
applied
sciences

Article

Low-Latency Bit-Accurate Architecture for Configurable
Precision Floating-Point Division

Jincheng Xia 1, Wenjia Fu 1, Ming Liu 2,* and Mingjiang Wang 1,*

����������
�������

Citation: Xia, J.; Fu, W.; Liu, M.;

Wang, M. Low-Latency Bit-Accurate

Architecture for Configurable

Precision Floating-Point Division.

Appl. Sci. 2021, 11, 4988. https://

doi.org/10.3390/app11114988

Academic Editor: Andrea Prati

Received: 21 April 2021

Accepted: 26 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shenzhen Key Laboratory of IoT Key Technology, Harbin Institute of Technology, Shenzhen 518000, China;
19S152115@stu.hit.edu.cn (J.X.); 19S152116@stu.hit.edu.cn (W.F.)

2 School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518000, China
* Correspondence: lium@sziit.edu.cn or lm_hit_1986@126.com (M.L.); mjwang@hit.edu.cn (M.W.);

Tel.: +86-0755-8922-6908 (M.L.); +86-0755-8655-5455 (M.W.)

Abstract: Floating-point division is indispensable and becoming increasingly important in many
modern applications. To improve speed performance of floating-point division in actual micro-
processors, this paper proposes a low-latency architecture with a multi-precision architecture
for floating-point division which will meet the IEEE-754 standard. There are three parts in the
floating-point division design: pre-configuration, mantissa division, and quotient normalization.
In the part of mantissa division, based on the fast division algorithm, a Predict–Correct algo-
rithm is employed which brings about more partial quotient bits per cycle without consuming
too much circuit area. Detailed analysis is presented to support the guaranteed accuracy per cy-
cle with no restriction to specific parameters. In the synthesis using TSMC, 90 nm standard cell
library, the results show that the proposed architecture has ≈63.6% latency, ≈30.23% total time
(latency × period), ≈31.8% total energy (power × latency × period), and ≈44.6% efficient average
energy (power × latency × period/efficient length) overhead over the latest floating-point divi-
sion structure. In terms of latency, the proposed division architecture is much faster than several
classic processors.

Keywords: arithmetic; floating-point division; low latency; hardware configurable architecture

1. Introduction

Modern applications comprise several floating-point (FP) operations including FP
addition, multiplication, and division. In recent FP units, emphasis has been placed
on designing ever-faster adders and multipliers, with division receiving less attention.
Typically, the range for FP addition latency is two to four cycles, and the range for FP
multiplication is two to eight cycles [1]. In contrast, the latency for double precision division
in modern floating point units ranges from less than eight cycles to over 60 cycles [2].

Literature exists describing division algorithms, of which digit recurrence, functional
iteration, variable latency, very high radix, and look-up table are five typical division
implementations [3].

Digit-recurrence algorithm is based on iterative subtraction, including restoring [4],
non-restoring [5], and Sweeney-Robertson-Tocher (radix-n SRT) algorithm (SRT is in fact
one of non-restoring algorithms) [6]. It works digit by-digit with an iterative-type subtrac-
tion and produces a quotient in sequence [7]. According to [8], digit-recurrence algorithm
of low radix is likely to cause long latency when encountering high-precision calculation
due to its linear convergence speed. In contrast, high-radix digit-recurrence algorithm can
reduce latency at the expense of multifold area consumption.

Functional iteration algorithm is mainly comprised of Newton–Raphson [9,10], Gold-
schmidt [11,12], Series expansion [13], and Taylor series algorithm [14,15]. A functional
iteration divider computes the quotient of division by prediction; thus, based on mul-
tiplication instead of subtraction, it can give more than one digit of the quotient in one

Appl. Sci. 2021, 11, 4988. https://doi.org/10.3390/app11114988 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7093-3031
https://www.mdpi.com/article/10.3390/app11114988?type=check_update&version=1
https://doi.org/10.3390/app11114988
https://doi.org/10.3390/app11114988
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114988
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4988 2 of 22

iteration, which ultimately reduces the iterations greatly [8,9,12]. According to [8], since
they have square convergence, the faster convergence speed brings low delay. However,
higher hardware requirements are put forwards at the same time.

The Digital Equipment Corporation (DEC) Alpha 21164 [16] is one of the best examples
of variable latency class algorithm implementation. It is found in [17] that the average
number of quotient bits retired in one iteration varies from 2 to 3 depending on the stream
of bits in the partial remainder. There are certain ways in [17] to provide a variable
conversion time in variable latency algorithm: self-timing, result cache, and speculation of
quotient digit.

Generally, a divider retiring more than 10 quotient digits in one iteration qualifies
as a very high-radix algorithm [2,18,19]. As with low-radix SRT algorithm, a very high-
radix algorithm also uses a look-up table. In [20], the main difference between SRT and
very high-radix algorithm is that it has a more complex divisor multiple processing and
quotient-digit selection hardware, which increases the cycle time and area.

A look-up table algorithm [21–25] can be used along with digit recurrence, functional
iterative, and very high-radix algorithms. Take SRT radix-n division algorithm, the approxi-
mation can be achieved by a look-up table that can provide a faster option at the expense of
an increased area [26,27]. Additionally, the look-up table area also increases as the number
of bits increases.

Our research focuses on the architecture design of configurable precision FP arithmetic
units. Several papers have proposed FP architectures on the idea of multi-precision FP
arithmetic processing. Most prior works are focused on the adder architectures [28–32] and
multiplier architectures [33–36].

This paper focuses on the design of configurable multi-precision FP divider. The
proposed architecture is based on very high-radix algorithm [18], which can work out
much more than 10-bit quotient in one clock cycle. The proposed architecture is de-
signed for normal as well as subnormal computational support, which also includes the
exceptional case handling and processing. The major building blocks (like PRECONFIG,
MANTISSA_DIVIDE, and NORMALIZE) are designed and optimized for the low-latency
and bit-accurate purpose. Some techniques are applied in the hardware architecture design:

• Leading Zero Detection module to transfer subnormal inputs; Exception Judgement
module to check exception conditions;

• Finite State Machine module to reduce the number of multipliers and to perform basic
fast division steps;

• Quotient Selection Unit module to finish the critical part of our proposed Predict–
Correct algorithm and to gain the most approximative 32-bit quotient per cycle;

• Rounding Unit module to ensure the accuracy of unit at last place of quotient.

The remaining paper is structured as follows. In Section 2, two classical division
implementations employing very high-radix algorithm are reviewed and higher radix
division implementation is discussed. In Section 3, a novel Predict–Correct algorithm
based on fast division and its mathematical arguments are presented. In Section 4, general
architecture of the proposed multi-precision FP division and its main techniques are
detailed. In Section 5, the results of our hardware implementation are reported and
compared with prior works. Finally, in Section 6, conclusion is drawn.

2. Background

Very high-radix class algorithm is similar to non-restoring digit-recurrence algorithm.
Their differences lie in hardware and logic arrangements for quotient selection and partial
remainder generation. A simple basic schematic of very high-radix class algorithm is
presented in Figure 1.

Proposed by Wong and Flynn, fast division [18] is the earliest high-radix algorithm.
Fast division requires hardware with at least one look-up table of size 2m−1 × m bits and
three multipliers, a carrying assimilation multiplier of size (m + 1) × n for the divisor’s
initial multiplications and a carry-save multiplier of size (m + 1) × m for the quotient

Appl. Sci. 2021, 11, 4988 3 of 22

segments computation. As for the basic version of fast division, the look-up table has
m = 11, i.e., 2(11−1) = 1024 entries, each 11 bits wide, so in total, 11 K bits are required in
the look-up table. As for the advanced version, 736 K bits are required in the look-up table
when m = 16.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 23

LUT Precomputations

divisor dividend

2:1 MUX

Mult/MUX

CSA

Quotient SEL

Figure 1. Basic layout of very high-radix class algorithm.

Proposed by Wong and Flynn, fast division [18] is the earliest high-radix algorithm.
Fast division requires hardware with at least one look-up table of size 2m–1 × m bits and
three multipliers, a carrying assimilation multiplier of size (m + 1) × n for the divisor’s
initial multiplications and a carry-save multiplier of size (m + 1) × m for the quotient seg-
ments computation. As for the basic version of fast division, the look-up table has m = 11,
i.e., 2(11−1) = 1024 entries, each 11 bits wide, so in total, 11K bits are required in the look-up
table. As for the advanced version, 736K bits are required in the look-up table when m =
16.

The high-radix algorithm proposed by Lang and Nannarelli [19] shows the construc-
tion of a radix-2K divider for implementing a radix-10 divider whose quotient digit is de-
composed into two parts, one in radix-5 and the other in radix-2. In radix-5, the quotient
digit is represented as values {−2, −1, 0, 1, 2}, requiring three multipliers. Radix-2 is used
to perform division on the most significant slice. It uses an estimation technique in the
quotient selection component, which requires the use of a redundant digit format.

In brief, high-radix division algorithm works with a scaling dividend and divisor by
correct initial approximation of the reciprocal, followed by quotient selection logic with a
multiplier and subtraction. Beyond this, high-radix dividers are almost the same as SRT-
based radix dividers.

When it comes to ways to implement higher radix dividers, prior works focus on
enhancing the complexity and criticality of SRT-based radix dividers [37,38]. Moreover, a
combination of two or more alternatives together could be another way. Many works are
going on to provide different standpoints for high-radix dividers. Use of different look-
up tables along with quotient-digit selection logic look-up table [39–41], speculating quo-
tient digit and using arithmetic functions to multiplicative iterations rather than subtrac-
tive iterations [42], pre-scaling operands [43–45], using Fourier division [46,47], using al-
ternative digit codes such as binary-coded decimal (BCD) digits instead of decimal and
basic binary digits [48], cascading multiple stages of lower radix dividers [49], overlap-
ping two or more stages of low radix [50,51], a truncated schema of exact cell binary
shifted adder array [52–54], on-line serial and pipelined operand division [55], parallel
implementation of the low-radix dividers [8], array implementation [56], these are some
of the possible ways applicable for high-radix dividers.

3. Predict–Correct Algorithm for Division
Inspired by fast division method [18], this paper proposes a Predict–Correct algo-

rithm which will increase iteration speed by bringing about n more quotient bits than fast
division without consuming many areas.

Figure 1. Basic layout of very high-radix class algorithm.

The high-radix algorithm proposed by Lang and Nannarelli [19] shows the construc-
tion of a radix-2K divider for implementing a radix-10 divider whose quotient digit is
decomposed into two parts, one in radix-5 and the other in radix-2. In radix-5, the quotient
digit is represented as values {−2, −1, 0, 1, 2}, requiring three multipliers. Radix-2 is used
to perform division on the most significant slice. It uses an estimation technique in the
quotient selection component, which requires the use of a redundant digit format.

In brief, high-radix division algorithm works with a scaling dividend and divisor by
correct initial approximation of the reciprocal, followed by quotient selection logic with
a multiplier and subtraction. Beyond this, high-radix dividers are almost the same as
SRT-based radix dividers.

When it comes to ways to implement higher radix dividers, prior works focus on
enhancing the complexity and criticality of SRT-based radix dividers [37,38]. Moreover, a
combination of two or more alternatives together could be another way. Many works are
going on to provide different standpoints for high-radix dividers. Use of different look-up
tables along with quotient-digit selection logic look-up table [39–41], speculating quotient
digit and using arithmetic functions to multiplicative iterations rather than subtractive
iterations [42], pre-scaling operands [43–45], using Fourier division [46,47], using alterna-
tive digit codes such as binary-coded decimal (BCD) digits instead of decimal and basic
binary digits [48], cascading multiple stages of lower radix dividers [49], overlapping two
or more stages of low radix [50,51], a truncated schema of exact cell binary shifted adder
array [52–54], on-line serial and pipelined operand division [55], parallel implementation
of the low-radix dividers [8], array implementation [56], these are some of the possible
ways applicable for high-radix dividers.

3. Predict–Correct Algorithm for Division

Inspired by fast division method [18], this paper proposes a Predict–Correct algorithm
which will increase iteration speed by bringing about n more quotient bits than fast division
without consuming many areas.

Our proposed division is similar to fast division in that both use multiplication for
divisor multiple formation and look-up tables to obtain an initial approximation to the
reciprocal of divisor. Their differences lie in the number and type of subsequent operations
used in each cycle and the technique used for quotient-digit selection.

Appl. Sci. 2021, 11, 4988 4 of 22

3.1. Predict–Correct Algorithm with Accurate Quotient Approximation

In the Predict–Correct algorithm, truncated versions of the integer dividend X and
divisor Y are used, denoted Xh and Yh. Xh is defined as the high-order p bits of X extended
with 0s to obtain a q-bit number, i.e., Xh = X(q−1) . . . X(q−p)00 . . . 00 where the number of
0 in Xh is q − p. Similarly, Yh is defined as the high-order m bits of Y extended with 1s to
obtain a q-bit number, i.e., Yh = Y(q−1) . . . Y(q−m)11 . . . 11 where the number of 1 in Yh is
q − m.

Due to the definitions, Xh is always less than or equal to X, and Yh is always greater
than or equal to Y. Let ∆X = X − Xh and ∆Y = Y − Yh. The deltas ∆X and ∆Y are the
adjustments needed to obtain the true X and Y from Xh and Yh. This implies that ∆X is
always nonnegative and ∆Y nonpositive. The fraction 1/Yh is always less than or equal to
1/Y, and, therefore, Xh/Yh is always less than or equal to X/Y.

The Taylor series approximation equation for 1/Y about Y = Yh is:

B = 1/Yh − ∆Y/Yh
2 + (∆Y)2/Yh

3 − (∆Y)3/Yh
4 + (∆Y)4/Yh

5 + · · · + (−1)t−1 (∆Y)t−1/Yh
t + · · · . (1)

The Predict–Correct algorithm (Algorithm 1) is conceptually summarized as follows.

Algorithm 1 Predict–Correct Algorithm.

1: Set Q and j to 0 initially.
2: With index of the leading m bits of Y, look b1 bits wide approximation of 1/Yh up in the table
G1.
Similarly, look b2 bits wide approximation of 1/Yh

2 up in the table G2, . . . , look bt bits wide
approximation of 1/Yh

t up in the table Gt.
Table sizes are bi = (m × t − t) + d log2te− (m × I − m − i), i = 1, 2, . . . , t, where t is the number of
the used leading terms of (1). The relationship of parameter p and m is p = m × t − t + 2.
3: Compute an approximation B to 1/Y using the leading t terms of (1):
B = 1/Yh − ∆Y/Yh

2 + (∆Y)2/Yh
3 − . . . + (−1)t−1 (∆Y)t−1/Yh

t. Truncate B to the most significant
m × t − t + 4 bits, which reduces the sizing of multipliers.
4: Compute intermediate value P = Xh × B and round P to m × t − t − 1 bits to obtain P′.
5: List 2n kinds of (m × t − t + n − 1)-bit quotients that combinate the (m × t − t − 1)-bit
intermediate value P′ with subsequent 2n kinds of n-bit predictive values ranging from 00 . . . 0 to
11 . . . 1.
6: Pick up the most approximative (m × t − t + n − 1)-bit quotient Qa from the 2n kinds of
(m × t − t + n − 1)-bit quotients by multiplication and comparison.
7: Calculate j′ = j + m × t−t + n − 1.
Update j with j′.
8: New dividend is X′ = X − Qa × Y.
New quotient is Q′ = Q + Qa × 1/2(q−j).
9: Left-shift X′ by m × t − t + n − 1 bits.
10: Update Q with Q′.
Update X with X′.
11: Repeat Step 4 through 10 until j ≥ q.
12: Final quotient is Q = Q(q−1) . . . Q0Q−1 . . . Q−e = Qh + Ql where Qh = Q(q−1) . . . Q0,
Ql = Q−1 . . . Q−e and e is the number of redundant bits of the last cycle in Step 11.

In the Predict–Correct algorithm, Parameter t represents the number of the used
leading terms of (1). For instance, if t = 2, the approximation to 1/Y is B = 1/Yh − ∆Y/Yh

2;
if t = 3, the approximation to 1/Y is B = 1/Yh − ∆Y/Yh

2 + (∆Y)2/Yh
3. Parameter m

represents the digits number of the index of look-up table G1, G2, . . . , Gt. m plays a crucial
role in the sizes of look-up table G1, G2, . . . , Gt. Moreover, the data width of entries in
look-up table Gi is bi = (m × t − t) + dlog2te − (m × i − m − i), i = 1, 2, . . . , t. Parameter n
represents the number of additional digits of quotient owing to Step 5 and 6 per iteration.
For instance, if n = 2, subsequent 2n kinds of (m × t − t + n − 1)-bit possible quotients are
P′-00, P′-01, P′-10 and P′-11, where the most approximative quotient Qa is picked up from
these possible quotients via quotient selection in Step 6.

Appl. Sci. 2021, 11, 4988 5 of 22

To help to understand the abovementioned algorithm, an example of fixed-point
division using the proposed Predict–Correct algorithm (Algorithm 2) is demonstrated
as follows.

Algorithm 2 Example of Fixed-point division using Predict–Correct Algorithm.

X = (1 0010 0011 1110 0110 1100 0111 0101 1011)2,
Y = (1 1101 0101 1011 0010 1101 1110 0101 0010)2.
Set q = 33, p = 20, m = 7, t = 3, n = 3.
Then b1 = 21, b2 = 15, b3 = 9.
Xh = (1 0010 0011 1110 0110 1100 0000 0000 0000)2,
Yh = (1 1101 0111 1111 1111 1111 1111 1111 1111)2,
∆Y = (−0 0000 0010 0100 1101 0010 0001 1010 1101)2.
B = 1/Yh − ∆Y/Yh

2 + (∆Y)2/Yh
3 and B is to be truncated to 22 bits.

1: Q = 0, j = 0.
2: 1/Yh = (0 1000 1011 1000 0011 0011)2, 1/Yh

2 = (0 0100 1100 0000 100)2,
1/Yh

3 = (0 0010 1001)2.
3: B = (0 1000 1011 1000 0111 0001 1)2.
4: P = (0 1001 1111 0001 1000 0101 0100 0100 1100 1110 0010)2,
and then P′ = (0 1001 1111 0001 1000)2.
5: 8 kinds of 20-bit possible quotients are:
(0 1001 1111 0001 1000 000)2
(0 1001 1111 0001 1000 001)2
(0 1001 1111 0001 1000 010)2
(0 1001 1111 0001 1000 011)2
(0 1001 1111 0001 1000 100)2
(0 1001 1111 0001 1000 101)2
(0 1001 1111 0001 1000 110)2
(0 1001 1111 0001 1000 111)2
6: Qa = (0 1001 1111 0001 1000 010)2.
7: j′ = 20 and Update j with j′.
8: X′ = (0000 0000 0000 0000 0000 1100 0100 0101 0010 0000 1010 1110 1110 0)2,
Q′ = (0 1001 1111 0001 1000 010)2.
9: Left-shift X′ by 20 bits.
10: Update Q and X with Q′ and X′ respectively.
11: Since j < q, repeat Step 4 through 10.
4′: P = (1101 0110 0000 0000 0011 1111 0100 1011 0110 0000)2
and then P′ = (1101 0110 0000 0000 0)2.
5′: 8 kinds of 20-bit possible quotients are:
(1101 0110 0000 0000 0 000)2
(1101 0110 0000 0000 0 001)2
(1101 0110 0000 0000 0 010)2
(1101 0110 0000 0000 0 011)2
(1101 0110 0000 0000 0 100)2
(1101 0110 0000 0000 0 101)2
(1101 0110 0000 0000 0 110)2
(1101 0110 0000 0000 0 111)2
6′: Qa = (1101 0110 0000 0000 0 100)2.
7′: j′ = 40 and Update j with j′.
8′: X′ = (0000 0000 0000 0000 0000 0110 1010 0101 1010 1111 0001 1010 1110 0)2,
Q′ = (0 1001 1111 0001 1000 0101 1010 1100 0000 0000 100)2.
9′: Left-shift X′ by 20 bits.
10′: Update Q and X with Q′ and X′ respectively.
11′: Since j > q, stop the iteration.
13: Final quotient is Q = Qh + Ql where Qh =(0 1001 1111 0001 1000 0101 1010 1100 0000)2,
Ql = (0000 100)2.

Appl. Sci. 2021, 11, 4988 6 of 22

3.2. Guaranteed Bits per Cycle Using Predict–Correct Algorithm

There are three sources of inaccuracy affecting the approximation B ≈ 1/Y. Define the
source by B = 1/Y− Rb − Rc − Rd. Rb represents an error due to truncating the Taylor series
after t terms. Since the truncated terms in the series are all nonnegative, Rb is nonnegative.
Rc represents the error in using look-up table with finite width words to calculate B. As
tables are rounded down, Rc is always nonnegative. Rd represents the error in truncating
the arithmetic used to calculate B.

To obtain the maximal value of X, Rb, Rc, and Rd should be accurately bounded.
The (w + 1)th term of the Taylor series for B is Bw + 1 = (−∆Y)w/Yh

(w + 1). The worst
case occurs when −∆Y = 1/2m − 1/2q, the bound holds:

Bw+1 <
(

1/2(m×w)
)
×
(

1/(Yh)
(w+1)

)
. (2)

Therefore, the remainder Rb is bounded by

Rb =
∞

∑
g=t

Bg+1 <
∞

∑
g=t

1/2(m×g) × 1/(Yh)
(g+1) =

(1/2(m×t))× (1/Yh)
(t+1)

1− 1/(2m ×Yh)
. (3)

For m >> 1,
(1/2(m×t))× (1/Yh)

(t+1)

1− 1/(2m ×Yh)
(4)

is just greater than (1/2(m×t)) × (1/(Yh)(t+1)).
For m >> 5, a nonstringent bound can be posed on Rb:

Rb <
1.1

2(m×t) ×Yh
(t+1)

. (5)

Suppose the error in each table look-up is εi and the truncation error in computing
each multiplicative term is δi. Let δ0 be an additional term that represents truncating B to a
certain number of bits after the summation. A cumulative error will be

B =
t

∑
i=1

[δi + (εi + 1/Yi
h)× (−∆Y)i−1] =

t

∑
i=1

[
(−∆Y)i−1

Yi
h

] +
t

∑
i=1

[εi × (−∆Y)i−1] +
t

∑
i=1

δi. (6)

Then,

Rc =
t

∑
i=1

εi × (−∆Y)i−1, (7)

and

Rd =
t

∑
i=1

δi. (8)

Since table Gi is bi bits wide and 1/2 < Yh < 1, the maximal value of (1/Yh)i is slightly
less than 2i. If words in table Gi can represent values up to but not including 2i, the unit
of the most significant bit in table Gi should have value 2(i−1) while the unit of the least
significant bit should have value 1/2(bi−i).

Each εi is less than the unit of the LSB: εi < 1/2(bi−i). The worst case for −∆Y occurs
when −∆Y = 1/2m − 1/2q. Replace −∆Y in (6) with 1/2m − 1/2q and yields

Rc =
t

∑
i=1

1/2(bi−i) × 1/2(m×i−m), (9)

i.e.,

Rc =
t

∑
i=1

1/2(bi+m×i−m−i). (10)

Appl. Sci. 2021, 11, 4988 7 of 22

δi represents each maximal permissible truncation error and it allows the arithmetic of
B to be reduced into an appropriate size to accelerate the computation of B. The allowable
truncation error δi can be used both in discarding least significant partial products to prune
multiplier trees and in truncating results to smaller widths.

As 1≤ B < 2, the most significant bit (MSB) of B has unit 1. Suppose B is truncated to bb
bits. According to the definition of δ0, δ0 is less than the LSB, i.e., δ0 < 1/2(bb−1). To restrict
Rd as follows: Rd < 1/2(m×t−t+2), δ0 should be restricted as follows: δ0 < 1/2(m×t−t+3), i.e.,
B can be truncated to be bb = m × t − t + 4 bits; meanwhile, the remaining δi should be
restricted to:

t

∑
i=1

δi < 1/2(m×t−t+3). (11)

We already have

X′ = X−Qa ×Y = X− (P′ + S)×Y = X− P′ ×Y− S×Y, (12)

where S is the follow-up n-bit digits after P′ in the partial quotient Qa. Since P′ is the
truncated version of P = Xh × B and X the left-shifted version of X′,

X′ < X− P×Y = X− Xh × B×Y
= ∆X + Xh − Xh × (1/Y− Rb − Rc − Rd)×Y = ∆X + Xh × (Rb + Rc + Rd)×Y

(13)

Now substitute the bounds for Rb, Rc and Rd into (13) to determine the maximum
value of X′. Since Xh < 1 and ∆X ≤ 1/2p − 1/2q, the worst case for X′ is:

X′ < ∆X + Rb ×Y + Rc ×Y + Rd ×Y, (14)

X′ < 1/2p − 1/2q +
1.1×Y

2(m×t) ×Yh
(t+1)

+
Y

2(m×t−t)
+

Y
2(m×t−t+2)

. (15)

Since Yh ≥ Y, set Yh = Y in the worst case for X′ and yield:

X′ < 1/2p − 1/2q +
1.1

2(m×t) ×Yt
+

Y
2(m×t−t)

+
Y

2(m×t−t+2)
. (16)

Take
X2 = 1/2p − 1/2q +

1.1
2(m×t) ×Yt

+
Y

2(m×t−t)
+

Y
2(m×t−t+2)

, (17)

then
X′ < X2. (18)

To determine the worst case of the value of X2 in the case of 1/2 ≤ Y < 1, all possible
maxima and minima should be located through setting the partial derivative ∂X2/∂Y
to zero.

It can be demonstrated that the highest possible value of X2 occurs at Y = 1/2. When
p = m × t − t + 2,

X′ <
0.25

2(m×t−t)
− 1/2q +

1.725
2(m×t−t)

, (19)

X′ < 1/2(m×t−t−1). (20)

In Step 4 of every cycle, the highest-order bit of X′ that could possibly be 1 is the
(m × t − t)th bit, X′(q−m×t+t). For any p such that p ≥ m × t − t + 2, the worst case
for the value of X′ is bounded by the above inequality. As a result, at least the front
m × t − t − 1 bits of quotient per cycle before Step 5 can be guaranteed in the proposed
Predict–Correct algorithm.

According to (12) and (13),

X′ = X− P′ ×Y− S×Y < X′2 − S×Y = X2 × S− S×Y. (21)

Appl. Sci. 2021, 11, 4988 8 of 22

Since S is the follow-up n-bit digits after P′ in the partial quotient Qa, the worst case of
the value of S × Y also occurs in the case of 1/2 ≤ Y < 1 after Step 5 and 6. Meanwhile, the
highest possible value of X2 locates at Y = 1/2,

X′ ≤ 1/2(m×t−t+n−1) − 1/2(m×t−t+n), (22)

X′ ≤ 1/2(m×t−t+n). (23)

Similarly, the highest-order bit of X′ that could possibly be 1 is the (m× t− t + n)th bit.
As for the subsequent n-bit predictive quotient values, the n-bit value is accurate within the
least significant bit in Step 6. In short, at least the front m × t − t + n − 1 bits of quotient
per cycle after Step 6 can be guaranteed.

Fast division [18] generates new quotient by m × t – t – 1 bits per cycle. Therefore, the
algorithm requires dq/(m × t − t − 1)e cycles where q is digit amount of dividend X and
divisor Y. Contrastively, the proposed Predict–Correct algorithm generates m × t − t + n −
1 bits per cycle and its implementation requires dq/(m × t − t + n − 1)e cycles theoretically.

3.3. Choice of Parameters m, t, and n in Predict–Correct Algorithm

As stated in Section 3.2, the proposed Predict–Correct algorithm generates m × t − t
+ n − 1 bits per clock cycle. Change of Parameter m, t, or n leads to different guaranteed
bits per cycle. Discussions about choice of parameters m, t, and n adopted in FP division
hardware architecture are as follows.

Table 1 lists five options of Parameter n from 1 to 5. It can be seen from Table 1 that as
n increases, the number of possible quotients increases exponentially. When n > 3, increase
in guaranteed bits of quotient per cycle cannot make up the foreseeable extra cost of
subsequent selectors accompanied with more possible quotients in Step 6. Compared with
Parameter n = 2, Parameter n = 3 brings about one more guaranteed bit of quotient with
only four more subsequent selectors needed. Compared with Parameter n = 3, Parameter
n = 4 takes eight more subsequent selectors. One more guaranteed bit of quotient can
apparently not overweigh the follow-up computational burden of eight more selectors. To
sum up, Parameter n in the Predict–Correct Algorithm for FP division is chosen to be 3.

Table 1. Options of Parameter n.

Parameter n Additional Digits of
Quotient

2n Kinds of Possible
Quotients

1 1 2
2 2 4
3 3 8
4 4 16
5 5 32

When t ≥ 5, the increase in guaranteed bits of quotient per cycle is at the cost of
pre-computation of the terms in the approximation B. Pre-computation of the terms in B
will definitely add more clock cycles, which is not friendly to low-precision division. When
t = 1, the Predict–Correct algorithm becomes classical reciprocal method. Therefore, t = 2, 3,
4 will be discussed.

Table 2 lists different patterns of Parameter m and t when n = 3. Since this paper
mainly focuses on high-precision FP division, so column clock cycles in Table 2 is analyzed
based on quadruple precision FP division. When it comes to column clock cycles, the
former figure represents the number of iterations in 113-bit mantissa division; the latter
represents the number of cycle(s) needed in the pre-computation of the approximation B.
In the case of Row 1 in Table 2, d113/20e = 6; t = 2 means that at least one cycle is needed
to pre-compute the approximation B = 1/Yh − ∆Y/Yh

2. It can be seen from Table 2 that the
listed patterns of Parameter m and t have 6 or 7 clock cycles. As Parameter m increases
from 10 to 11, data width of entries in look-up table (LUT) increase by 512. As Parameter

Appl. Sci. 2021, 11, 4988 9 of 22

m increases from 11 to 12, data width of entries in LUT increase by 1024. Apparently, the
sharp increase in data width of LUT entries will bring about considerable area. Moreover,
the increase in Parameter m seems to be no benefit to clock cycles. Hence, the patterns of
Parameter m = 12 are not considered.

Table 2. Different Patterns of Parameter m and t when n = 3 for Quadruple Precision FP division.

Parameter m Parameter t Data Width of LUT
Entries

Guaranteed Bits per
Cycle Clock Cycles Achieved Bits per

Cycle

10 2 512 20 6 + 1 = 7 120

10 3 512 29 4 + 2 = 6 116

10 4 512 38 3 + 3 = 6 114

11 2 1024 22 6 + 1 = 7 132

11 3 1024 32 4 + 2 = 6 128

11 4 1024 42 3 + 3 = 6 126

12 2 2048 24 5 + 1 = 6 120

12 3 2048 35 4 + 2 = 6 140

12 4 2048 46 3 + 3 = 6 138

Therefore, the left four patterns are more rational: m = 10, t = 3; m = 10, t = 4; m = 11,
t = 3; m = 11, t = 4. Achieved bits per cycle of patterns m = 10, t = 3 and m = 10, t = 4 are 116
and 114. Error may occur in the rounding of the iterated 116-bit or 114-bit quotient to the
desired 113-bit normalized quotient. The two patterns are removed from consideration. As
for patterns m = 11, t = 3 and m = 11, t = 4, the former pattern has more achieved bits per
cycle than the latter pattern with the same clock cycles. In all, this paper takes Parameter
m = 11, t = 3 and n = 3.

4. General Architecture and Main Parts

The proposed Predict–Correct algorithm can apply to both fixed-point division and
floating-point division. Based on the bit-accurate Predict–Correct algorithm, this paper
designs a multi-precision FP division architecture with low latency.

In our design, take m = 11, t = 3 and n = 3. According to the Predict–Correct algorithm,
32 bits of new quotient can be generated per cycle. Denote a desired accuracy of quotient
as precision, which is determined by the 2-bit input signal type. According to IEEE-754
standard, precision and type cover three FP formats: type = 2′b00 and precision = 23 for
single precision (SP, 32 bits, 23 bits of mantissa), type = 2′b01 and precision = 52 for double
precision (DP, 64 bits, 52 bits of mantissa), and type = 2′b10 and precision = 113 for quadruple
precision (QP, 128 bits, 113 bits of mantissa).

The overall architecture of our proposed FP divider is illustrated in Figure 2. The
proposed design is divided into three parts. The inputs are two multi-precision FP numbers:
dividend_In and divisor_In. Part1 PRECONFIG involves pre-configuration and exception
judgement of the two inputs, Part 2 MANTISSA_DIVIDE mainly fulfills 29-bit-accurate
quotient approximation and subsequent 3-bit quotient selection, and Part 3 NORMALIZE
achieves normalization.

4.1. Part 1 PRECONFIG

As presented in Figure 2, PRECONFIG first judges whether exception situations exit
after breaking down the two FP inputs dividend_In and divisor_In into three portions: sign,
exponent, and mantissa. If either one of the two inputs or both belong to the following
exception situations: Zero, Infinity or NaN (Not a Number), the exception signal Exception is
then judged to be Zero or NaN depending on dividend_In and divisor_In. Specific judgement
is illustrated in Table 3.

Appl. Sci. 2021, 11, 4988 10 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 23

4. General Architecture and Main Parts
The proposed Predict–Correct algorithm can apply to both fixed-point division and

floating-point division. Based on the bit-accurate Predict–Correct algorithm, this paper
designs a multi-precision FP division architecture with low latency.

In our design, take m = 11, t = 3 and n = 3. According to the Predict–Correct algorithm,
32 bits of new quotient can be generated per cycle. Denote a desired accuracy of quotient
as precision, which is determined by the 2-bit input signal type. According to IEEE-754
standard, precision and type cover three FP formats: type = 2′b00 and precision = 23 for single
precision (SP, 32 bits, 23 bits of mantissa), type = 2′b01 and precision = 52 for double preci-
sion (DP, 64 bits, 52 bits of mantissa), and type = 2′b10 and precision = 113 for quadruple
precision (QP, 128 bits, 113 bits of mantissa).

The overall architecture of our proposed FP divider is illustrated in Figure 2. The
proposed design is divided into three parts. The inputs are two multi-precision FP num-
bers: dividend_In and divisor_In. Part1 PRECONFIG involves pre-configuration and excep-
tion judgement of the two inputs, Part 2 MANTISSA_DIVIDE mainly fulfills 29-bit-accu-
rate quotient approximation and subsequent 3-bit quotient selection, and Part 3 NOR-
MALIZE achieves normalization.

dividend_In divisor_In

PREC
ONFIG

Exception

dividend_Out
divisor_OutExp_Out

Sign_Out

dividend_m dividend_e dividend_s divisor_s dividend_e dividend_m

Exception
Judgement

Leading
Zero

Detection
zero_num_divisor

zero_num_dividend

Shifter

type

Leading
Zero

Detection

Shifter

dividend_next

_1_Y

rst_n

precision
3:1 MUX

cnt_next
n_state

Reciprocal Look-up
Table

Yh_l1023 52 113

quotient_out_tmp

quotient_Out

{1'b0,quotient_out_tmp} {quotient_out_tmp,1'b0}

dividend_In<divisor_In

done

╱2 ╱128

╱128

╱1

+

MANTISSA
_DIVIDE

NORMA
LIZE

round_quotient

round_bit
sticky_bit

last_bit
guard_bit

2:1 MUX

2:1 MUX

1

Exception_result

2:1 MUX

2:1 MUX

1

quotient_Out[128]

exp_shift

Rounding
Unit

2:1 MUX

2:1 MUX

quotient

╱128

Figure 2. General architecture of the proposed division algorithm. Figure 2. General architecture of the proposed division algorithm.

Table 3. Judgement for Exception Signal.

Input Dividend Input Divisor Exception Signal Exception

NaN NaN NaN
NaN Zero NaN
NaN Infinity NaN
Zero NaN NaN
Zero Zero NaN
Zero Infinity Zero

Infinity NaN NaN
Infinity Zero NaN
Infinity Infinity NaN

Otherwise, the exception signal Exception is set to be Normal. The next is perform-
ing Leading Zero Detection onto the mantissas of dividend_In and divisor_In for subnor-
mal checks.

Two output signals dividend_Out and divisor_Out are the mantissas of dividend_In and
divisor_In after subnormal checks with an implicit bit “1”.

Appl. Sci. 2021, 11, 4988 11 of 22

At last, the exponent difference Exp_out and the exclusive-OR value Sign_out (if the
exception signal Exception is normal) of the inputs dividend_In and divisor_In are computed
and delivered to NORMALIZE along with signal Exception. The above explanation of the
operations in Part1 PRECONFIG can be observed in Figure 2.

The detailed architecture of Exception Judgement is demonstrated in Figure 3. Excep-
tion Cases mainly check whether the input FP number belongs to the following exceptive
conditions: Zero (the input’s exponent and mantissa are both “0”), Infinity (the input’s
exponent is all “1” while mantissa is all “0”), and NaN (the input’s exponent is all “1” but
mantissa is not all “0”).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 23

Exception cases

dividend_m dividend_e

Exception cases

divisor_m divisor_e

dividend_NaN dividend_Inf dividend_Zero divisor_NaN divisor_Inf divisor_Zero

Zero
2:1 MUX

Infinity Normal

2:1 MUX

2:1 MUX

NaN

Exception
Figure 3. The architecture of Exception Judgement module.

4.2. Part 2 MANTISSA_DIVIDE
MANTISSA_DIVIDE is intended to accelerate the calculation and to reduce the num-

ber of multipliers (i.e., to increase the use rate of multipliers employed in MANTISSA_DI-
VIDE).

Since SP, DP, and QP are three common FP formats in our architecture, 23, 52, and
113 are mantissa bit numbers of SP, DP, and QP with an implicit bit “1”. Furthermore,
customized precision can be adjusted into our architecture only if adjusting module Ex-
ception Judgement in PRECONFIG, 3:1 multiplexer (MUX) in MANTISSA_DIVIDE, and
module Rounding Unit in NORMALIZE.

As the Predict–Correct algorithm demonstrated, first, MANTISSA_DIVIDE is to cal-
culate the value of B. Since m = 11 and t = 3, B = 1/Yh − ∆Y/Yh2 + (∆Y)2/Yh3.

Traditional fast division algorithm looks up 1/Yh, 1/Yh2, 1/Yh3, … in the table G1, G2,
G3, … at the same time, which costs more areas and power. In our implementation, to
accelerate the calculation of B, Finite State Machine unit is employed with a Reciprocal
Look-up Table. The least significant partial products can be truncated for high-order
terms.

The state transition diagram of Finite State Machine unit appearing in Figure 2 is
listed in Figure 4.

2'b00

2'b01

(Exception==2'b11)
|| (rst_n==0)

2'b10

2'b11

(cnt < precison)
|| (rst_n==1)

 rst_n==0

 rst_n==0

Figure 3. The architecture of Exception Judgement module.

4.2. Part 2 MANTISSA_DIVIDE

MANTISSA_DIVIDE is intended to accelerate the calculation and to reduce the
number of multipliers (i.e., to increase the use rate of multipliers employed in MAN-
TISSA_DIVIDE).

Since SP, DP, and QP are three common FP formats in our architecture, 23, 52, and
113 are mantissa bit numbers of SP, DP, and QP with an implicit bit “1”. Furthermore, cus-
tomized precision can be adjusted into our architecture only if adjusting module Exception
Judgement in PRECONFIG, 3:1 multiplexer (MUX) in MANTISSA_DIVIDE, and module
Rounding Unit in NORMALIZE.

As the Predict–Correct algorithm demonstrated, first, MANTISSA_DIVIDE is to calcu-
late the value of B. Since m = 11 and t = 3, B = 1/Yh − ∆Y/Yh

2 + (∆Y)2/Yh
3.

Traditional fast division algorithm looks up 1/Yh, 1/Yh
2, 1/Yh

3, . . . in the table G1,
G2, G3, . . . at the same time, which costs more areas and power. In our implementation,
to accelerate the calculation of B, Finite State Machine unit is employed with a Reciprocal
Look-up Table. The least significant partial products can be truncated for high-order terms.

The state transition diagram of Finite State Machine unit appearing in Figure 2 is listed
in Figure 4.

Appl. Sci. 2021, 11, 4988 12 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 23

Exception cases

dividend_m dividend_e

Exception cases

divisor_m divisor_e

dividend_NaN dividend_Inf dividend_Zero divisor_NaN divisor_Inf divisor_Zero

Zero
2:1 MUX

Infinity Normal

2:1 MUX

2:1 MUX

NaN

Exception
Figure 3. The architecture of Exception Judgement module.

4.2. Part 2 MANTISSA_DIVIDE
MANTISSA_DIVIDE is intended to accelerate the calculation and to reduce the num-

ber of multipliers (i.e., to increase the use rate of multipliers employed in MANTISSA_DI-
VIDE).

Since SP, DP, and QP are three common FP formats in our architecture, 23, 52, and
113 are mantissa bit numbers of SP, DP, and QP with an implicit bit “1”. Furthermore,
customized precision can be adjusted into our architecture only if adjusting module Ex-
ception Judgement in PRECONFIG, 3:1 multiplexer (MUX) in MANTISSA_DIVIDE, and
module Rounding Unit in NORMALIZE.

As the Predict–Correct algorithm demonstrated, first, MANTISSA_DIVIDE is to cal-
culate the value of B. Since m = 11 and t = 3, B = 1/Yh − ∆Y/Yh2 + (∆Y)2/Yh3.

Traditional fast division algorithm looks up 1/Yh, 1/Yh2, 1/Yh3, … in the table G1, G2,
G3, … at the same time, which costs more areas and power. In our implementation, to
accelerate the calculation of B, Finite State Machine unit is employed with a Reciprocal
Look-up Table. The least significant partial products can be truncated for high-order
terms.

The state transition diagram of Finite State Machine unit appearing in Figure 2 is
listed in Figure 4.

2'b00

2'b01

(Exception==2'b11)
|| (rst_n==0)

2'b10

2'b11

(cnt < precison)
|| (rst_n==1)

 rst_n==0

 rst_n==0

Figure 4. The state transition diagram of Finite State Machine unit.

To be detailed, the procedure of every cycle is presented in Figure 5. Critical path of
the design in this paper lies in a 34-bit × 34-bit multiplier and Quotient Selection Unit, as
demonstrated with red dotted lines in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 23

Figure 4. The state transition diagram of Finite State Machine unit.

To be detailed, the procedure of every cycle is presented in Figure 5. Critical path of
the design in this paper lies in a 34-bit × 34-bit multiplier and Quotient Selection Unit, as
demonstrated with red dotted lines in Figure 5.

B_1_Y={_1_Y,1'b0}

116-bit×34-bit
Multiplier

deltaY

deltaY_Y

34-bit×34-bit
Multiplier

B_1_Y2

C
ycle 1

c_state = 2'b00

34-bit×34-bit
Multiplier

B_1_Y3

B

rst_n 0

cnt_next

dividend

C
ycle 2

dividend_Out

c_state = 2'b01
c_state = 2'b10

34-bit×34-bit
Multiplier

{Xh, 2'b0}

dividend_next

divisor_Out

8'd32

cnt

C
ycle 3 and later cycles

Quotient Selection Unit

tmp_product

precision

2:1 MUX

c_state = 2'b110

q_h

q_32

2:1 MUX

<<(96-cnt) <<(cnt-96)

c_state = 2'b11

<<(cnt-96)

_1_Y

quotient_out_tmp

2:1 MUX

2:1 MUX

0

flag

Figure 5. The procedure of cycles in Finite State Machine unit.

The first cycle only looks up 1/Yh with low-10-bits of the divisor Y’s high-11-bits in
the Reciprocal Look-up Table, calculates

_ (1 /)hdeltaY Y Y Y= Δ × (24)

with a 116-bit × 34-bit Multiplier where the product deltaY_Y is truncated to 34-bit, and,
then calculates

()_1_ 2 _ 1 / hB Y deltaY Y Y= × (25)

with a 34-bit × 34-bit Multiplier.

Figure 5. The procedure of cycles in Finite State Machine unit.

Appl. Sci. 2021, 11, 4988 13 of 22

The first cycle only looks up 1/Yh with low-10-bits of the divisor Y’s high-11-bits in
the Reciprocal Look-up Table, calculates

deltaY_Y = ∆Y× (1/Yh) (24)

with a 116-bit × 34-bit Multiplier where the product deltaY_Y is truncated to 34-bit, and,
then calculates

B_1_Y2 = deltaY_Y× (1/Yh) (25)

with a 34-bit × 34-bit Multiplier.
In the second cycle, the 34-bit × 34-bit Multiplier is employed again to calculate

B_1_Y3 = deltaY_Y× B_1_Y2. (26)

After that, we can obtain

B = B_1_Y + B_1_Y2 + B_1_Y3. (27)

In the next cycles, compute intermediate value Xh × B with the 34-bit × 34-bit mul-
tiplier where Xh is the leading 32 bits of X, and, round the product result to obtain a
29-bit intermediate value q_h. Quotient Selection Unit, which contains the 116-bit × 34-bit
multiplier, realizes the multiplicative quotient selection method in order to attain the most
approximative 32-bit quotient q_32 and the partial product tmp_product.

The architecture of Quotient Selection Unit is shown in Figure 6. In Figure 6, the
116-bit × 34-bit multiplier is employed again to calculate the product of 29-bit intermediate
value q_h and divisor Y,

product = q_h×Y. (28)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 23

In the second cycle, the 34-bit × 34-bit Multiplier is employed again to calculate

_ 1_ 3 _ _ 1_ 2B Y deltaY Y B Y= × . (26)

After that, we can obtain

_ 1_ _ 1_ 2 _ 1_ 3B B Y B Y B Y= + + . (27)

In the next cycles, compute intermediate value Xh × B with the 34-bit × 34-bit multi-
plier where Xh is the leading 32 bits of X, and, round the product result to obtain a 29-bit
intermediate value q_h. Quotient Selection Unit, which contains the 116-bit × 34-bit multi-
plier, realizes the multiplicative quotient selection method in order to attain the most ap-
proximative 32-bit quotient q_32 and the partial product tmp_product.

The architecture of Quotient Selection Unit is shown in Figure 6. In Figure 6, the 116-
bit × 34-bit multiplier is employed again to calculate the product of 29-bit intermediate
value q_h and divisor Y,

_product q h Y= × . (28)

116-bit×34-bit
Multiplier

quotient_0

divisor

product

Merging

quotient_1 quotient_2 quotient_7

quotient_m1
quotient_m2

quotient_m6

6

quotient_p1

quotient_p2

…

…

Partial Product Comparator

flag

compare_0
compare_7

compare_p1
compare_p2

compare_m1
compare_m6

dividendq_h

…

1 2 1 2

Quotient Comparator

q_32 tmp_product

… … … …

Figure 6. The architecture of Quotient Selection Unit module.

Merging module is used to generate a series of 8 sequential 32-bit possible quotients,

{ }
{ }
{ }

_ 0 _ ,3' 000 ,
_ 1 _ ,3' 001 ,
_ 2 _ ,3' 010 ,

_ 7 _ ,3' 11{ .}1

quotient q h b
quotient q h b
quotient q h b

quotient q h b

=
=
=
…

=

(29)

Through addition and subtraction operations, 6 minor possible quotients

_ 1= _ 0 ? 32 ' 1,

_ 6= _ 0 ? 32 ' 6,

quotient m quotient d

quotient m quotient d
… (30)

and 2 major possible quotients

_ 1= _ 0 32' 1,
_ 2= _ 0 32' 2

quotient p quotient d
quotient p quotient d

+
+

 (31)

Figure 6. The architecture of Quotient Selection Unit module.

Merging module is used to generate a series of 8 sequential 32-bit possible quotients,

quotient_0 = {q_h, 3′b000},
quotient_1 = {q_h, 3′b001},
quotient_2 = {q_h, 3′b010},

. . .
quotient_7 = {q_h, 3′b111}.

(29)

Appl. Sci. 2021, 11, 4988 14 of 22

Through addition and subtraction operations, 6 minor possible quotients

quotient_m1 = quotient_0 – 32′d1,
. . .

quotient_m6 = quotient_0 – 32′d6,
(30)

and 2 major possible quotients

quotient_p1 = quotient_0 + 32′d1,
quotient_p2 = quotient_0 + 32′d2

(31)

are generated afterwards. All in all, there are 16 possible 32-bit quotients. The architecture
of Partial Product Comparator is presented in Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 23

are generated afterwards. All in all, there are 16 possible 32-bit quotients. The architecture
of Partial Product Comparator is presented in Figure 7.

① in Figure 7 expresses different judging conditions for 16 MUX. For example, for
the first MUX of compare_0, ① expresses: tmp_0 [19] && (tmp_0 [18]|(tmp_0 [17:0])|tmp_0
[20]); for the second MUX of compare_1, ① expresses: tmp_1 [19] && (tmp_1 [18]|(tmp_1
[17:0]) | tmp_1 [20]). Such rule is applicable for the rest of 16 MUX.

Partial Product Comparator module is to calculate 16 partial products of the 16 pos-
sible 32-bit quotients and divisor Y using product and Y and to gain the final partial prod-
uct tmp_product by Product Comparator. The architecture of Partial Product Comparator
is displayed in Figure 8.

product

tmp_1

tmp_3

tmp_6

divisor

<<1

<<1

<<1

tmp_0

tmp_2

tmp_4

tmp_5

tmp_7

tmp_p1

tmp_p2

tmp_m1

tmp_m2

tmp_m3

tmp_m4

tmp_m5

tmp_m6

1

 0

M

U
X

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag

<<flag

<<flag
<<flag

<<flag

<<flag

<<flag

<<flag

<<flag

<<flag

①

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

compare_1

 compare_3

 compare_6

compare_0

compare_2

 compare_4

 compare_5

 compare_7

 compare_p1

compare_p2

compare_m1

compare_m2

compare_m3

compare_m4

compare_m5

compare_m6

Product Com
parator

dividend

tmp_product

Figure 7. The architecture of Partial Product Comparator module.

1

 0

M

U
X

compare_p2

compare_p2<dividend

1

 0

M

U
X

compare_p1

compare_p1<dividend

1

 0

M

U
X

compare_7

compare_7<dividend

1

 0

M

U
X

compare_0

compare_0<dividend

1

 0

M

U
X

compare_m1

compare_m1<dividend

1

 0

M

U
X

compare_m5

compare_m5<dividend

…

…
compare_m6

tmp_product

Figure 8. The architecture of Product Comparator module.

As displayed in Figure 9, the architecture of module Quotient Comparator in Figure
6 is quite similar to module Partial Product Comparator. Although the Product Compar-
ator module outputs tmp_product with a 16-stage MUX group, the Quotient Comparator

Figure 7. The architecture of Partial Product Comparator module.

1© in Figure 7 expresses different judging conditions for 16 MUX. For example, for the
first MUX of compare_0, 1© expresses: tmp_0 [19] && (tmp_0 [18]|(tmp_0 [17:0])|tmp_0 [20]);
for the second MUX of compare_1, 1© expresses: tmp_1 [19] && (tmp_1 [18]|(tmp_1 [17:0]) |
tmp_1 [20]). Such rule is applicable for the rest of 16 MUX.

Partial Product Comparator module is to calculate 16 partial products of the 16 possible
32-bit quotients and divisor Y using product and Y and to gain the final partial product
tmp_product by Product Comparator. The architecture of Partial Product Comparator is
displayed in Figure 8.

Appl. Sci. 2021, 11, 4988 15 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 23

are generated afterwards. All in all, there are 16 possible 32-bit quotients. The architecture
of Partial Product Comparator is presented in Figure 7.

① in Figure 7 expresses different judging conditions for 16 MUX. For example, for
the first MUX of compare_0, ① expresses: tmp_0 [19] && (tmp_0 [18]|(tmp_0 [17:0])|tmp_0
[20]); for the second MUX of compare_1, ① expresses: tmp_1 [19] && (tmp_1 [18]|(tmp_1
[17:0]) | tmp_1 [20]). Such rule is applicable for the rest of 16 MUX.

Partial Product Comparator module is to calculate 16 partial products of the 16 pos-
sible 32-bit quotients and divisor Y using product and Y and to gain the final partial prod-
uct tmp_product by Product Comparator. The architecture of Partial Product Comparator
is displayed in Figure 8.

product

tmp_1

tmp_3

tmp_6

divisor

<<1

<<1

<<1

tmp_0

tmp_2

tmp_4

tmp_5

tmp_7

tmp_p1

tmp_p2

tmp_m1

tmp_m2

tmp_m3

tmp_m4

tmp_m5

tmp_m6

1

 0

M

U
X

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag
<<flag

<<flag

<<flag

<<flag
<<flag

<<flag

<<flag

<<flag

<<flag

<<flag

<<flag

①

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

1

 0

M

U
X

compare_1

 compare_3

 compare_6

compare_0

compare_2

 compare_4

 compare_5

 compare_7

 compare_p1

compare_p2

compare_m1

compare_m2

compare_m3

compare_m4

compare_m5

compare_m6

Product Com
parator

dividend

tmp_product

Figure 7. The architecture of Partial Product Comparator module.

1

 0

M

U
X

compare_p2

compare_p2<dividend

1

 0

M

U
X

compare_p1

compare_p1<dividend

1

 0

M

U
X

compare_7

compare_7<dividend

1

 0

M

U
X

compare_0

compare_0<dividend

1

 0

M

U
X

compare_m1

compare_m1<dividend

1

 0

M

U
X

compare_m5

compare_m5<dividend

…

…
compare_m6

tmp_product

Figure 8. The architecture of Product Comparator module.

As displayed in Figure 9, the architecture of module Quotient Comparator in Figure
6 is quite similar to module Partial Product Comparator. Although the Product Compar-
ator module outputs tmp_product with a 16-stage MUX group, the Quotient Comparator

Figure 8. The architecture of Product Comparator module.

As displayed in Figure 9, the architecture of module Quotient Comparator in Figure 6
is quite similar to module Partial Product Comparator. Although the Product Comparator
module outputs tmp_product with a 16-stage MUX group, the Quotient Comparator module
outputs the most approximative 32-bit partial quotient q_32 which makes up 32 bits of
quotient_out_tmp every cycle.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 23

module outputs the most approximative 32-bit partial quotient q_32 which makes up 32
bits of quotient_out_tmp every cycle.

1

 0

M

U
X

quotient_p2

compare_p2<dividend

1

 0

M

U
X

quotient_p1

compare_p1<dividend

1

 0

M

U
X

quotient_7

compare_7<dividend

1

 0

M

U
X

quotient_0

compare_0<dividend

1

 0

M

U
X

quotient_m1

compare_m1<dividend

1

 0

M

U
X

quotient_m5

compare_m5<dividend

…

…
quotient_m6

q_32

Figure 9. The architecture of Quotient Comparator module.

After Quotient Selection Unit, update cnt with

_ 32cnt next cnt= + . (32)

Therefore, new dividend

_ _dividend next dividend tmp product= − , (33)

and new quotient
()_ _ _ _ 32 1/ 2 precision cntquotient out quotient out tmp q −= + × , (34)

can be attained.
Since Y is invariant during the whole division progress and the first and second cy-

cles have already computed B, only two multiplication (Xh × B and q_32 × Y) and one sub-
traction is needed in the third and later cycles.

If precision > cnt, left-shift dividend_next by 32 bits, update dividend with divi-
dend_next, and update quotient_out with quotient_out_tmp.

Afterwards, repeat the third cycle procedure until cnt > precision. Otherwise, termi-
nate the recurrence and jump to NORMALIZE.

4.3. Part 3 NORMALIZE
NORMALIZE normalizes the quotient signal quotient_out generated in MAN-

TISSA_DIVIDE into standardized output quotient upon the principle of rounding to the
nearest.

Rounding Unit module is performed as follows:

Figure 9. The architecture of Quotient Comparator module.

After Quotient Selection Unit, update cnt with

cnt_next = cnt + 32. (32)

Therefore, new dividend

dividend_next = dividend− tmp_product, (33)

and new quotient

quotient_out = quotient_out_tmp + q_32× 1/2(precision−cnt), (34)

can be attained.
Since Y is invariant during the whole division progress and the first and second

cycles have already computed B, only two multiplication (Xh × B and q_32 × Y) and one
subtraction is needed in the third and later cycles.

If precision > cnt, left-shift dividend_next by 32 bits, update dividend with divi-
dend_next, and update quotient_out with quotient_out_tmp.

Afterwards, repeat the third cycle procedure until cnt > precision. Otherwise, terminate
the recurrence and jump to NORMALIZE.

4.3. Part 3 NORMALIZE

NORMALIZE normalizes the quotient signal quotient_out generated in MANTISSA_DI
VIDE into standardized output quotient upon the principle of rounding to the nearest.

Appl. Sci. 2021, 11, 4988 16 of 22

Rounding Unit module is performed as follows:

round_quotient = quotient_Out[128]?
quotient_Out[128 : 1]
: quotient_Out[127 : 0]

guard_bit =

round_quotient[103], type = 2′b00;
round_quotient[74], type = 2′b01;
round_quotient[14], type = 2′b10.

round_bit =

round_quotient[102], type = 2′b00;
round_quotient[73], type = 2′b01;
round_quotient[13], type = 2′b10.

sticky_bit =

|round_quotient[101 : 0]?1′b1 : 1′b0, type = 2′b00;
|round_quotient[72 : 0]?1′b1 : 1′b0, type = 2′b01;
|round_quotient[12 : 0]?1′b1 : 1′b0, type = 2′b10.

last_bit =

round_quotient[104], type = 2′b00;
round_quotient[75], type = 2′b01;
round_quotient[15], type = 2′b10.

(35)

As shown in Figure 10, SP, DP, and QP inputs need 3, 4, and 6 cycles, respectively. For
SP inputs, Part 1 (P1) and c_state = 2′b00 in Part 2 are performed in Cycle 1, c_state = 2′b01
in Part 2 is performed in Cycle 2, and c_state = 2′b10 in Part 2 and Part 3 (P3) are performed
in Cycle 3. Similarly, for DP inputs, Part 1 (P1) and c_state = 2′b00 in Part 2 are performed
in Cycle 1, c_state = 2′b01 in Part 2 is performed in Cycle 2 and 3, and c_state = 2′b10 in
Part 2 and Part 3 (P3) are performed in Cycle 4. For QP inputs, Part 1 (P1) and c_state =
2′b00 in Part 2 are performed in Cycle 1, c_state = 2′b01 in Part 2 is performed in Cycle 2, 3,
4, 5 and c_state = 2′b10 in Part 2 and Part 3 (P3) are performed in Cycle 6.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 23

_ [103]

_ _ [128]?
_ [1

, 2 ' 00;
_ _ [74], 2 ' 01;

_ [14

28 : 1]

], 2

: _ [127 : 0]

' 10.

_
_

round quotient ty

round quotient quotient O

pe b
guard bit round quotient type b

round q

ut
quotient Ou

uotient type b

round quotie
rou

t
quotient Out

nd bit

 =
= =
 =

=

=

[102], 2 ' 00;
_ [73], 2 ' 01;
_ [13], 2 ' 10.

| _ [101 : 0]?1' 1 : 1' 0, 2 ' 00;
_ | _ [72 : 0]?1' 1 : 1' 0, 2 ' 01;

| _ [12

nt type b
round quotient type b
round quotient type b

round quotient b b type b
sticky bit round quotient b b type b

round quotient

 =
 =
 =

=
= =

: 0]?1' 1 : 1' 0, 2 ' 10.

_ [104], 2 ' 00;
_ _ [75], 2 ' 01;

_ [15], 2 ' 10.

b b type b

round quotient type b
last bit round quotient type b

round quotient type b

 =

 =
= =
 =

(35)

As shown in Figure 10, SP, DP, and QP inputs need 3, 4, and 6 cycles, respectively.
For SP inputs, Part 1 (P1) and c_state = 2′b00 in Part 2 are performed in Cycle 1, c_state =
2′b01 in Part 2 is performed in Cycle 2, and c_state = 2′b10 in Part 2 and Part 3 (P3) are
performed in Cycle 3. Similarly, for DP inputs, Part 1 (P1) and c_state = 2′b00 in Part 2 are
performed in Cycle 1, c_state = 2′b01 in Part 2 is performed in Cycle 2 and 3, and c_state =
2′b10 in Part 2 and Part 3 (P3) are performed in Cycle 4. For QP inputs, Part 1 (P1) and
c_state = 2′b00 in Part 2 are performed in Cycle 1, c_state = 2′b01 in Part 2 is performed in
Cycle 2, 3, 4, 5 and c_state = 2′b10 in Part 2 and Part 3 (P3) are performed in Cycle 6.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

SP
P1

c_state = 2'b00 c_state = 2'b01 c_state = 2'b10
P3

P1
c_state = 2'b00 c_state = 2'b01 c_state = 2'b10

P1
c_state = 2'b00 c_state = 2'b01 c_state = 2'b10

DP

QP

c_state = 2'b10
P3

c_state = 2'b10 c_state = 2'b10 c_state = 2'b10
P3

Figure 10. Latency of the proposed FP division for SP, DP, and QP inputs.

5. Results and Comparisons
The proposed Predict–Correct iterative FP division architecture is synthesized with

TSMC 90nm standard cell library, using Synopsys Design Compiler. The implementation
details are shown in Table 4. The FP division unit is synthesized with best achievable tim-
ing constraints, with constraint of max-area set to zero and global operating voltage of
0.9V.

Figure 10. Latency of the proposed FP division for SP, DP, and QP inputs.

5. Results and Comparisons

The proposed Predict–Correct iterative FP division architecture is synthesized with
TSMC 90nm standard cell library, using Synopsys Design Compiler. The implementation
details are shown in Table 4. The FP division unit is synthesized with best achievable
timing constraints, with constraint of max-area set to zero and global operating voltage of
0.9 V.

In Table 4, two novel metrics are proposed. One is total time (latency × period) and
the other is efficient average time (latency × period/efficient length). Define total time as
the time needed for a division unit from inputting numbers to outputting results. Define
efficient average time as the time needed for a division unit to process single bit of input
numbers. Total time measures the computational speed of single division operation for a
division unit. It finds its significance as division operation is not frequent in processors
or co-processors, making the computational speed of single division operation important.
Efficient average time measures the ability of a division unit to process high-precision input
numbers, which makes it useful in large-scale high-precision applications.

Appl. Sci. 2021, 11, 4988 17 of 22

Table 4. ASIC Implementation Details @ TSMC 90 nm.

SP DP QP

Latency(cycle) 3 4 6

Period(ns) 3.3 3.3 3.3

Total time(ns) 9.9 13.2 19.8

Efficient average time (ns/bit) 1 0.43 0.25 0.17

Area(µm2) 542,650 545,905 550,567

Power(mW) 55.58 56.13 58.53
1 Efficient Length refers to mantissa length of relevant precision: 23 for SP, 52 for DP, and 112 for QP.

In our implementation, we have been able to put out a quotient portion with at
least 29-bit in a single cycle for division, and a quotient portion with more bits using the
correction mechanism between iterations in the same cycle. In addition, there is only one
pre-computational cycle before the iterations, unpacking of dividend and divisor inputs
and pre-configuration. Finally, no post-processing cycle for rounding after the iterations
is needed.

The total latency of the division unit consists of cycles of PRECONFIG, MANTISSA_
DIVIDE and NORMALIZE. Additionally, as the proposed division unit is iterative in
nature, every next input can be applied soon after finite state machine (FSM) in MAN-
TISSA_DIVIDE finishes the current processing. Thus, the Predict–Correct FP division unit
will have a latency of 3, 4, and 6 cycles for SP, DP, and QP FP division computations.

The Predict–Correct FP division unit with DP requires 1 more period than it with SP,
whereas it with QP it needs 2 more cycles than with DP.

It can be seen from Table 4 that the higher the precision of the proposed FP division
unit, the more economical its latency and total time (latency × period) in the implementa-
tion results. Furthermore, efficient average time (latency × period/efficient length) also
indicates that the proposed FP division architecture is of more value when used in more
accurate computation.

5.1. Functional Verification

The functional verification of the proposed FP division unit is carried out using 5-
millions random test cases for normal–normal, normal–subnormal, subnormal–normal,
and subnormal–subnormal operands combination, along with the other exceptional case
verification for quadruple mode.

The proposed Predict–Correct FP division unit with QP produces a maximum of
1-ULP (unit at last place) precision loss. The statistical correct rate of the proposed divider
in the case of the 5-millions random QP test cases is 99.996% compared against Bigfloat
data results using Python.

5.2. Related Work and Comparisons

Javier D. Bruguera has proposed a low-latency FP division unit in [8] with radix-64-
digit-recurrence algorithm. However, the implementation in [8] lacks necessary parameters
such as technology, area, power, and so on. In [57], based on series expansion methodology,
Jaiswal et al. has proposed QP FP division with SP and DP support. The proposed multi-
precision architecture in [57] is implemented using FPGA device at a frequent of 89MHz,
without matched parameters to perform comparison. In [58], Jaiswal et al. has proposed
an iterative dual-mode DPdSP division architecture using the series expansion algorithm,
a digit-recurrence method, and synthesized using TSMC 90 nm library. Compared with [8]
or [57,58], this is a more appropriate object for our result comparison as it has provided
detailed information after hardware implementation.

A comparison with prior paper [58] on FP division architecture is shown in Table 5.
Definitions of total energy and efficient average energy are somewhere the same as total

Appl. Sci. 2021, 11, 4988 18 of 22

time and efficient average time. Total energy (power × latency × period) is defined as the
energy needed for a division unit from inputting numbers to outputting results. Efficient
average time (power × latency × period/efficient length) is defined as the energy needed
for a division unit to process single bit of input numbers. The two novel metrics measure
the computational efficiency of a division unit in terms of power.

Table 5. Comparison of Predict–Correct Division Architecture On DP.

[58] (with 1-Stage
Multiplier)

[58] (with 2-Stage
Multiplier) This Paper

Subnormal
√ √ √

Tech. 90 nm 90 nm 90 nm

Latency (cycle) 11 (61.1%) 18 (100%) 4 (22.2%)

Period (ns) 1.72 (175.5%) 0.98 (100%) 3.3 (336.7%)

Power (mW) 30.9 (48.1%) 64.21 (100%) 58.53 (91.1%)

Total time (ns) 18.92 (107.3%) 17.64 (100%) 13.2 (74.82%)

Total energy (fJ) 584.65 (51.6%) 1132.74 (100%) 772.6 (68.2%)

Efficient average energy
(fJ/bit) 1 11.24 (51.6%) 21.78 (100%) 12.07 (55.4%)

1 Efficient Length in Table 5 equals to 52 for DP.

Since [58] has no QP synthesis results, only cases of DP FP inputs are compared
between [58] and the proposed division unit. A technological independent comparison is
presented in terms of area, latency, period, and power. Comparison is also made in terms
of four unified metrics, total time (latency × period), total energy (power × latency ×
period), efficient average time (latency × period/efficient length) and efficient average
energy (power × latency × period/efficient length), which are supposed to be smaller
for a low-latency design. Subnormal computation support is both included for the two
division units.

The architecture with 1-Stage Multiplier in [58] has a latency of 10 clock cycles for DP,
and 8 clock cycles for SP; while that with 2-Stage Multiplier has a latency of 15 clock cycles
for DP, and 11 clock cycles for SP.

In comparison to Jaiswal et al. [58] ’s dual-mode architecture, the proposed Predict–
Correct iterative FP division architecture requires much fewer latency and total time. The
unified metrics total energy (power × latency × period) and efficient average energy
(power × latency × period/efficient length) of the proposed architecture are much better
than the architecture with 2-Stage Multiplier in [58]. In detail, the proposed FP division
unit has ≈63.6% latency, ≈30.23% total time (latency × period), ≈31.8% total energy
(power × latency × period), and ≈44.6% efficient average energy (power × latency ×
period/efficient length) overhead over 2-Stage Multiplier in [58].

Table 6 compares the latency and total time of the proposed division unit with these of
classic processors for FP SP and DP with normalized operands and result, Intel Penryn [59],
IBM zSeries [60], IBM z13 [61], HAL Sparc [62], AMD K7 [63], AMD Jaguar [64].

It must be pointed out that the comparison is done in terms of the latency and total time
without taking into account that different processors might run at different technologies
and frequencies. Moreover, since the classic processors are usually based on pipeline
architecture, their clock speeds are high to a considerable extent. However, the design of
the proposed architecture in this paper does not use pipeline architecture as it is only an
infrequent unit in computer arithmetic, leading to a bit low clock speed. If our architecture
adopts pipeline architecture, clock speed of our architecture is predicted to double at least,
which we may study in the future.

Appl. Sci. 2021, 11, 4988 19 of 22

Table 6. Division Latency Comparison.

Algorithm Tech.
Clock Speed

(Hz)

SP DP

Latency
(Cycle)

Total Time
(ns)

Latency
(Cycle)

Total Time
(ns)

AMD K7 multiplicative − 500 M 16 32 20 40

AMD Jaguar multiplicative 28 nm 2 G 14 7 19 9.5

IBM zSeries radix-4 130 nm 1 G 23 23 37 37

IBM z13 radix-8/4 22 nm 5 G 18 3.6 28 5.6

HAL Sparc multiplicative 150 nm 1 G 16 16 19 19

Intel Penryn radix-16 45 nm 2.33 G 12 5.14 20 8.57

This paper Predict–
Correct 90 nm 300 M 3 9.9 4 13.2

Most of the designs in Table 6 use a multiplicative division algorithm or a radix-
16/8/4 digit-recurrence algorithm. The Intel Penryn processor [59] implements a radix-16
combined division unit by cascading two radix-4 iterations every cycle. Consequently, the
latency is almost halved with respect to that of the radix-4 unit. The IBM z13 processor [61]
has a divide unit supporting SP, DP, QP, and all the hexadecimal FP data types. The
underlying algorithm is a radix-8 division generating 3 bits per cycle. The major challenge
was to perform a radix-8 divide step on a wide QP mantissa, 113 bits plus some extra
rounding bits, and fit it in a single cycle.

As shown in Table 6, our proposal obtains much lower latencies. The multiplicative
implementation is limited by the latency of the multiplier of multiply-and-accumulate
units. On the other hand, the implementation in [60] uses a very low radix, which implies
a high number of iterations, although its implementation is quite simple. As for total time
of SP or DP, owing to low clock speed, the performance of our proposal is in the middle of
the classical processors.

6. Conclusions

This paper has presented a novel Predict–Correct iterative architecture for configurable
FP division arithmetic. It can be dynamically configured for SP, DP, QP, or other user-
defined precisions. Aiming at fast and efficient FP division processing, the architecture is
also proposed with period and power trade-offs.

The Predict–Correct algorithm is based on the very high-radix arithmetic. The entire
logic path has been tuned to perform a low-latency computation. The proposed FP divi-
sion unit has ≈63.6% latency and ≈30.23% total time overhead over [58]. Moreover, the
proposed FP division unit outperforms the prior arts in terms of total energy (power ×
latency× period) and efficient average energy (power× latency× period/efficient length),
which are two unified metrics relevant to effective energy. From the implementation results,
it is much more favorable for the proposed FP division to perform in DP, QP, or other
high-precision computations.

Based on the current proposed division architecture, similar units for division can
be formed using other algorithms, such as Newton–Raphson, Goldschmidt, and series
expansion. Moreover, the proposed division architecture can also be employed in fast
fixed-point division after simple adjustment.

Author Contributions: Conceptualization, M.W. and M.L.; methodology, J.X.; software, J.X.; vali-
dation, J.X.; writing—original draft preparation, W.F.; writing—review and editing, W.F.; funding
acquisition, M.W. and M.L. All authors have read and agreed to the published version of the
manuscript.

Appl. Sci. 2021, 11, 4988 20 of 22

Funding: This research was funded by the Natural Science Foundation of Guangdong Province,
China (Grant No. 2020B1515120004), Shenzhen Science and Technology Plan-Basic Research (Grant
No. JCY20180503182125190), Shenzhen Science and Technology Plan-Basic Research (Grant No.
JCYJ20180507182241622) and Scientific research project in school-level (SZIIT2019KJ026).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Oberman, S.F.; Flynn, M.J. Design issues in division and other floating-point operations. IEEE Trans. Comput. 1997, 46, 154–161.

[CrossRef]
2. Obermann, S.F.; Flynn, M.J. Division algorithms and implementations. IEEE Trans. Comput. 1997, 46, 833–854. [CrossRef]
3. Patankar, U.S.; Koel, A. Review of Basic Classes of Dividers Based on Division Algorithm. IEEE Access 2021, 9, 23035–23069.

[CrossRef]
4. Dixit, S.; Nadeem, M. FPGA accomplishment of a 16-bit divider. Imp. J. Interdiscip. Res. 2017, 3, 140–143.
5. Boullis, N.; Tisserand, A. On digit-recurrence division algorithms for self-timed circuits. In Advanced Signal Processing Algorithms,

Architectures, and Implementations XI; International Society for Optics and Photonics: Bellingham, WA, USA, 2001.
6. Sutter, G.; Biol, G.; Deschamps, J.-P. Comparative study of SRT dividers in FPGA. In Field Programmable Logic and Application

(Lecture Notes in Computer Science); Becker, J., Platzner, M., Vernalde, S., Eds.; Springer: Berlin, Germany, 2004; pp. 209–220.
7. Kaur, S.; Singh, M.; Agarwal, R. VHDL implementation of nonrestoring division algorithm using high-speed adder/subtractor.

Int. J. Adv. Res. Electr., Electron. Instrum. Eng. 2013, 2, 3317–3324.
8. Bruguera, J.D. Low Latency Floating-Point Division and Square Root Unit. IEEE Trans. Comput. 2020, 69, 274–287. [CrossRef]
9. Vestias, M.P.; Neto, H.C. Revisiting the Newton-Raphson iterative method for decimal division. In Proceedings of the 2011 21st

International Conference on Field Programmable Logic and Applications, Chania, Greece, 5–7 September 2011; pp. 138–143.
10. Williams, T.E.; Horowitz, M.A. A zero-overhead self-timed 160- ns 54-b CMOS divider. IEEE J. Solid-State Circuits 1991, 26,

1651–1661. [CrossRef]
11. Saha, P.; Kumar, D.; Bhattacharyya, P.; Dandapat, A. Vedic division methodology for high-speed very large scale integration

applications. J. Eng. 2014, 2014, 51–59. [CrossRef]
12. Fang, X.; Leeser, M. Vendor agnostic, high performance, double precision floating point division for FPGAs. In Proceedings of the

2013 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 10–12 September 2013; pp. 1–5.
13. Liu, J.; Chang, M.; Cheng, C.-K. An iterative division algorithm for FPGAs. In Proceedings of the 2006 ACM/SIGDA 14th

international symposium on Field programmable gate arrays, Monterey, CA, USA, 22–24 February 2006; pp. 83–89.
14. Kwon, T.J.; Sondeen, J.; Draper, J. Floating-point division and square root using a Taylor-series expansion algorithm. In

Proceedings of the 2007 50th Midwest Symposium on Circuits and Systems, Montreal, QC, Canada, 5–8 August 2007; pp. 305–308.
15. Kumar, A.; Sasamal, T.N. Design of divider using Taylor series in QCA. Energy Procedia 2017, 117, 818–825. [CrossRef]
16. Bannon, P.; Keller, J. Internal architecture of Alpha 21164 microprocessor. In Proceedings of the Digest of Papers. COMPCON’95.

Technologies for the Information Superhighway, San Francisco, CA, USA, 5–8 March 1995; IEEE: Piscataway, NJ, USA; pp. 79–87.
[CrossRef]

17. Edmondson, J.H.; Rubinfeld, P.I.; Bannon, P.J.; Benschneider, B.J.; Bernstein, D.; Castelino, R.W.; Cooper, E.M.; Dever, D.E.;
Donchin, D.R.; Fischer, T.C.; et al. Internal organization of the Alpha 21164, a 300-MHz 64-bit quad-issue CMOS RISC micropro-
cessor. Digit. Tech. J. 1995, 7, 119–135.

18. Wong, D.; Flynn, M. Fast division using accurate quotient approximations to reduce the number of iterations. IEEE Trans. Comput.
1992, 41, 981–995. [CrossRef]

19. Lang, T.; Nannarelli, A. A radix-10 digit-recurrence division unit: Algorithm and architecture. IEEE Trans. Comput. 2007, 56,
727–739. [CrossRef]

20. Vemula, R.; Chari, K.M. A review on various divider circuit designs in VLSI. In Proceedings of the 2018 Conference on Signal
Processing and Communication Engineering Systems (SPACES), Vijayawada, India, 4–5 January 2018; pp. 206–209.

21. Sarma, D.D.; Matula, D.W. Faithful bipartite ROM reciprocal tables. In Proceedings of the 12th Symposium on Computer
Arithmetic, Bath, UK, 19–21 July 1995; pp. 12–25.

22. Montuschi, P.; Lang, T. Boosting very-high radix division with prescaling and selection by rounding. In Proceedings of the 14th
IEEE Symposium on Computer Arithmetic, Adelaide, SA, Australia, 14–16 April 1999; pp. 52–59.

23. Lang, T.; Montuschi, P. Very high radix square root with prescaling and rounding and a combined division/square root unit.
IEEE Trans. Comput. 1999, 48, 827–841. [CrossRef]

24. Dormiani, P.; Ercegovac, M.D.; Muller, J. Low precision table based complex reciprocal approximation. In Proceedings of the 2009
Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–4
November 2009; pp. 1803–1807.

http://doi.org/10.1109/12.565590
http://doi.org/10.1109/12.609274
http://doi.org/10.1109/ACCESS.2021.3055735
http://doi.org/10.1109/TC.2019.2947899
http://doi.org/10.1109/4.98986
http://doi.org/10.1049/joe.2013.0213
http://doi.org/10.1016/j.egypro.2017.05.199
http://doi.org/10.1109/CMPCON.1995.512368
http://doi.org/10.1109/12.156541
http://doi.org/10.1109/TC.2007.1038
http://doi.org/10.1109/12.795124

Appl. Sci. 2021, 11, 4988 21 of 22

25. Kasim, M.F.; Adiono, T.; Zakiy, M.F.; Fahreza, M. FPGA implementation of fixed-point divider using pre-computed values.
Procedia Technol. 2013, 11, 206–211. [CrossRef]

26. Oberman, S.F.; Flynn, M.J. Minimizing the complexity of SRT tables. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1998, 6,
141–149. [CrossRef]

27. Anane, M.; Bessalah, H.; Issad, M.; Anane, N.; Salhi, H. Higher Radix and Redundancy Factor for Floating Point SRT Division.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2008, 16, 774–779. [CrossRef]

28. Akkas, A. Dual-Mode Quadruple Precision Floating-Point Adder. In Proceedings of the 9th EUROMICRO Conference on Digital
System Design (DSD’06), Cavtat, Croatia, 30 August–1 September 2006; pp. 211–220.

29. Ozbilen, M.M.; Gok, M. Multi-Precision Floating-Point Adder. Ph.D. Thesis, Microelectronics and Electronics, Istanbul, Turkey,
2008; pp. 117–120.

30. Jaiswal, M.K.; Cheung, R.C.C.; Balakrishnan, M.; Paul, K. Unified Architecture for Double/Two-Parallel Single Precision Floating
Point Adder. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 521–525. [CrossRef]

31. Jaiswal, M.K.; Varma, B.S.C.; So, H.K.H. Architecture for Dual-Mode Quadruple Precision Floating Point Adder. In Proceedings
of the 2015 IEEE Computer Society Annual Symposium on VLSI, Montpellier, France, 8–10 July 2015; pp. 249–254.

32. Jaiswal, M.K.; Varma, B.S.C.; So, H.K.; Balakrishnan, M.; Paul, K.; Cheung, R.C.C. Configurable Architectures for Multi-Mode
Floating Point Adders. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2079–2090. [CrossRef]

33. Baluni, A.; Merchant, F.; Nandy, S.K.; Balakrishnan, S. A Fully Pipelined Modular Multiple Precision Floating Point Multiplier
with Vector Support. In Proceedings of the 2011 International Symposium on Electronic System Design, Kochi, India, 19–21
December 2011; pp. 45–50.

34. Manolopoulos, K.; Reisis, D.; Chouliaras, V.A. An efficient multiple precision floating-point multiplier. In Proceedings of the 2011
18th IEEE International Conference on Electronics, Circuits, and Systems, Beirut, Lebanon, 11–14 December 2011; pp. 153–156.

35. Jaiswal, M.K.; So, H.K. Dual-mode double precision / two-parallel single precision floating point multiplier architecture. In
Proceedings of the 2015 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Daejeon, Korea, 5–7
October 2015; pp. 213–218.

36. Akka¸s, A.; Schulte, M.J. Dual-mode floating-point multiplier architectures with parallel operations. J. Syst. Archit. 2006, 52,
549–562. [CrossRef]

37. Bruguera, J.D. Radix-64 Floating-Point Divider. In Proceedings of the 2018 IEEE 25th Symposium on Computer Arithmetic
(ARITH), Amherst, MA, USA, 25–27 June 2018; pp. 84–91.

38. Saporito, A.; Recktenwald, M.; Jacobi, C.; Koch, G.; Berger, D.P.D.; Sonnelitter, R.J.; Walters, C.R.; Lee, J.S.; Lichtenau, C.; Mayer,
U.; et al. Design of the IBM z15 microprocessor. IBM J. Res. Dev. 2020, 64, 7:1–7:18. [CrossRef]

39. Burgess, N.; Williams, T. Choices of operand truncation in the SRT division algorithm. IEEE Trans. Comput. 1995, 44, 933–938.
[CrossRef]

40. Schwarz, E.M.; Flynn, M.J. Using a Floating-Point Multiplier’s Internals for High-Radix Division and Square Root; Tech. Rep.
CSL-TR-93-554; Computer Systems Laboratory, Stanford University: Stanford, CA, USA, 1993.

41. Pineiro, J.; Ercegovac, M.D.; Bruguera, J.D. High-radix iterative algorithm for powering computation. In Proceedings of the 2003
16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, Spain, 15–18 June 2003; pp. 204–211.

42. Cortadella, J.; Lang, T. High-radix division and square-root with speculation. IEEE Trans. Comput. 1994, 43, 919–931. [CrossRef]
43. Baesler, M.; Voigt, S.; Teufel, T. FPGA Implementations of Radix-10 Digit Recurrence Fixed-Point and Floating-Point Dividers. In

Proceedings of the 2011 International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 30 November–2
December 2011; pp. 13–19.

44. Chen, L.; Han, J.; Liu, W.; Montuschi, P.; Lombardi, F. Design, Evaluation and Application of Approximate High-Radix Dividers.
IEEE Trans. Multi-Scale Comput. Syst. 2018, 4, 299–312. [CrossRef]

45. Ercegovac, M.D.; Lang, T.; Montuschi, P. Very-high radix division with prescaling and selection by rounding. IEEE Trans. Comput.
1994, 43, 909–918. [CrossRef]

46. Ercegovac, M.D.; McIlhenny, R. Design and FPGA implementation of radix-10 algorithm for division with limited precision
primitives. In Proceedings of the 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
26–29 October 2008; pp. 762–766.

47. Ercegovac, M.D.; McIlhenny, R. Design and FPGA implementation of radix-10 algorithm for square root with limited precision
primitives. In Proceedings of the 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, USA, 1–4 November 2009; pp. 935–939.

48. Vazquez, A.; Antelo, E.; Montuschi, P. A radix-10 SRT divider based on alternative BCD codings. In Proceedings of the 2007 25th
International Conference on Computer Design, Lake Tahoe, CA, USA, 7–10 October 2007; pp. 280–287.

49. Nannarelli, A. Radix-16 Combined Division and Square Root Unit. In Proceedings of the 2011 IEEE 20th Symposium on Computer
Arithmetic, Tuebingen, Germany, 25–27 July 2011; pp. 169–176.

50. Harris, D.L.; Oberman, S.F.; Horowitz, M.A. SRT division architectures and implementations. In Proceedings of the 13th IEEE
Sympsoium on Computer Arithmetic, Asilomar, CA, USA, 6–9 July 1997; pp. 18–25.

51. Carter, T.M.; Robertson, J.E. Radix-16 signed-digit division. IEEE Trans. Comput. 1990, 39, 1424–1433. [CrossRef]
52. Atkins, D.E. Higher-radix division using estimates of the divisor and partial remainders. IEEE Trans. Comput. 1968, C-17, 925–934.

[CrossRef]

http://doi.org/10.1016/j.protcy.2013.12.182
http://doi.org/10.1109/92.661256
http://doi.org/10.1109/TVLSI.2008.2000363
http://doi.org/10.1109/TCSII.2014.2327314
http://doi.org/10.1109/TCSI.2015.2452351
http://doi.org/10.1016/j.sysarc.2006.03.002
http://doi.org/10.1147/JRD.2020.3008119
http://doi.org/10.1109/12.392852
http://doi.org/10.1109/12.295854
http://doi.org/10.1109/TMSCS.2018.2817608
http://doi.org/10.1109/12.295853
http://doi.org/10.1109/12.61063
http://doi.org/10.1109/TC.1968.226439

Appl. Sci. 2021, 11, 4988 22 of 22

53. Chen, L.; Lombardi, F.; Montuschi, P.; Han, J.; Liu, W. Design of approximate high-radix dividers by inexact binary signed-digit
addition. In Proceedings of the on Great Lakes Symposium on VLSI, Banff, AB, Canada, 10–12 May 2017; pp. 293–298.

54. Nikmehr, H.; Phillips, B.; Lim, C. Fast Decimal Floating-Point Division. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, 14,
951–961. [CrossRef]

55. Tenca, A.F.; Ercegovac, M.D. On the design of high-radix online division for long precision. In Proceedings of the 14th IEEE
Symposium on Computer Arithmetic, Adelaide, SA, Australia, 14–16 April 1999; pp. 44–51.

56. Narendra, K.; Ahmed, S.; Kumar, S.; Asha, G.H. FPGA implementation of fixed point integer divider using iterative array
structure. Int. J. Eng. Sci. Tech. Res. 2015, 3, 170–179.

57. Jaiswal, M.K.; So, H.K. Architecture for quadruple precision floating point division with multi-precision support. In Proceedings
of the 2016 IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP), London,
UK, 6–8 July 2016; pp. 239–240.

58. Jaiswal, M.K.; So, H.K. Area-Efficient Architecture for Dual-Mode Double Precision Floating Point Division. IEEE Trans. Circuits
Syst. I Regul. Pap. 2017, 64, 386–398. [CrossRef]

59. Coke, J.; Baliga, H.; Cooray, N.; Gamsaragan, E.; Smith, P.; Yoon, K.; Abel, J.; Valles, A. Improvements in the Intels Cor2 Penryn
processor family architecture and microarchitecture. Intel Technol. J. 2008, 12, 179–192.

60. Gerwig, G.; Wetter, H.; Schwarz, E.M.; Haess, J. High performance floating-point unit with 116 bit wide divider. In Proceedings
of the 2003 16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, Spain, 15–18 June 2003; pp. 87–94.

61. Lichtenau, C.; Carlough, S.; Mueller, S.M. Quad precision floating point on the IBM z13TM. In Proceedings of the 2016 IEEE 23nd
Symposium on Computer Arithmetic, Silicon Valley, CA, USA, 10–13 July 2016; pp. 87–94.

62. Naini, A.; Dhablania, A. 1-GHz HAL SPARC64® dual floating-point unit with RAS features. In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, Vail, CO, USA, 11–13 June 2001; pp. 173–183.

63. Oberman, S.F. Floating point division and square root algorithms and implementation in the AMD-K7TM microprocessor. In
Proceedings of the 14th IEEE Symposium on Computer Arithmetic, Adelaide, SA, Australia, 14–16 April 1999; pp. 106–115.

64. Rupley, J.; King, J.; Quinnell, E.; Galloway, F.; Patton, K.; Seidel, P.M.; Dinh, J.; Bui, H.; Bhowmik, A. The floating-point unit of the
Jaguar x86 Core. In Proceedings of the 2013 IEEE 21st Symposium on Computer Arithmetic, Austin, TX, USA, 7–10 April 2013;
pp. 7–16.

http://doi.org/10.1109/TVLSI.2006.884047
http://doi.org/10.1109/TCSI.2016.2607227

	Introduction
	Background
	Predict–Correct Algorithm for Division
	Predict–Correct Algorithm with Accurate Quotient Approximation
	Guaranteed Bits per Cycle Using Predict–Correct Algorithm
	Choice of Parameters m, t, and n in Predict–Correct Algorithm

	General Architecture and Main Parts
	Part 1 PRECONFIG
	Part 2 MANTISSA_DIVIDE
	Part 3 NORMALIZE

	Results and Comparisons
	Functional Verification
	Related Work and Comparisons

	Conclusions
	References

