
applied  
sciences

Article

Comparing Methods of DC Motor Control for UUVs

Rohan Shah 1 and Timothy Sands 2,*

����������
�������

Citation: Shah, R.; Sands, T.

Comparing Methods of DC Motor

Control for UUVs. Appl. Sci. 2021, 11,

4972. https://doi.org/10.3390/

app11114972

Academic Editor: Juan-Carlos Cano

Received: 30 April 2021

Accepted: 27 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Systems Engineering, Cornell University, Ithaca, NY 14853, USA; rns85@cornell.edu
2 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
* Correspondence: tas297@cornell.edu

Featured Application: Underwater vehicle control surfaces motor control.

Abstract: Adaptive and learning methods are proposed and compared to control DC motors actuating
control surfaces of unmanned underwater vehicles. One type of adaption method referred to as model-
following is based on algebraic design, and it is analyzed in conjunction with parameter estimation
methods such as recursive least squares, extended least squares, and batch least squares. Another
approach referred to as deterministic artificial intelligence uses the process dynamics defined by
physics to control output to track a necessarily specified autonomous trajectory (sinusoidal versions
implemented here). In addition, one instantiation of deterministic artificial intelligence uses 2-norm
optimal feedback learning of parameters to modify the control signal, while another instantiation is
presented with proportional plus derivative adaption. Model-following and deterministic artificial
intelligence are simulated, and respective performance metrics for transient response and input
tracking are evaluated and compared. Deterministic artificial intelligence outperformed the model-
following approach in minimal peak transient value by a percent range of approximately 2–70%,
but model-following achieved at least 29% less error in input tracking than deterministic artificial
intelligence. This result is surprising and not in accordance with the recently published literature,
and the explanation of the difference is theorized to be efficacy with discretized implementations.

Keywords: path planning; dynamics; modeling; mechanics; adaption; deterministic artificial intelli-
gence; parameter estimation; least squares; proportional-derivative; model-following; motor control

1. Introduction

Adoption of computers and automation revolutionized manufacturing and optimiza-
tion of the computerization is deemed to be continuing the revolution. Like the manufacture
of DC motors, motor operations are also amidst revolutionary change. DC motors are com-
monplace mechanisms to actuate control surfaces and rotate propellors of unmanned
underwater vehicles, as depicted in Figure 1. Example motors are depicted in Figure 2,
where current is supplied to wires at one end of the motor and rotation is provided by
the motor at the other end (as depicted). Control of the motor is a well-studied topic
in the literature [1–4], culminating in a very recent publication of deterministic artificial
intelligence used for motor control [5,6]. Motor control using neural networks was pre-
sented in [1–3], while indirect self-tuners were presented in [4], which were the basis for
comparison of the recently presented method of deterministic artificial intelligence [5],
where the prequel comparison to self-tuners is presented in [6] applied to DC motors for
unmanned underwater vehicles.

This manuscript firstly seeks to validate the results of the recently proposed application
of deterministic artificial intelligence [6] to a disparate motor to reveal the general efficacy
of the methodology. Secondly, this manuscript evaluates the efficacy of the proposed
approach in direct comparison to state-of-the-art methods: model-following methods with
various methods of parameter estimation including batch least squares, recursive least
squares, and extended least squares.

Appl. Sci. 2021, 11, 4972. https://doi.org/10.3390/app11114972 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4681-7919
https://www.mdpi.com/article/10.3390/app11114972?type=check_update&version=1
https://doi.org/10.3390/app11114972
https://doi.org/10.3390/app11114972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114972
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4972 2 of 16

Figure 1. Control surfaces and propellor on unmanned underwater vehicles [7] utilizing typically
available DC motors [8,9].

Figure 2. (a) Maxon high-torque DC brushless motors for UUVs [8]. (b) Underwater thruster propeller
motor [9]. (c) ECI-40 Maxon underwater drive motor and gear head.

1.1. Literature Review

At the ancient age of 18 years old, Gauss developed the method of least squares in
1795, although Legendre is often credited with its development in 1805 [10] and subsequent
(significant) expansion as stochastic methods [11,12] in the following years [13–16]. Gauss
used the method to determine the motion of heavenly bodies about the sun in conic
sections [10], subsequently focusing on errors of estimation and prediction fitting of linear
relationships (mathematical models). Gauss’s thinking helped establish one of the first
international journals in the field of astronomy [13], founded in 1821 by the German
astronomer Heinrich Christian Schumacher. It claims to be the oldest astronomical journal
in the world that is still being published [14].

Legendre is credited with developing the least squares method to use only measure-
ments to learn about natural processes.

To determine the orbit of a heavenly body, without any hypothetical assumption, from
observations not embracing a great period of time, and not allowing the selection with a
view to the application of special methods. [15,16]

The least squares method forms the basis of estimation for several adaptive model-
ing methods described by Åström and Wittenmark in [17–19] using the recursive forms
compared in [20,21], while the batch form is emphasized by Slotine in [22], which was
improved as an adaptive method by Fossen in [23] and subsequently by Sands in [24]. The
feedback measurements emphasized by Gauss are parameterized in a Diophantine equa-
tion [25], also referred to in the literature as a Bezout identity [26], or, alternatively, as an
Aryabhatta equation [27] discussed relative to each other in [27]. Without overtly saying
so, system identification is described [28] where the time-varying terms in a nonlinear
adaptive controller are the identified system parameters.

For a system of unknown parameters, several methods of adaption can be imple-
mented to control the system and achieve a desired response. Often, a desired response is



Appl. Sci. 2021, 11, 4972 3 of 16

rapid tracking of an input signal by an output signal [29]. Most natural processes do not
cause a change in input to be matched by its resulting output, so certain adaptive methods
can allow for control and tracking using physics-based methods of Lorenz [30], which were
experimentally validated in [31] as applied to space systems.

The main difference between nonlinear adaptive control as presented by Slotine [29]
and the physics-based method offered by Lorenz [30] is the time-invariant nature of the
mathematical expression of modeling by physics, where Slotine adapts a form of the
mathematical expression to counter deleterious error effects. The general spirit of both
is embodied in the feedforward portion of the recently proposed deterministic artificial
intelligence (wh’s process flow is illustrated in Figure 3 and who’s the self-awareness
statements are depicted in Figure 4). Parameter adaption (per Slotine) is one option, while
optimal learning (per Smeresky in [32]) is another option which utilizes variations of the
aforementioned least squares methods of Gauss.

Figure 3. Topology of deterministic artificial intelligence whose depiction applied to UUV system
whose actuators are powered by DC motors is in Figure 4.

Figure 4. Topology of deterministic artificial intelligence applied to UUV system whose actuators are
powered by DC motors.

Two main avenues studied to achieve input tracking are through controller design
for self-tuning regulators or through learning parameters and modifying an input signal
without changing the process dynamics of the system [33,34]. Self-tuning regulators allow
for process control through algebraic design and parameter estimation, so an accurate
controller is developed as process parameters are estimated over time. These methods form
the benchmark for comparison to recently published adaption and learning methods.

Learning methods like deterministic artificial intelligence [5] whose topology is de-
picted in Figure 4, involve using the process dynamics (dictated by mathematical models
of physics) as a form of control [6], and evaluation is done by analyzing input tracking
performance metrics. It noteworthy to indicate self-awareness statements in deterministic
artificial intelligence only function when supplied an analytic desired trajectory, where
error calculation necessitates state observers [35] which enable both adaption or 2-norm
optimal learning according to recently published results by Smeresky [32]. Foreshadowing
this manuscript’s Materials and Methods section, where the method of deterministic artifi-
cial intelligence is formally presented, the brevity of its elaboration (merely two necessary
equations with explanatory verbiage) is testament to its strength (simplicity) compared to
the other methods compared.

The challenges, motivation, and literature gap this work aims to address include
application of previously published methods to a new motor model.

1.1.1. Challenges

Step functions are challenging, discontinuous demanded trajectories and square waves
compound the challenges by repeatedly reversing direction with discontinuous steps. One



Appl. Sci. 2021, 11, 4972 4 of 16

key unsolved challenge remains tracking such demanded trajectories without dramatic
overshoot and settling.

1.1.2. Motivation

Previously published studies indicated efficacy of model-following techniques and
also deterministic artificial intelligence applied to a certain kind of DC motor. This work is
motivated to investigate efficacy of various parallel instantiations of model-following and
deterministic artificial intelligence on a disparate motor to ascertain the general applicability
of the methods, particularly in discrete-time (unlike the sequel [6]).

1.1.3. Literature Gap

The study in [6] represents a most recently published addition to the literature and
this manuscript extends that most recent publication to a disparate system. The study in [6]
uses self-tuning regulators with a continuous plant while model-following designs are
utilized here with a discretized plant (of a different motor than used in [6]).

1.2. Developments Presented

Validation is attempted of recently proposed methods on a disparate motor: this
manuscript applies methods to a different motor model than recently published and il-
lustrates comparison of transient response and input tracking using disparate adaptive
techniques as the benchmark for comparison. Deterministic artificial intelligence out-
performed the model-following approach in minimal peak transient value by a percent
range of approximately 2–70%, but model-following achieved at least 29% less error in
input tracking than deterministic artificial intelligence This relatively poorer performance
(compared to the recently published results) in tracking error led to impromptu studies
of possible explanations, and those studies led to the second development presented in
this manuscript. Illumination of key, unpublished facet: in this study, deterministic artifi-
cial intelligence illustrated relatively greater performance degradation using discretized
implementations revealing a unique weakness, namely relatively higher reliance on compu-
tational capacity that may preclude application of the technique on unmanned underwater
systems like spacecraft, aircraft, and other such systems where constraints on computation
capacity are driven by trade-off decisions with weight and cost. A short summary of novel
contributions follows:

1. Validation of recently published proposal to use deterministic artificial intelligence
for motor control by application to a disparate motor.

2. Comparison of four disparate methods (including model-following) paralleling com-
parisons just published.

3. Illumination of a limitations due to discretization with deterministic artificial intelligence.

Section 2 of this manuscript introduces the mathematical motor model and introduces
model-following control design presented by Åström and Wittenmark in [19] and compared
in [21]. The newly proposed method of deterministic artificial intelligence [6] is introduced
next. The methods are compared in Section 3 firstly emphasizing estimation performance
followed by adaptive model-following and then deterministic artificial intelligence. Lastly,
Section 4 discusses the results and how they can be interpreted from the perspective of
previous studies and of the working hypotheses. The findings and their implications
are discussed in the broadest context possible and future research directions are also be
highlighted.

2. Materials and Methods

This section introduces the mathematical motor model and introduces model-following
control design. The newly proposed method of deterministic artificial intelligence is intro-
duced next, where methods and protocols are described in detail while well-established
methods can be briefly described and appropriately cited.



Appl. Sci. 2021, 11, 4972 5 of 16

2.1. Truth Model for Motor Dynamics

The process truth model for natural dynamics of a DC motor as described by the
sequel [6] in Equation (1) is shown in frequency domain form using the z-transform for
discrete-time signals, while the motor investigate here is included in Equation (2). Notice
both the disparate Equations (1) and (2) and the final discretization utilized here (2).

G(s) =
B(s)
A(s)

=
1

s(s + 1)
→ G(z) =

0.09842z + 0.09842
z2 − 1.607z + 0.6065

(1)

B(z)
A(z)

=
b0z + b1

z2 − a1z− a2
=

0.1065z + 0.0902
z2 − 1.9z + 0.88

(2)

The process equation, known as a transfer function, has a zero at z = −0.8469 and
poles at z = 1.1, 0.80. The transfer function has an unstable pole, and the approach with
model-following will effectively relocate these poles to stable locations at z = 0.2 ± 0.2j.
The deterministic artificial intelligence modeling approach does not attempt to achieve pole
relocation, but rather achieves an autonomously determined trajectory using proportional
plus derivative (PD) feedback adaption of unknown parameters to follow the target path.
The truth model also incorporates correlated Gaussian noise with distribution N

(
0, 1

625

)
added as two delayed noise terms. Simulations were performed for both modeling ap-
proaches using scripts developed in MATLAB, and the code for each implementation can
be found within Appendix A. Identical square wave inputs signals were fed to model-
following control designs as well as deterministic artificial intelligence, while the latter
method includes an autonomous path planning algorithm to create sinusoidal trajectories
that commence at the starting discontinuity of the square wave and end at the peak of each
square wave discontinuity.

2.2. Model-Following Motor Control Design

The designed control system implemented a dynamic feedforward for input uc and
negative dynamic feedback for output y that is summed to produce the process input u, as
shown in Figure 3.3 in [19]. The model-following topology can be directly compared with
the deterministic artificial intelligence topology depicted by Figure 2 in [5]. The system
response can be described by Equation (3), with U(z) equal to the z-transform of the control
signal, and Y(z) equal to the z-transform of the control output.

Y(z) =
B
A

(
T
R

U(z)− S
R

Y(z)
)

,
Y(z)
U(z)

=
BT

AR + BS
(3)

As the designed topology allows for certain cancellations to occur within Equation (3),
the numerator and denominator can be represented as a product of factors as well in
Equation (3), where B+ represents the cancelled zeros, B− represents uncancelled zeros,
B′m represents a scalar multiple to the system, and A0 represents the pole-zero cancellations
used to generate the desired system transfer function.

Y(z)
U(z)

=
B+B−A0B′m

A0 AmB+
=

BT
AR + BS

=
Bm

Am
(4)

Since the demonstrated control design will involve no process zero cancellations, B+ is
set to 1. According to causality conditions, the polynomials R, S, and T are of first order. By
manipulation of Equation (4), the coefficients of polynomials R’, S, and T can be defined in
terms of estimated and desired process parameters in Equations (5)–(7), which are adapted
from [19].

r1 =
b1

b0
+

(
b2

1 − am1 b0b1 + am2 b2
0
)
(−b1 + a0b0)

b0
(
b2

1 − a1b0b1 + a2b2
0
) (5)

s0 =
b1
(
a0am1 − a2 − am1 a1 + a2

1 + am2 − a1a0
)

b2
1 − a1b0b1 + a2b2

0
+

b0(am1 a2 − a1a2 − a0am2 + a0a2)

b2
1 − a1b0b1 + a2b2

0
(6)



Appl. Sci. 2021, 11, 4972 6 of 16

s1 =
b1(a1a2 − am1 a2 + a0am2 − a0a2)

b2
1 − a1b0b1 + a2b2

0
+

b0
(
a2am2 − a2

2 − a0am2 a1 + a0a2am1

)
b2

1 − a1b0b1 + a2b2
0

(7)

With the added feedforward and feedback signals, the control signal into the process
can now be described by Equation (8) to Equation (9). The factor of β in Equation (9)
will cause the system response to have unity gain, which is important for attaining zero
asymptotic tracking error [19].

RU(z) = TUc(z) + SY(z) (8)

U(t) = βUc(t) + βa0Uc(t− 1) + s0Y(t) + s1Y(t− 1)− r1U(t− 1) (9)

2.3. Deterministic Artificial Intelligence Methodology

Through modeling with deterministic artificial intelligence, changes in input do not
result in a drastically forced change in output to match the input signal value. Instead, with
change in state of the input, a trajectory (sinusoidal here) is calculated for the output to
follow in progression towards the target state so there is no undefined position (analytically)
for any timestep. Unlike model-following, dynamics of the process are asserted as the control
mechanism in a feedforward fashion establishing self-awareness, and the control signal
can be modulated through feedback parameters that are learned using a proportional-
derivative feedback mechanism or 2-norm optimal methods. Equation (10) shows how
feedback parameters can be calculated through batch least squares per Smeresky in [32],
with φd representing desired trajectory states, θ̂ representing learned parameters to adjust
control input u, and δu representing error in control input.

u = φdθ̂ = φd

(
φT

dφd

)−1
φT

d δu (10)

Proportional plus derivative parameter adjustment of θ̂ from [28] with proportional
adaption gain of two and derivative adaption gain of six was used in the presented experi-
ments in combination with assertion of self-awareness (original process dynamics described
in Equation (11)), where Equation (10) describes optimal feedback adjustment described
in [32], where no tuning is required for self-awareness and learning. Equation (11) embod-
ies the static physics-based feedforward mentioned in the literature review of Section 1.1.

u ≡ φdθ (11)
Equation (12) shows the sinusoid-based trajectory calculation for a change in input,

where A is the target state, A0 is the original state, ω is the frequency corresponding to
maneuver speed, and φ is the phase offset of the sinusoid [36].

z = (A− A0)[1 + sin(ωt +φ)] (12)

When a change in state is detected, Equation (12) can be utilized to analytically
determine a desired trajectory rather than relying on a model-following controller to
stabilize the system. In the presented simulation, the sinusoidal frequencyω = 0.1π and
phase φ = −π

2 . Using the specified parameters for trajectory calculation in response to
changes in state with the square wave allowed for a smooth transition in state with a
half-wave of a sinusoid instead of an abrupt change (e.g., associated with step functions)
by magnitude (A− A0).

2.4. Analysis and Prediction

Comparison of Equation (1) to Equation (2), the two disparate motor models, indicates
disparate results are possible compared to the just published literature [6]. Since the model-
following methods drive performance to follow a desired model, the deterministic artificial
intelligence method is predicted to produce smaller tracking errors, since the method
does not impose a desired model, instead utilizes the model determined by mathematical
physics. The prequel realized this prediction achieving 4.8% lower mean and 211% lower
standard deviation of tracking errors as compared to the best modeling method investigated
(indirect self-tuner without process zero cancellation and minimum phase plant). This



Appl. Sci. 2021, 11, 4972 7 of 16

manuscript applies deterministic artificial intelligence in accordance with the prequel [6]
but compares the performance to other state of the art (model-following) methods, applying
both methodologies to a new motor model. Since indirect self-tuning regulators also utilize
a preferred model to tune performance [37], the model-following results are predicted here
to perform well, but with slightly inferior tracking errors.

3. Results
3.1. Plant Parameter Estimation for Model-Following Benchmark

Dynamic systems can often be modeled in terms of a finite set of parameters that can be
methodically estimated through minimization of the summed squared difference between
a fitted model and truth model. Batch least squares (LS), recursive least squares (RLS), and
extended least squares (ELS) are examples of such estimation methods. RLS incorporates
an operator for multiplication with previous parameter estimates to use error between true
values and estimates as a technique to update the parameter vector to its most likely state
for a specific timestep (determined by the specified discretization). Discretization timestep
will prove to be a very important facet of implementation. As an extension of RLS, ELS
is identical to RLS, where the system vector φ holds values of process input and output.
Using ELS, values for noise, which may be correlated, are included in the vector φ. Such a
structure is important when a process has naturally occurring noise, resulting in the need
for an estimation of contribution to the system from noise to estimate process parameter
values more accurately. The third technique tested, known as Batch LS, allows for a least
squares estimation of process parameters based on a collected amount of observed input
and output data, minimizing error for all observations rather than one at a time.

Based on the formulation of the RLS, ELS, and Batch LS parameter estimation tech-
niques, a simulation was conducted to determine estimation performance of each approach.
Plots in Figure 5 depict the convergence of each estimation method towards true values for
two of four total unknown parameters over the 200 timestep simulation.

Figure 5. (a) Estimation of parameter a1 on ordinate with time in seconds on the abscissa. (b) Estima-
tion of parameter b0 on ordinate with time in seconds on the abscissa. (c) Estimation of parameter a2

on ordinate with time in seconds on the abscissa. (d) estimation of parameter b1 on ordinate with
time in seconds on the abscissa.



Appl. Sci. 2021, 11, 4972 8 of 16

As shown in Figure 5 and Table 1, estimation using ELS performed the same or better
than implementations of RLS and Batch LS. ELS had an error 9% higher than RLS for
estimation of a1 but performed better in estimating the parameters of a2, b0, b1 with equal
or lesser error averages and standard deviations than ELS and Batch LS. RLS performed
similarly to ELS in estimating parameters a1 and a2, and Batch LS exhibited high error in
comparison to RLS and ELS.

Table 1. Mean/Standard Deviation of Estimation Technique Errors.

Estimated Parameter True Value RLS ELS Batch LS

a1 1.9000 0.011/0.007 0.012/0.005 0.025/0.004
a2 −0.8800 0.020/0.009 0.020/0.002 0.021/0.003
b0 0.1065 0.002/0.001 0.0005/0.0002 0.001/0.001
b1 0.0902 0.003/0.002 0.0004/0.0002 0.001/0.0007

3.2. Adaption Using Model-Following and Various Parameter Estimation (Benchmarks)

Model-following involves the design of a control topology that effectively converts
an unstable system response to a stable one, which prevents divergence of the output
and allows for inputs to be tracked asymptotically. In addition, model-following can
incorporate parameter estimation techniques like RLS, ELS, and Batch LS to iteratively
adapt the designed control topology to the estimated process characteristics, which is
known as a self-tuning regulator.

Deterministic artificial intelligence (deterministic artificial intelligence) takes a differ-
ent approach to input tracking, where an autonomous trajectory for output is defined for
changes in input using a half-wave of a sinusoid. With the deterministic artificial intel-
ligence modeling approach, natural system dynamics are asserted instead of modifying
the existing process through control design as is done in model-following. In Figure 6a, a
contrast between deterministic artificial intelligence and model-following performances
exists in the transient responses with either approach. The transient with deterministic
artificial intelligence has a comparably smaller peak, with a peak magnitude lower than
that of RLS by 2.66%, ELS by 43.24%, and Batch LS by 67.18%. The discrete-time square
wave depicted in Figure 6 was created with a sampling frequency of 1, displaying a slight
slant visible in the plot at times of state change due to the short time axis length and nature
of discrete (integer) sampling. The reference signal functionally acts as a square wave for
discrete-time systems.

Figure 6. Results based on discretization of plant using difference equations in Equation (2) (a) Input
tracking with model-following and parameter estimation on ordinate with time in seconds on the
abscissa. (b) Input tracking with deterministic artificial intelligence and proportional plus derivative
adaption of self-awareness statements on ordinate with time in seconds on the abscissa.

As shown in Table 2, output with the deterministic artificial intelligence modeling
approach results in a significant average input tracking error at least 40.88% higher than



Appl. Sci. 2021, 11, 4972 9 of 16

error resulting from implementations of model-following with different parameter esti-
mation techniques. The high error is also reflected in Figure 6a, in which the output with
deterministic artificial intelligence visibly fluctuates heavily after each change in input.
Error distributions between each implementation of model-following are similar, with
each average error being within a 9% margin of each other. It is evident, however, that
there is a sharp difference in tracking accuracy between model-following and deterministic
artificial intelligence. Seeking to elaborate the surprise difference in performance (especially
relative to the superior performance of deterministic artificial intelligence achieved in [6],
the results from that study are replicated in Figure 7 and Table 3. The key distinguishing
feature is discretization where the present study implemented discretization while the
study of [6] did not, and this difference revealed the surprising discovery constituting
an unexpected novel contribution of this manuscript: performance of deterministic artificial
intelligence is severely degraded by discretization implementation compared to the prequel [6] using
Equation (1) whose results are depicted in Figure 7.

Figure 7. Results based on Equation (1) as opposed to Equation (2). Repeated from [6] comparing disparate modeling
techniques (self-tuners without cancellation of process zeros) versus the identical deterministic artificial intelligence method
used in this study. In this figure output is on ordinate with time in seconds on the abscissa. The reader is urged to compare
the blue, thick dashed line in Figure 7 to the deterministic artificial intelligence results presented in Figure 6b. The difference
is elaborated in Section 3.3.

Table 2. Mean/Standard Deviation of Input Tracking Errors Using Equation (2).

Model F. w/RLS Model F. w/ELS Model F. w/Batch LS Deterministic Artificial
Intelligence

0.149/0.247 0.147/0.224 0.159/0.245 0.224/0.288

Table 3. Mean/Standard Deviation of Input Tracking Errors Corresponding to Figure 7.

Direct STR Indirect STR: No
Zero Cancellation

Indirect STR:
Zero Cancellation

Deterministic Artificial
Intelligence

−0.35445/2.9984 23.2272/109.7158 0.023531/0.58929 −0.012239/0.1895

3.3. Analysis

The results presented in Section 3.2 highlight a contribution: deterministic artificial
intelligence performance seems quite sensitive to discretization. Utilization of Equation (1)
compared to Equation (2) clearly degrades performance of all methods used; but when
compared to each other, the performance of deterministic artificial intelligence degrades



Appl. Sci. 2021, 11, 4972 10 of 16

relatively more making the approach less desirable in instances where small discretization
is not possible due to pressures on computer abilities (e.g., unmanned underwater vehicles,
space systems, aircraft). Deterministic artificial intelligence uses optimal feedforward com-
bined with either optimal learning in a 2-norm sense or alternatively nonlinear adaption.
While model-following designs presented here were designed in discrete time [19].

4. Discussion

This research attempted to duplicate the just-published application of deterministic
artificial intelligence to DC motors used on unmanned underwater vehicles. The just-
published prequel makes comparisons to state-of-the-art methods in the category of self-
tuning regulators, while this manuscript compares performance (of a disparate DC motor)
to state-of-the-art methods in the category of model-following algorithms. Deterministic
artificial intelligence outperformed the model-following approach in minimal peak tran-
sient value by a percent range of approximately 2–70%, but model-following achieved at
least 29% less error in input tracking than deterministic artificial intelligence. This result is
surprising and not in accordance with the recently published literature, and the explanation
of the difference is shown to be efficacy with discretized implementations. In the prequel [6]
utilizing similar estimation methods, deterministic artificial intelligence yielded 4.8% lower
mean and 211% lower standard deviation of tracking errors as compared to the best model-
ing method investigated in that article: indirect self-tuner without process zero cancellation
and minimum phase plant. The implication is the increased reliance by deterministic
artificial intelligence on small nondiscretization size to replicated continuous systems.

Future Research

Clearly detailed investigation of the limits of permissible discretization using deter-
ministic artificial intelligence is demanded by the results presented here. Furthermore,
continued improvements in modeling and estimation seem logical. Comparison of the
results here to model predictive control, as articulated by Marusak in [38,39] for prediction
and by Nebeluk and Ławryńczuk for tuning in [40], seems to be very interesting for future
research. In [41], Pappalardo proposes alternative uses of forward and reverse dynamics
in the control, and comparison to the self-awareness feature of deterministic artificial
intelligence seems to be a natural area for future improvements. Pappalardo also proposed
developments to system identification [42] that could prove useful. Bruzzone recently
introduced motor control based on fractional-calculus [43], and it seems that expression of
self-awareness statements in deterministic artificial intelligence could be amplified.

Author Contributions: Conceptualization, R.S. and T.S.; methodology, R.S. and T.S.; software, R.S.
and T.S.; validation, T.S.; formal analysis, R.S. and T.S.; investigation, R.S. and T.S.; resources, T.S;
writing—original draft preparation, R.S.; writing—review and editing, R.S. and T.S.; supervision, T.S.;
funding acquisition, T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting reported results can be found by contacting the
coordinating author at tas296@cornell.edu.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithms (actual MATLAB computer code used) to simulate system responses for
adaption methods. Adapted from example code provided through course material.

1. Algorithm A1: Recursive Least Squares
2. Algorithm A2: Auto-regressive moving average
3. Algorithm A3: Extended Least Squares
4. Algorithm A4: Deterministic Artificial Intelligence



Appl. Sci. 2021, 11, 4972 11 of 16

Algorithm A1 Recursive Least Squares

clear all;clc;
%%%%%%%%%%%%%%%%%RECURSIVE LEAST SQUARES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rand(’seed’,1);

B=[0 0.1065 0.0902];A=poly([1.1 0.8]);
a1=0;a2=0;b0=0.1;b1=0.2;
Am=poly([0.2+0.2j 0.2−0.2j]);Bm=[0 0.1065 0.0902];
am0=Am(1);am1=Am(2);am2=Am(3);a0=0;

Rmatrix=[];
factor = 25;
%create square wave for reference input
maxtime=200;
Uc = zeros(1,201);
for i=1:length(Uc)

if (mod(floor(i/20),2) == 0)
Uc(i) = 1;

else
Uc(i) = 0;

end
end
%Uc = [ones(1,50) -ones(1,50) ones(1,50) -ones(1,51)];
traj_Uc = zeros(1,length(Uc));
check = 1;
run_next = 0;
for i=1:length(Uc)-1

if (check)
traj_Uc(i) = Uc(i);
diff = Uc(i+1)-Uc(i);
lasti = i;
lastval = Uc(i);

end
if (diff ~= 0)

check = 0;
if (run_next)

traj_Uc(i) = lastval + diff/2*(1+(sin(0.2*pi*(i-lasti)-pi/2)));
end
run_next = 1;
if (traj_Uc(i) == Uc(i) && (i ~= lasti))

disp(’enter’);
check = 1;
run_next = 0;

end
end

end
Uc = Uc(1:200);

n=4;lambda=1.0;
nzeros=5;time=zeros(1,nzeros);Y=zeros(1,nzeros);Ym=zeros(1,nzeros);
U=ones(1,nzeros);Uc=[ones(1,nzeros),Uc];
Noise = 1/factor*randn(1,maxtime+nzeros);
P=[100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1]; THETA_hat(:,1)=[-a1 -a2 b0 b1]’;beta=[];

alpha = 0.5; gamma = 1.2;
for i=1:maxtime;

phi=[]; t=i+nzeros; time(t)=i;
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’ + Noise(t-1) + Noise(t-2);
Ym(t)=[-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym(t-1) Ym(t-2) Uc(t-1) Uc(t-2)]’;



Appl. Sci. 2021, 11, 4972 12 of 16

Algorithm A1 Cont.

BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];

%RLS implementation
phi=[Y(t-1) Y(t-2) U(t-1) U(t-2)]’; K=P*phi*1/(lambda+phi’*P*phi); P=P-P*phi*inv(1+phi’*P*phi)*phi’*P/lambda; %RLS-EF
error(i)=Y(t)-phi’*THETA_hat(:,i); THETA_hat(:,i+1)=THETA_hat(:,i)+K*error(i);
a1=-THETA_hat(1,i+1);a2=-THETA_hat(2,i+1);b0=THETA_hat(3,i+1);b1=THETA_hat(4,i+1);
Af(:,i)=[1 a1 a2]’; Bf(:,i)=[b0 b1]’;

% Determine R,S, & T for CONTROLLER
r1=(b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0=b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*a2-a1*a2-a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1=b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*am2*a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R=[1 r1];S=[s0 s1];T=BETA*[1 a0];

Rmatrix=[Rmatrix r1];

%calculate control signal
U(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t)=1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily increased to duplicate text

end

%store values of control, output, and theta for this estimation method
plotu = [U];
ploty = [Y];
plottheta = [THETA_hat];
%%%%%%%%%%%%%%%%%%%%%%%%END OF RECURSIVE LEAST SQUARES%%%%%%%%%%%%%%%%%%%%

Algorithm A2 Autoregressive moving average

%%%%%%%%%%%%%%%%%%%%%%AUTOREGRESSIVE MOVING AVERAGE%%%%%%%%%%%%%%%%%%%%%

B=[0 0.1065 0.0902];A=poly([1.1 0.8]);
H=tf(B,A,0.5);
a1=0;a2=0;b0=0.01;b1=0.2;
Am=poly([0.2+0.2j 0.2−0.2j]);Bm=[0 0.1065 0.0902];
am0=Am(1);am1=Am(2);am2=Am(3);a0=0;

Rmatrix=[];

maxtime=200;

n=4;lambda=1;
nzeros=5;time=zeros(1,nzeros);Y=zeros(1,nzeros);Ym=zeros(1,nzeros);
U=ones(1,nzeros);
THETA_hat = zeros(4,maxtime);
THETA_hat(:,1)=[-a1 -a2 b0 b1]’;beta=[];

Noise = 1/factor*randn(1,maxtime+nzeros);
epsilon=[zeros(1,nzeros+maxtime)];
n = 8;
P=10000*eye(n);P(1,1)=1000;P(2,2)=100;P(3,3)=100;P(4,4)=10000;P(5,5)=1000;P(6,6)=100;
theta_hat_els = zeros(n,1);
phi=[];
for i=1:maxtime

t=i+nzeros; time(t)=i;
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’ + Noise(t-1) + Noise(t-2); %Create truth output
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];



Appl. Sci. 2021, 11, 4972 13 of 16

Algorithm A2 Cont.

phi=[phi; Y(t-1) Y(t-2) U(t-1) U(t-2)];
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’ + Noise(t-1) + Noise(t-2); %Create truth output
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];
phi=[phi; Y(t-1) Y(t-2) U(t-1) U(t-2)];
if (i > 3)

THETA_hat(:,i+1) = inv(phi’*phi)*phi’*Y(1+nzeros:t)’;
else

THETA_hat(:,i+1) = THETA_hat(:,i);
end
a1=-THETA_hat(1,i+1);a2=-THETA_hat(2,i+1);b0=THETA_hat(3,i+1);b1=THETA_hat(4,i+1);% Update A & B coefficients;
Af(:,i)=[1 a1 a2]’; Bf(:,i)=[b0 b1]’; % Store final A and B for comparison with real A&B to generate epsilon errors
% Determine R,S, & T for CONTROLLER
r1=(b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0=b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*a2-a1*a2-a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1=b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*am2*a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R=[1 r1];S=[s0 s1];T=BETA*[1 a0];

Rmatrix=[Rmatrix r1];

%calculate control signal
U(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t)=1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily increased to duplicate text

end

plotu = [plotu; U];
ploty = [ploty; Y];
plottheta = [plottheta; THETA_hat];
%%%%%%%%%%%%%%%%%%%END OF AUTOREGRESSIVE MOVING AVERAGE%%%%%%%%%%%%%%%%%%%

Algorithm A3 Extended Least Squares

%%%%%%%%%%%%%%%%%%EXTENDED LEAST SQUARES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=[0 0.1065 0.0902];A=poly([1.1 0.8]);
H=tf(B,A,0.5);
a1=0;a2=0;b0=0.01;b1=0.2;
Am=poly([0.2+0.2j 0.2−0.2j]);Bm=[0 0.1065 0.0902];
am0=Am(1);am1=Am(2);am2=Am(3);a0=0;

Rmatrix=[];

maxtime=200;

n=4;lambda=1;
nzeros=5;time=zeros(1,nzeros);Y=zeros(1,nzeros);Ym=zeros(1,nzeros);
U=ones(1,nzeros);
THETA_hat(:,1)=[-a1 -a2 b0 b1]’;beta=[];% Initialize P(to), THETA_hat(to) & Beta

Noise = 1/factor*randn(1,maxtime+nzeros);
epsilon=[zeros(1,nzeros+maxtime)];
n = 8;
P=10000*eye(n);P(1,1)=1000;P(2,2)=100;P(3,3)=100;P(4,4)=10000;P(5,5)=1000;P(6,6)=100;
theta_hat_els = zeros(n,1);
for i=1:maxtime;

phi=[]; t=i+nzeros; time(t)=i;
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’ + Noise(t-1) + Noise(t-2); %Create truth output
Ym(t)=[-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym(t-1) Ym(t-2) Uc(t-1) Uc(t-2)]’;
BETA=(Am(1)+Am(2)+Am(3))/(b0+b1); beta=[beta BETA];



Appl. Sci. 2021, 11, 4972 14 of 16

Algorithm A3 Cont.

k=i+nzeros;
phi=[Y(t-1) Y(t-2) U(t-1) U(t-2) epsilon(t) epsilon(t-1) epsilon(t-2) epsilon(k-3)]’;
K=P*phi*1/(1+phi’*P*phi);
P=P-P*phi*pinv(1+phi’*P*phi)*phi’*P;

error(i)=Y(k)-phi’*theta_hat_els(:,i);
theta_hat_els(:,i+1)=theta_hat_els(:,i)+K*error(i);
epsilon(k)=Y(k)-phi’*theta_hat_els(:,i+1); %Form Posterior Residual

THETA_hat(:,i+1) = theta_hat_els(1:4,i+1);
a1=-THETA_hat(1,i+1);a2=-THETA_hat(2,i+1);b0=THETA_hat(3,i+1);b1=THETA_hat(4,i+1);% Update A & B coefficients;
Af(:,i)=[1 a1 a2]’; Bf(:,i)=[b0 b1]’; % Store final A and B for comparison with real A&B to generate epsilon errors

r1=(b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0=b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*a2-a1*a2-a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1=b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*am2*a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R=[1 r1];S=[s0 s1];T=BETA*[1 a0];

Rmatrix=[Rmatrix r1];

%calculate control signal
U(t)=[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t)=1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily increased to duplicate text

end

plotu = [plotu; U];
ploty = [ploty; Y];
plottheta = [plottheta; THETA_hat];
%%%%%%%%%%%%%%%%%%%%%%%%%%END OF EXTENDED LEAST SQUARES%%%%%%%%%%%%%%%%%%%

Algorithm A4 Deterministic Artificial Intelligence

%%%%%%%%%%%%%%%%%%%%DETERMINISTIC
AI%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=[0 0.1065 0.0902];A=poly([1.1 0.8]);
H=tf(B,A,0.5); %Convert Plant [num] and [den] to discrete transfer function
Rmatrix=[];

%Create command signal, Uc based on Example 3.5 plots...square wave with 50 sec period

n=4;lambda=1; % number of parameters to estimate and Exponential Forgetting Factor
nzeros=5;time=zeros(1,nzeros);Y=zeros(1,nzeros);Ym=zeros(1,nzeros);%Initialize ouput vectors
U=ones(1,nzeros);

Noise = 1/25*randn(1,maxtime+nzeros);
epsilon=[zeros(1,nzeros+maxtime)];
n = 4;

phi_awr = [];
ustar = [];
hatvec = [];

t=[0:200];

hvy_m = [zeros(1,nzeros) traj_Uc];

eb = Y(1) - hvy_m(1);



Appl. Sci. 2021, 11, 4972 15 of 16

Algorithm A4 Cont.

err = 0;

kp = 2.0;
kd = 6.0;
phid = [];
ustar = [];
hatvec = zeros(4,1);
for i=1:maxtime+1; %Loop through the output data Y(t)

t=i+nzeros; time(t)=i;
de = err-eb;
u = kp*err + kd*de;
U(t-1) = u;
Y(t)=[-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’ + Noise(t-1) + Noise(t-2);
phid = [phid; Y(t) -Y(t-1) Y(t-2) -U(t-2)];
ustar = [ustar; u];
newest = phid\ustar;
hatvec(:,i) = newest;
eb = err;
disp(t);
err = hvy_m(t)-Y(t);

end

THETA_hat = [hatvec(2,:)./hatvec(1,:); hatvec(3,:)./hatvec(1,:); ones(1,201)./hatvec(1,:); hatvec(4,:)./hatvec(1,:)];
plotu = [plotu; U];
ploty = [ploty; Y(1:205)];
plottheta = [plottheta; THETA_hat];

%%%%%%%%%%%%%%%%%%%%%%%%%END OF DETERMINISTIC AI%%%%%%%%%%%%%%%%%%%%%%%%%

References
1. Liu, Z.; Zhuang, X.; Wang, S. Speed Control of a DC Motor using BP Neural Networks. In Proceedings of the 2003 IEEE

Conference on Control Applications, Istanbul, Turkey, 25–25 June 2003; pp. 832–835.
2. Mishra, M. Speed Control of DC Motor Using Novel Neural Network Configuration. Bachelor’s Thesis, National Institute of

Technology, Rourkela, India, 2009.
3. Hernández-Alvarado, R.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Gómez-Espinosa, A.; Fonseca-Navarro, F. Neural

Network-Based Self-Tuning PID Control for Underwater Vehicles. Sensors 2016, 16, 1429. [CrossRef] [PubMed]
4. Rashwan, A. An Indirect Self-Tuning Speed Controller Design for DC Motor Using A RLS Principle. In Proceedings of the 21st

International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December 2019; pp. 633–638.
5. Sands, T. Development of deterministic artificial intelligence for unmanned underwater vehicles (UUV). J. Mar. Sci. Eng. 2020,

8, 578. [CrossRef]
6. Sands, T. Control of DC Motors to Guide Unmanned Underwater Vehicles. Appl. Sci. 2021, 11, 2144. [CrossRef]
7. Keller, J. Navy Eyes Unmanned Underwater Vehicle (UUV) Weapons Payloads to Stop or Disable 160-Foot Ships at Sea. 24 May

2018. Available online: https://www.militaryaerospace.com/unmanned/article/16726886/navy-eyes-unmanned-underwater-
vehicle-uuv-weapons-payloads-to-stop-or-disable-160foot-ships-at-sea (accessed on 16 April 2021).

8. Rees, C. Maxon Launches High Torque DC Brushless Motors. 5 May 2015. Available online: https://www.unmannedsystemstechnology.
com/2015/05/maxon-launches-high-torque-dc-brushless-motors/ (accessed on 16 April 2021).

9. Underwater Thruster Propeller Motor for ROV AUV. Available online: https://www.alibaba.com/product-detail/underwater-
thruster-propeller-motor-for-ROV_62275939884.html (accessed on 16 April 2021).

10. Gauss, C. Theoria Motus Corporum Coelestum Werke, 1809. In Theory of the Motion of the Heavenly Bodies Moving about the Sun in
Conic Section; Davis, C.H., Translator; Dover: New York, NY, USA, 1963. Available online: https://doi.org/10.5962/bhl.title.19023
(accessed on 27 May 2021).

11. Gauss, C. Theoria Combinationis Erroribus. 1821, 1823a, 1826. In Theory of the Combination of Observations Least Subject to Errors;
Stewart, G.W., Translator; SIAM: Philadelphia, PA, USA, 1995.

12. Gauss, C. Minimis Obnoxiae, Parts 1, 2, and Supplement Werke 4, l-108, ~1803–1809 Disquisitiones de elementis ellipticis Pallidis Werke
6, l–24; Reprinted by Werke: Leipzig–Berlin, 1863–1933; Cambridge University Press: Cambridge, UK, 2013. Available online:
https://doi.org/10.1017/CBO9781139058247 (accessed on 27 May 2021).

http://doi.org/10.3390/s16091429
http://www.ncbi.nlm.nih.gov/pubmed/27608018
http://doi.org/10.3390/jmse8080578
http://doi.org/10.3390/app11052144
https://www.militaryaerospace.com/unmanned/article/16726886/navy-eyes-unmanned-underwater-vehicle-uuv-weapons-payloads-to-stop-or-disable-160foot-ships-at-sea
https://www.militaryaerospace.com/unmanned/article/16726886/navy-eyes-unmanned-underwater-vehicle-uuv-weapons-payloads-to-stop-or-disable-160foot-ships-at-sea
https://www.unmannedsystemstechnology.com/2015/05/maxon-launches-high-torque-dc-brushless-motors/
https://www.unmannedsystemstechnology.com/2015/05/maxon-launches-high-torque-dc-brushless-motors/
https://www.alibaba.com/product-detail/underwater-thruster-propeller-motor-for-ROV_62275939884.html
https://www.alibaba.com/product-detail/underwater-thruster-propeller-motor-for-ROV_62275939884.html
https://doi.org/10.5962/bhl.title.19023
https://doi.org/10.1017/CBO9781139058247


Appl. Sci. 2021, 11, 4972 16 of 16

13. Hamel, J. Heinrich Christian Schumacher-mediator between Denmark and Germany Center of Scientific Communication in
Astronomy. In Around Caspar Wessel and the Geometric Representation of Complex Numbers: Proceedings of the Wessel Symposium at the
Royal Danish Academy of Sciences and Letters, Copenhagen, 11–15 August 1998; Invited Papers; Videnskabernes Selskab: Copenhagen,
Denmark, 2001; pp. 99–120. Available online: http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2040-49/mfm-46-2.pdf (accessed on
29 April 2021).

14. Astrophysical Institute. Astronomische Nachrichten; Archived from the original on 28 June 2012; Astrophysical Institute: Potsdam,
Germany, 2012. Available online: https://onlinelibrary.wiley.com/loi/15213994/year/1823 (accessed on 29 April 2021).

15. Kalbfleisch, J. A Source Book of Mathematics; McGraw-Hill Book Company: New York, NY, USA, 1929; pp. 576–579.
16. Legendre, A. Notes on Nouvelles Methodes pour la Determination des Orbites des Cometes; Second supplement to the third edition of

Legendre (1805); Stigler; Ruger Legendre, H.A.; Walker, H.M., Translators; Courcier: Paris, France; McGraw-Hill: New York, NY,
USA, 1920. Available online: https://catalogue.nla.gov.au/Record/866184 (accessed on 27 May 2021).

17. Åström, K.; Wittenmark, B. On the Control of Constant but Unknown Systems. In Proceedings of the 5th IFAC World Congress,
Paris, France, 12–17 June 1972.

18. Åström, K.; Wittenmark, B. On self-tuning regulators. Automatica 1973, 9, 185–199. [CrossRef]
19. Åström, K.; Wittenmark, B. Adaptive Control; Addison-Wesley: Boston, FL, USA, 1995; pp. 43, 48, 63–65, 331.
20. Sands, T. Space System Identification Algorithms. J. Space Explor. 2018, 6, 138.
21. Sands, T. Nonlinear-Adaptive Mathematical System Identification. Computation 2017, 5, 47. [CrossRef]
22. Slotine, J.; Weiping, L.W. Applied Nonlinear Control; Prentice-Hall: London, UK, 1991; pp. 331, 365.
23. Fossen, T. Comments on Hamiltonian adaptive control of spacecraft by J.J.E. Slotine and M.D. Di Benedetto. IEEE Trans. Autom.

Control 1993, 38, 671–672. [CrossRef]
24. Sands, T.; Kim, J.; Agrawal, B. Improved Hamiltonian Adaptive Control of spacecraft. In Proceedings of the 2009 IEEE Aerospace

Conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–10. [CrossRef]
25. Shorey, T.; Tijdeman, R. Exponential Diophantine Equations. In Cambridge Tracts in Mathematics; Cambridge University Press:

Cambridge, UK, 1986.
26. Bézout, É. Theorie Generale Des Equations Algebriques (1779); Kessinger Publishing: Whitefish, MT, USA, 2010.
27. Bhau, D. Brief Notes on the Age and Authenticity of the Works of Aryabhata, Varahamihira, Brahmagupta, Bhattotpala, and

Bhaskaracharya. J. R. Asiat. Soc. G. B. Irel. 1865, 1, 392–418.
28. Schoukens, M.; Noël, J.P. Three Benchmarks Addressing Open Challenges in Nonlinear System Identification. In Proceedings of

the 20th World Congress of the International Federation of Automatic Control, Toulouse, France, 9–14 July 2017; pp. 448–453.
29. Sands, T.; Kim, J.; Agrawal, B. Spacecraft fine tracking pointing using adaptive control. In Proceedings of the 58th International

Astronautical Congress, Hyderabad, India, 24–28 September 2007; International Astronautical Federation: Paris, France, 2007.
30. Sands, T.; Lorenz, R. Physics-Based Automated Control of Spacecraft. In Proceedings of the AIAA Space Conference & Exposition,

Pasadena, CA, USA, 14–17 September 2009.
31. Sands, T.; Kim, J.J.; Agrawal, B.N. Spacecraft Adaptive Control Evaluation. In Proceedings of the Infotech@ Aerospace, Garden

Grove, CA, USA, 19–21 June 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012; pp. 2012–2476.
32. Smeresky, B.; Rizzo, A.; Sands, T. Optimal Learning and Self-Awareness versus PDI. Algorithms 2020, 13, 23. [CrossRef]
33. Guida, D.; Nilvetti, F.; Pappalardo, C.M. Parameter Identification of a Two Degrees of Freedom Mechanical System. Int. J. Mech.

2009, 3, 23–30.
34. Guida, D.; Pappalardo, C.M. Sommerfeld and Mass Parameter Identification of Lubricated Journal Bearing. WSEAS Trans. Appl.

Theor. Mech. 2009, 4, 205–214.
35. Heidlauf, P.; Cooper, M. Nonlinear Lyapunov Control Improved by an Extended Least Squares Adaptive Feed Forward Controller

and Enhanced Luenberger Observer. In Proceedings of the International Conference and Exhibition on Mechanical & Aerospace
Engineering, Las Vegas, NV, USA, 2–4 October 2017.

36. Baker, K.; Cooper, M.; Heidlauf, P.; Sands, T. Autonomous Trajectory Generation for Deterministic Artificial Intelligence. Electr.
Electron. Eng. 2018, 8, 59–68. [CrossRef]

37. Sands, T. Comparison and Interpretation Methods for Predictive Control of Mechanics. Algorithms 2019, 12, 232. [CrossRef]
38. Marusak, P.M. Numerically Efficient Fuzzy MPC Algorithm with Advanced Generation of Prediction—Application to a Chemical

Reactor. Algorithms 2020, 13, 143. [CrossRef]
39. Marusak, P.M. Advanced Construction of the Dynamic Matrix in Numerically Efficient Fuzzy MPC Algorithms. Algorithms 2021,

14, 25. [CrossRef]
40. Nebeluk, R.; Ławryńczuk, M. Tuning of Multivariable Model Predictive Control for Industrial Tasks. Algorithms 2021, 14, 10.

[CrossRef]
41. Pappalardo, C.; Guida, D. On the dynamics and control of underactuated nonholonomic mechanical systems and applications to

mobile robots. Arch. Appl. Mech. 2019, 89, 669. [CrossRef]
42. Pappalardo, C.M.; Guida, D. System Identification Algorithm for Computing the Modal Parameters of Linear Mechanical Systems.

Machines 2018, 6, 12. [CrossRef]
43. Bruzzone, L.; Fanghella, P.; Baggetta, M. Experimental Assessment of Fractional-Order PDD1/2 Control of a Brushless DC Motor

with Inertial Load. Actuators 2020, 9, 13. [CrossRef]

http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2040-49/mfm-46-2.pdf
https://onlinelibrary.wiley.com/loi/15213994/year/1823
https://catalogue.nla.gov.au/Record/866184
http://doi.org/10.1016/0005-1098(73)90073-3
http://doi.org/10.3390/computation5040047
http://doi.org/10.1109/9.250547
http://doi.org/10.1109/AERO.2009.4839565
http://doi.org/10.3390/a13010023
http://doi.org/10.5923/j.eee.20180803.01
http://doi.org/10.3390/a12110232
http://doi.org/10.3390/a13060143
http://doi.org/10.3390/a14010025
http://doi.org/10.3390/a14010010
http://doi.org/10.1007/s00419-018-1491-6
http://doi.org/10.3390/machines6020012
http://doi.org/10.3390/act9010013

	Introduction 
	Literature Review 
	Challenges 
	Motivation 
	Literature Gap 

	Developments Presented 

	Materials and Methods 
	Truth Model for Motor Dynamics 
	Model-Following Motor Control Design 
	Deterministic Artificial Intelligence Methodology 
	Analysis and Prediction 

	Results 
	Plant Parameter Estimation for Model-Following Benchmark 
	Adaption Using Model-Following and Various Parameter Estimation (Benchmarks) 
	Analysis 

	Discussion 
	
	References

