimension parameters of the model should be chosen such that the Biot and
Fourier coefficients are the same for the model and the structure [23].

Thermal model length and spindle length are equal. The following expression allows
calculation of the diameter of the equivalent cylinder used in the model [23]:

d =

k
∑

i=1
D2

i lDi −
m
∑

j=1
d2

j ldj

k
∑

i=1
DilDi +

m
∑

j=1
djldj

, (1)

where k is the number of spindle sections of the same outer diameter, m is the number of
spindle sections of the same inner diameter, Di is the outer diameter of the i-th section, dj is
the inner diameter of the j-th section, lDi, ldj is the section length with the same inner or
outer diameter.

One of the possible spindle configurations is shown in Figure 1. In the case of
D1 = 0.108 m, D2 = 0.145 m, D3 = 0.235 m, D4 = 0.195 m, lD1 = 0.022 m, lD2 = 0.063 m,
lD3 = 0.045 m, lD4 = 0.370 m, d1 = 0.038 m, l1 = 0.500 m, the calculations by Expression (1)
give d = 0.150 m.
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Under the mentioned restrictions, the mathematical model of heat distribution is a
heat-conduction equation [23]:

∂T(x,t)
∂t = a ∂2T(x,t)

∂x2 − h(t)T(x, t)
h(t) = 4α(t)

λd a, x ∈ (0, L), t ∈ (0,t∗)
(2)

with boundary conditions of the second kind:

∂T(x, t)
∂x

∣∣∣∣
x=0

= − q1(t)
Fλ

,
∂T(x, t)

∂x

∣∣∣∣
x=L

=
q2(t)
Fλ

, t ∈ [0,t∗] , (3)

and the initial condition:
T(x, t)|t=0 = 0, x ∈ [0, L] . (4)

where T is the temperature, t is the time, x is the spatial variable, L is the length of the
model, a is the thermal diffusivity, α(t) is the time-dependent heat-transfer coefficient, λ
is the thermal conductivity, q1, q2 are heat flux in the rear and front supports, F is the
cross-sectional area of a cylinder, d is the diameter of the model.

The representation of the Equations (2)–(4) in the dimensionless form:

∂θ(ξ,τ)
∂τ = a·t∗

L2
∂2θ(ξ,τ)

∂ξ2 − k(τ)θ(ξ, τ) ,

ξ ∈ (0, 1), τ ∈ (0, 1)
(5)

where θ = T/T∗, ξ = x/L, τ = t/t∗ are the dimensionless variables t∗, T∗ are the time
and temperature scaling factors, κ(τ) = ht∗.

Boundary conditions:

∂θ(ξ,τ)
∂ξ

∣∣∣
ξ=0

= − LQ
FλT∗ ρ1(τ) ,

∂θ(ξ,τ)
∂ξ

∣∣∣
ξ=1

= LQ
FλT∗ ρ2(τ) ,

τ ∈ [0, 1]

(6)

where ρ1(τ) = q1/Q, ρ2(τ) = q2/Q are the relative heat fluxes, Q is the scaling factor.
Initial condition:

θ(ξ, 0) = 0, ξ ∈ [0, 1] (7)

In [23], the solution of Equation (5) with boundary conditions of Equation (6) and
k(τ) = const is obtained by the operational calculus in the form of a series for the case when
ρ1(τ), ρ2(τ) are constants or change exponentially over time. The choice of the exponential
functions is explained by the changing in the value of the clearance (interference). As a
result, the amount of generated heat also changes over time, close to an exponential law.

Consider the case when the heat fluxes at the boundaries change exponentially:

q1(t) = q1 inf
(
1− e−γ1t), q2(t) = q2 inf

(
1− e−γ2t) , (8)

that is:
ρ1(τ) =

q1 inf
Q

(
1− e−(γ1t∗)τ

)
,

ρ2(τ) =
q2 inf

Q

(
1− e−(γ2t∗)τ

) (9)

Note that, in solving the problem by the spectral method, the boundary condition
functions do not necessarily have to change exponentially.
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3. The Spectral Form of the Mathematical Model

We obtain the spectral form representation of the system (5)–(7). Representing the
function θ(ξ, τ) in the form of a Fourier series in the system of orthonormal differential
functions {P1(h1, ξ)}, {P2(h2, τ)}:

θ(ξ, τ) =
∞

∑
h1

∞

∑
h2

Φθ(h1, h2)P1(h1, ξ)P2(h2, τ) (10)

Representing the function θ(ξ, τ) with zero initial conditions (Equation (7)) in the form:

θ(ξ, τ) = θ0(ξ, τ) + θ(ξ, τ)|ξ=0−1(0− ξ) + θ(ξ, τ)|ξ=1+1(ξ − 1), (11)

where the function θ0(ξ,τ) coincides with the function θ(ξ,τ) in the domain ξ ∈ (0, 1), τ ∈
(0, 1); θ(ξ, τ)|ξ=0− , θ(ξ, τ)|ξ=1+ are amplitudes of step functions, operating on the bound-
aries ξ = 0− and ξ = 1+, respectively.

The first-time derivative of Function (11) is determined by the expression [24]:

∂θ(ξ, τ)

∂τ
=

∂θ0(ξ, τ)

∂τ
+

∂θ0
0(τ)

∂τ
1(0− ξ) +

∂θ0
1(τ)

∂τ
1(ξ − 1), (12)

where θ0
0(τ) = θ(ξ, τ)|ξ=0− , θ0

1(τ) = θ(ξ, τ)|ξ=1+ .
To provide the correct expression for the second spatial derivative, the first spatial

derivative is represented in the form:

∂θ(ξ, τ)
∂ξ =

(
∂θ(ξ, τ)

∂ξ

)
0
+ ∂θ(ξ, τ)

∂ξ

∣∣∣
ξ=0−

1(0− ξ) +
∂θ(ξ, τ)

∂ξ

∣∣∣
ξ=0+

1(ξ − 1)+

+ θ(ξ, τ)|ξ=0−
∂ 1 (0−ξ)

∂ξ + θ(ξ, τ)|ξ=1+
∂ 1 (ξ−1)

∂ξ ,
(13)

where
(

∂θ(ξ, τ)
∂ξ

)
0

coincides with the function ∂θ(ξ, τ)
∂ξ in the domain ξ ∈ (0, 1), τ ∈ (0, 1).

Thus, the second spatial derivative has the form:

∂2θ(ξ, τ)
∂ξ2 =

(
∂2θ(ξ, τ)

∂ξ2

)
0
+ θ1

0(τ)δ(0− ξ) + θ1
1(τ)δ(ξ − 1)+

+θ0
0(τ)

∂ δ(0−ξ)
∂ξ + θ0

1(τ)
∂ δ (ξ−1)

∂ξ ,
(14)

where θ1
0(τ) =

∂θ(ξ, τ)
∂ξ

∣∣∣
ξ=0−

, θ1
1(τ) =

∂θ(ξ, τ)
∂ξ

∣∣∣
ξ=1+

are the amplitudes of the jumps of the first

derivative of the functions operating on the boundaries ξ = 0− and ξ = 1+, respectively.
When we have the boundary conditions of the second kind, Expression (14) is trans-

formed as:
∂2θ(ξ, τ)

∂ξ2 =
∂2θ0(ξ, τ)

∂ξ2 + θ1
0(τ)δ(0− ξ) + θ1

1(τ)δ(ξ − 1) . (15)

For each of the components of Equation (5), the spectral form is obtained considering
Expressions (12) and (15).

According to [22], the spectral characteristic of the derivative ∂2θ(ξ,τ)
∂ξ2 in the case of the

boundary conditions of the second kind has the form:

Sp
[

∂2θ(ξ, τ)

∂ξ2

]
ξτ

= P20Φθ + Γ10
20 + Γ11

20 , (16)

where Φθ ∈ Rn1n2(n1, n2 = 1, ∞) is the vector of the spectral characteristic with respect to
the spatial and temporal variables, the index i of this vector is calculated as i = (h1 − 1)n2 +
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h2
(
h1 = 1, n1, h2 = 1, n2

)
; P20 is the operating differentiation matrix of second-order for the

variable ξ, defined as the tensor product:

P20 = Pξ
2 ⊗ In2 (17)

where Pξ
2 is the operating differentiation n1 × n1 matrix of second-order

(
n1 = 1, ∞

)
, with

the elements calculated by the expression:

Pξ
2

(
h1, h1

)
=

1∫
0

P
(

h1, ξ
)

∂2P(h1,ξ)
∂ξ2 dξ,

h1, h1 = 1, n1, n1 = 1, ∞;
(18)

In2 is the identity n2 × n2 matrix
(
n2 = 1, ∞

)
; Γ10

20, Γ11
20 are vectors of boundary condi-

tions of the second kind, determined by the expressions:

Γ10
20 =

⌊
−P(ξ)|ξ=0 ⊗ In2

⌋
Φθ1

0
,

Γ11
20 =

⌊
P(ξ)|ξ=1 ⊗ In2

⌋
Φθ1

1
.

(19)

P(ξ) is the vector composed of functions of the System (9); Φθ1
0
, Φθ1

1
∈ Rn1 , n1 = 1, ∞

are vectors of spectral characteristics of the functions θ1
0(τ), θ1

1(τ).

The spectral characteristic of the derivative ∂θ(ξ,τ)
∂τ with zero initial conditions has the

form [22]:

Sp
[

∂θ(ξ, τ)

∂τ

]
ξτ

= P01Φθ , (20)

where:
P01 = In1 ⊗ Pτ

1 , (21)

Pτ
1 is the operating differentiation n2 × n2 matrix of the first-order

(
n2 = 1, ∞

)
, with the

elements calculated by the expression:

Pτ
1

(
h2, h2

)
=

1∫
0

P2

(
h2, τ

)
∂P2(h2,τ)

∂τ dτ,

h2, h2 = 1, n2, n2 = 1, ∞ .
(22)

Let us note that we have only one term in Expression (20) of the time derivative’s
spectral characteristic which corresponds to the spectral characteristic of ∂θ0(ξ,τ)

∂τ . The

spectral characteristics of the terms ∂θ0
0(τ)
∂τ 1(0− ξ), ∂θ0

1(τ)
∂τ 1(ξ − 1) are equal to zero.

The spectral characteristic of the term k(τ)θ(ξ, τ) has the form [22]:

Sp[k(τ) θ(ξ, τ)]ξτ = PkΦθ , (23)

where Pk is the operating matrix of the factor k(τ), defined as the tensor product:

Pk = In1 ⊗ Pτ
k , (24)

Pτ
k is the n2 × n2-matrix

(
n2 = 1, ∞

)
, with the elements calculated by the expression:

Pτ
k

(
h2, h2

)
=

1∫
0

k(τ)P2

(
h2, τ

)
P2(h2, τ)dτ,

h2, h2 = 1, n2, n2 = 1, ∞ .
(25)
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Thus, we have an infinite system of algebraic equations written for the vector of the
space-time spectral characteristic Φθ :

P01Φθ =
at∗

L2

(
P20Φθ + Γ10

01 + Γ11
01

)
− PkΦθ . (26)

System (26) can be represented as:

AΦθ = b,

A = P01 − at∗
L2 P20 + Pk,

b = at∗
L2

(
Γ10

01 + Γ11
01
)

.

(27)

The solution of this system is determined by the expression:

Φθ = A−1b. (28)

The reverse transition to the function θ(ξ,τ) is carried out using the Fourier series by
Expression (10).

4. Example

Let us calculate matrices of the spectral representation in Equation (27) for the System
(2)–(4) with parameters L = 0.7 m, d = 0.15 m, F = 1.18·10−2 m2, a = 1.26·10−5 m2/s,
α = 14.54 W/

(
m2·K

)
, λ = 46.52 W/(m·K), q1(t) = 34.89

(
1− e−3600t)W, q2(t) = 52.34

(1− e−3600t)W [23]. As scaling factors, we choose t∗ = 105 s, T∗ = 1 K. Then ξ = 1.43x,
τ = 10−5t.

Equation (5) of the system in dimensionless form is:

∂θ(ξ,τ)
∂τ = 2.57 ∂2θ(ξ,τ)

∂ξ2 − 10.5 θ(ξ, τ),

ξ ∈ (0, 1), τ ∈ (0, 1)
(29)

The boundary conditions (Equation (6)) are in the form:

∂θ(ξ,τ)
∂ξ

∣∣∣
ξ=0

= −29.71
(

1− e−3.6·108τ
)

,

∂θ(ξ,τ)
∂ξ

∣∣∣
ξ=1

= 44.56
(

1− e−3.6·108τ
)

,

τ ∈ [0, 1]

(30)

The initial condition:
θ(ξ, 0) = 0, ξ ∈ [0, 1] (31)

As a decomposition system in the variable ξ, we use the system of functions:

P1(h1, ξ) =
{

1
√

2 cos(πξ)
√

2 cos(2πξ) . . .
}

(32)

orthonormal on the interval ξ ∈ [0, 1]. As a decomposition system in the variable τ, we
use the system of functions:

P2(h2, τ) =
{ √

2 sin πτ
2

√
2 sin 3πτ

2

√
2 sin 5πτ

2 . . .
}

, (33)

orthonormal on the interval τ ∈ [0, 1]. The choice of expansion functions is determined by
the intended form of decision and by the fact that vectors of boundary conditions of the
second kind (Equation (19)) should be non-zero.
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The operating differentiation matrices Pξ
2 , Pτ

1 computed by the Expressions (17) and (21),
respectively, for the selected decomposition Systems (32), (33), are:

Pξ
2 = diag

{
0, −9.87, −39.48, −88.83, −157.91, . . .

}
, (34)

Pτ
1 =



1.00 −3.00 1.67 −2.33 1.80 · · ·
1.00 1.00 −5.00 1.40 −3.00 · · ·
0.33 3.00 1.00 −7.00 1.29 · · ·
0.33 0.60 5.00 1.00 −9.00 · · ·
0.20 1.00 0.71 7.00 1.00 · · ·

...
...

...
...

...
. . .


. (35)

In the case of constant heat transfer coefficient, the operating matrix Pτ
k is defined as

Pτ
κ = ht∗E. We obtain vectors Γ10

01, Γ11
01 by Expression (19). The matrices of the composed

System (27) are determined by the calculated matrices Pτ
1 , Pξ

2 and are not shown due to
their high dimension. After computing the spectral characteristic vector Φθ , according to
Equation (28) it is possible to construct a function θ(ξ,τ) by the expression:

θ(ξ, τ) =
n1

∑
h1=1

n2

∑
h2=1

Φθ((h1 − 1)n2 + h2)P1(h1, ξ)P2(h2, τ) . (36)

The number of terms in Equation (36) should provide the required accuracy estimated
by the expression:

∆ =

1∫
0

1∫
0

[
θ(ξ, τ)− θ(ξ, τ)

]2dτdξ

1∫
0

1∫
0

θ
2
(ξ, τ)dτdξ

, (37)

where θ ¯(ξ, τ) is the exact solution,θ(ξ, τ) is the solution in the form of Equation (36).
In general, the exact solution is unknown but we can use the analytical solution defined

for some special cases. For example, in the case of a constant heat transfer coefficient, we
can use the expression for the analytical solution θ(ξ, τ) defined via Green’s function [25]:

θ(ξ, τ) = a
LT∗

{
∞
∑

n=1
2e−(h+

an2π2

L2 )t∗τ cos(nπξ)J(n, τ) + e−ht∗τ J(0, τ)

}
,

J(n, τ) =
τ∫
0

e(h+
an2π2

L2 )t∗η
(
− Q

Fλ ρ1(η) + (−1)n Q
Fλ ρ2(η)

)
dη.

(38)

The accuracy of the solution of Equation (36) with n1 = n2 = 7 and 9 terms of
Equation (38) taken into account: ∆ ≈ 0.001. The simulation results in MATLAB for
n1 = n2 = 7 and constant heat transfer coefficient are shown in Figure 2.

Let us consider the case when α(t) is time variable:

α(t) = 5.82 + 8.73 ·


2t, t ∈ (0, 0.5t∗] ,

2(1− t), t ∈ (0.5t∗, 0.75t∗] ,
0.5, t ∈ (0.75t∗, t∗) .

(39)
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In this case the operating matrix Pτ
k is defined as:

Pτ
k =



8.12 0.58 −0.72 −0.40 0.25 · · ·
0.58 7.99 −0.53 −0.87 −0.14 · · ·
−0.72 −0.53 7.83 −0.27 −0.95 · · ·
−0.40 −0.87 −0.27 7.75 −0.37 · · ·
0.25 −0.14 −0.95 −0.37 7.75 · · ·

...
...

...
...

...
. . .


. (40)
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Figure 2. Temperature distribution graph is case of constant α.

The simulation results for n1 = n2 = 7 and variable heat transfer coefficient are shown
in Figure 3.
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This method is applicable for the heat conduction in case of two or three spatial vari-
ables, with mixed type boundary conditions and a time-dependent heat transfer coefficient.
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5. Conclusions

For preliminary analysis of a temperature field in a machine assembly, taking into
account the environmental thermal fluctuations surrounding a machine tool, the thermal
model in the PDE form was used. This model describes the heat transfer in the spindle by
the PDE, where the temperature depends only on the axial spatial variable. The similarity
of the process and the model is achieved by choosing the generalized diameter, such that
the Biot and Fourier coefficients would be the same for the model and the structure. The
spindle bearings are considered in the model as boundary conditions of the second kind.
The environmental thermal fluctuations are described by the time-dependent heat transfer
coefficient in the PDE.

Based on the spectral method, the decomposition of the temperature function in a
Fourier series for the axial coordinate and time allows representing the PDE as an infinite
system of linear algebraic equations. The set of variables of this system represents the
amplitudes of spatial modes. This solution has the following advantages: the temperature
can be calculated at any point, as in analytical results; and it is possible to evaluate the
influence of the environment by adding time dependency of the heat transfer coefficient.
The accuracy of the obtained solution is investigated in the case of the constant heat
transfer coefficient.

In the case of the modeling of spindle temperature, it is essential to first check the
maximum spindle temperature, which characterizes the operation of the spindle bearings.
The method is applicable for preliminary analysis of the thermal characteristics for other
basic machine parts. The proposed method can be used for temperature field analysis in
2D and 3D constructions. An example of solving analysis and synthesis problems for a 2D
distributed object is represented in [22].
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