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Abstract: The aim of our study was to investigate the effect of muscle-specific fatigue of the quadri-
ceps and hamstring muscles on the biomechanical factors of anterior cruciate ligament (ACL) injury
using musculoskeletal modeling techniques during directional diversion maneuver. Fifteen female
subjects performed a directional diversion maneuver under three treatment conditions (quadriceps
fatigue, hamstring fatigue, and control gait). Data from the 3D motion capture system and force
platform were used to extract anterior/posterior ACL forces using the two-bundle ACL muscu-
loskeletal modeling approach. A decrease in maximum extension (51.3%) and flexion (50.7%) torque
after fatigue was observed. After quadriceps fatigue, the extension (p = 0.041) and adduction mo-
ments (p = 0.046) of the knee joint and the mean anterior bundle of ACL force (p = 0.021) decreased
significantly. The knee flexion angle (p = 0.003), knee valgus angle (p = 0.013), and shear force
(p = 0.043) decreased significantly after hamstring fatigue. The decrease in ACL force after quadri-
ceps fatigue confirms its significant role in causing an ACL injury. However, no significant differences
in ACL load after hamstring fatigue leads us to speculate that the antagonist muscle group, i.e., the
hamstring, might not have a preventive mechanism against ACL injury.

Keywords: ACL; biomechanics; musculoskeletal modeling; running; knee kinematics

1. Introduction

Muscular fatigue is one of the major causes of anterior cruciate ligament (ACL) in-
jury since fatigue adversely affects the somatosensory, proprioceptive, and muscular
systems [1–3]. The effect is particularly prevalent during a complex task requiring a quick
change in direction, such as directional diversion maneuver (DDM), which requires afferent
feedback from these systems [4]. Hence, the adverse effects of fatigue on these systems
may lead to a higher prevalence of ACL injury during DDM as it increases transitional and
rotational forces exerted by the ACL due to instantaneous positioning and orientation of
the lower limb [5,6].

Studies report that approximately 70% of ACL injuries are non-contact in nature, with
a three to four times higher prevalence among high school and collegiate age females than
men competing in the same sports [7–9]. Various studies on walking, running, cutting, and
landing have reported females exhibiting greater hip adduction and internal rotation with
decreased knee flexion compared to male counterparts [10–14]. Hence, the effect of fatigue
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along with unexpected perturbations may lead to insufficient neuromuscular control and
increase the risk of ACL injuries through increased knee valgus posture [15–17].

Biomechanical studies that analyzed postures with high ACL injury occurrence rates
reported that a knee joint shear force (Kneeshear) of 2000 N and an adduction moment of
125 Nm or more to be the injury threshold for ACL injury [18,19]. The quadriceps (QF) and
the hamstring (HA) muscles are the two major muscle groups of the femur that affect the
ACL load modulation; when fatigued, the risk of ACL injury is increased [20]. Numerous
studies have been carried out to evaluate the effect of fatigue of the thigh muscles on ACL
injury [21–23]. However, for most of these studies, fatigue was induced on thigh muscles
around the femur as a whole, making it difficult to distinguish the exact nature of the
muscle-specific relationship between QF and HA muscles with an ACL injury.

QF and HA muscle groups have a reciprocal function during ACL load modulation.
Several cadaveric and musculoskeletal modeling studies have shown that a strong con-
traction of the QF results in an increase in the ACL load due to an increase in anterior
shear force whereas, the co-contraction of the HA counteracts the anterior tibial shear
force, decreasing the ACL load [24–26]. During the vertical jump task, the co-contraction of
QF and HA has been reported to decrease peak anterior shear force by 292N and have a
protective effect on the ACL [27]. However, counter-arguments have been made about the
role of HA in inhibiting the increase in ACL load. Simonsen, et al. [28] reported that HA
does not play a role in ACL injury prevention due to its low activation during side-cutting
maneuvers. Hence, understanding the role of each muscle on ACL load modulation after
fatigue may help clinicians, trainers, and coaches create better ACL injury prevention
protocols for female athletic populations.

Sporting activities involving rapid deceleration, such as planting instant during a
DDM induce high impact and are significantly associated with different kinematics, kinetics,
and muscle activation patterns compared to low-impact movement such as walking [29,30].
Despite a need to accurately replicate the forces and moments that act on the knee joint
during high impact movement such as a DDM, there exist technical difficulties during
measurements and the risk of injury to the participants. These limitations can be over-
come by employing a musculoskeletal modeling (MSM) approach to estimate the ACL
forces [31–36] directly. The MSM approach utilizes subject-specific anthropometrics, in-
verse kinematics (position) and inverse dynamics (forces and moment), computation of
excitation of individual muscles, and forward dynamics to calculate ACL forces [29–31].
The physical characteristics of the muscles and tendons can be reflected in the MSM model
to estimate the force–length–velocity relationship of the muscles effectively. Therefore, the
purpose of this study was to investigate the effect of QF and HA fatigue on the ACL load
using a musculoskeletal modeling approach. Hence, we examine the effect of kinematic
and kinetic factors that lead to the changes in the ACL load due to muscle-specific fatigue
in females. We hypothesize that the factors affecting ACL injury after QF fatigue will
decrease compared to before QF fatigue and vice-versa in the case of HA fatigue.

2. Materials and Methods
2.1. Participants

A total of fifteen active female students enrolled in a sports science degree at a uni-
versity (age: 21.9 ± 1.79 years; height: 166.5 ± 6.35 cm; body mass (BM): 61.5 ± 7.51 kg;
body mass index: 22.2 ± 2.27 kg/m2) were recruited for the study. We used the sample size
referring to previous musculoskeletal modeling studies [19,32,33]. During the recruitment,
all participants were requested to complete the “modified Waterloo Footedness Question-
naire” which included the screening of the leg dominance (preference on kicking leg; right
foot) and inclusion/exclusion criteria [34,35]. Particularly, the medical conditions such
as any specific lower extremities muscular or joint injury for at least six months before
the experiment such as ACL rupture, ACL reconstruction surgery, lower back pain, and
medication conditions were collected. The self-reported physical activity participation
level was reported to be more than three times per week for 2 h a day. Informed consent
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regarding the procedure and risks involved in the study was signed by the participants,
which was approved by the Korea Institute of Sports Policy and Ethics Committee (IRB No.
KISS-1810-044-01).

2.2. Equipment

All the experiments were carried out in the same biomechanical laboratory equipped
with a temperature and humidity control system (PA030-A2ST-U; AR, KOR). A total of
18 infrared cameras (Qualisys, Oqus 7+, Gothenburg, Sweden) was used to collect the
motion data at a sampling frequency of 200 Hz. A force platform (Kistler Type 9287BA,
Winterthur, Switzerland) was used to measure the three directional forces (FX, FY, FZ) and
moments (MX, MY, MZ) at 1000 Hz. All data were acquired using Qualisys Track Manager
(ver.2.11, Gothenburg, Sweden) using an analog board for synchronization. An isokinetic
strength measurement system (Cybex human norm, Ronkonkoma, NY, USA) was used to
perform a knee flexion/extension task at a fixed angular velocity to induce targeted muscle
fatigue (QF and HA).

2.3. Experimental Procedure

The experimental protocol utilized to investigate muscle-specific fatigue on ACL
load is presented in Figure 1. A pre-post study design was selected to assess the effect of
treatment on selected parameters in the following order: (1) baseline measurement (pre-
DDM); (2) treatment: muscle-specific fatigue protocol (QF or HA fatigue), general warm-up
(control condition: 20 min walking); (3) post-measurement, i.e., after fatigue treatment (post-
DDM). Approximately 20 min was required to perform DDM after the fatigue treatment.
Hence, we asked the participants to walk for 20-min to give a light intensity warm-up [36].
All participants underwent three experimental conditions and visited the laboratory three
times. The order of the three treatments (QF or HA or control) was randomized, and the
participants had at least a seven-day interval between each treatment.

On the first day, the participants got informed regarding the task, goal, process,
and potential risks involved in the experiment. Then, the participants went through a
pre-structured warm-up routine for 30 min which involved whole-body stretching [37],
walking at preferred speed, performing five sprint runs on a straight pathway, and DDM
runs at a preferred speed for familiarization of the task. Then, standard laboratory attire
and shoes were provided to the participants. A total of 51 reflective markers were attached
to 19 joints and 27 tracking markers to different segments (for the detailed location of
markers: Supplementary Table S1) [38,39].

• Baseline measurement: Once the participants were ready, they performed three trials of
the pre-DDM task, which involved running at a speed of 4.5 ± 0.2 m/s, 5 m behind the
force platform, followed by a DDM on top of the force platform (Figure 2A). The trial
was valid only when the subject’s right foot gazed at the front and landed on the force
plate and with a left turn at a range of 35◦–55◦ in the direction of travel [6,18,19,40]. The
running speed was controlled using 2 timing gates (Witty Microgate, Bolzano, Italy).

• Treatment: Muscle-specific fatigue treatment was performed using an isokinetic
strength measurement system (Figure 2B) performing knee flexion/extension at a fixed
angular velocity. Initially, the subject’s reference value of the peak knee torque was
established, taking the average peak torque value of 3 trials of knee flexion/extension
at an angular velocity of 90 ◦/s. The reference value of the peak knee torque was
determined before the pre-DDM task. The fatigue task of the QF muscle involved
knee extension and flexion at a fixed angular velocity of 90 ◦/s and 300 ◦/s, respec-
tively, whereas the angular velocity for extension (300 ◦/s) and flexion (90 ◦/s) was
reversed for the fatigue task of the HA muscle [22,41]. The onset of fatigue was set
when the peak torque reached 50 ± 2% three times consecutively, with a two-minute
break between each trial [41,42]. Participants performed walking for 20 min at their
preferred walking speed to avoid any muscle injury during the post DDM trials for
the control condition.
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• Post measurement: During the muscle-specific fatigue protocol, the post-DDM task
was performed immediately once the knee peak torque drop was confirmed. For the
control treatment condition, participants performed a post-DDM task immediately
after completing the 20-min walk, using the same protocol as the pre-test DDM task.
Only the first successful trial was used for further analysis considering the fatigue
recovery period.
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Figure 1. Experimental protocol. (1) Warm-up, (2) baseline measurement: running with DDM at
4.5 m/s, (3) treatment (muscle specific: (i) knee strength measurement; (ii) fatigue treatment;
(iii) fatigue evaluation) (general fatigue: walking at preferred speed); (4) post-measurement: running
with DDM at 4.5 m/s. The order of the test (control vs. quadriceps fatigue (QF) vs. hamstring (HA)
fatigue) was randomized with at least 7 days interval between each condition.

2.4. Data Analysis

The raw signals obtained from the motion capture system and force platform were
filtered using a zero-lag 4th order Butterworth filter with a cut-off frequency of 15 Hz using
the visual 3D software (v5.01, C-Motion Inc., Rockville, MD, USA) [40]. Further, spline
interpolation was used to fill missing sections in the dataset.
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Figure 2. Experimental procedure. (A) Participants performing a direction diversion maneuver (DDM); (B) strength testing
and fatigue treatment using an isokinetic dynamometer; (C) the process of calculating ACL load using a musculoskeletal
modeling approach (MSM); (D) the MSM model used for the study. The open-source model provided in OpenSim (Stanford
University, Stanford, CA, USA); two-bundle Anterior Cruciate Ligament (ACL) inserted between the femur and tibia
(sagittal view).

2.4.1. ACL Model

The ACL load was calculated by inserting a two-bundle ACL model into an ex-
isting musculoskeletal model (Figure 2). A two-bundle ACL insertion is composed of
10 segments and has 23 degrees of freedom, with which a total of 92 muscles can be
analyzed [43]. However, this model was limited to only a single degree of freedom;
flexion/extension of the knee joint. We formulated a model that considered the flex-
ion/extension, adduction/valgus, and the internal/external rotation of the knee joint to
calculate the ACL load. In this study, the degree of freedom of the knee joint was increased
(flexion/extension: −120◦–+10◦, adduction/valgus: +15◦–−15◦, and internal/external
rotation: +30◦–−45◦) [30,44,45]. The ACL load was calculated using the OpenSim software
(version 3.3, Stanford University, Stanford, CA, USA).

2.4.2. Calculation of Kinematic and Kinetic Variables

The kinematic model was constructed based on the static standing calibration trial,
and the joint center locations were estimated using the mid-point estimation method.
The maximum and mean values for different parameters were computed using inverse
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kinematics and dynamics algorithms at the landing phase, i.e., when the subject’s foot
contacted the force plate during the DDM and was identified using the vertical direction
force (Fz). The variables were also normalized with body mass and height for inter-subject
comparability. The parameters computed for further analysis are as follows:

• Center of mass (COM): based on the location of COM of each segment expressed
in meters (m); COM velocity is the first derivative of COM expressed in meters per
second (m/s).

• Knee angle (kneeang (◦)): refers to the flexion, valgus, and external rotation angles
expressed in degrees (◦).

• Knee joint force (NN/kg): anterior tibial shear force (kneeshear), normalized shear
force; normalized to body mass.

• Knee torque (kneeptorque) (Nm): mean and peak knee torque for flexion and extension
expressed in newtons per meter.

• Knee moment (kneemom) (Nm, Nm/(kg ∗ HT)): extension, adduction, internal rotation;
All moments computed in the study are defined as internal moment and normalized
with body height and mass.

• ACL forces (N, N/kg): maximum anterior ACL (aACL) and posterior ACL (pACL)
force, mean aACL and pACL force, and all forces were normalized to the body
mass [31]. A detailed explanation of the steps involved to calculate the ACL load can
be referred to in our previous study [30].

2.5. Statistical Analysis

All the data are presented as mean and standard deviation (SD). The normal distribu-
tion of data was determined using the Shapiro–Wilk test. The reliability of measurements
was calculated using the Intraclass Correlation Coefficient (ICC) [46]. Two-way repeated-
measures analysis of variance (ANOVA) was used for three fatigue conditions (QF muscle
fatigue, HA muscle fatigue, control) and two measurement time points (pre-DDM and
post-DDM) for each of the dependent variables (COMvelocity, kneeangle, kneeforce, kneemom,
aACL, and pACL load). Bonferroni correction was performed as the post hoc test, and
the statistical significance levels were set to α = 0.05. Effect sizes were calculated for the
measured variables and interpreted according to Cohen: trivial (0–0.2), small (0.2–0.5),
moderate (0.5–0.8), large (>0.8) [47]. All statistical analyses were performed using SPSS
23.0 (IBM, Chicago, IL, USA).

3. Results

The extension kneeptorque decreased by 51.3 ± 0.5% after an average of 15.5 ± 5.3 repe-
titions post-QF fatigue (pre-QF fatigue: 146.2 ± 23.9 Nm; post-QF fatigue: 74.9 ± 12.6 Nm).
The average flexion kneeptorque across subjects decreased by 50.7 ± 4.3% after an average of
18.9 ± 4.0 repetitions post-HA fatigue (pre-HA fatigue: 66.3 ± 14.3 Nm; post-HA fatigue:
33.6 ± 5.9 Nm). Hence, the fatigue condition performed in this study resulted in a decrease
in peak knee torque within the range of 50.0 ± 2.0%. Therefore, an adequate amount of
fatigue was induced (Table 1).

Table 1. Results of quadriceps (QF) and hamstring (HA) fatigue protocols.

Pre (Nm) Post (Nm) Repetition
(Frequency) Ratio (%)

QF fatigue 146.2 ± 23.9 74.9 ± 12.6 15.5 ± 5.3 51.3 ± 0.5
HA fatigue 66.3 ± 14.3 33.6 ± 5.9 18.9 ± 4.0 50.7 ± 4.3

In the force platform foot landing phase, COMvelocity according to the fatigue condition
and the measurement time point was not statistically significant. There was no significant
interaction effect, so it can be confirmed that the running speed was controlled throughout
the experimental conditions (Supplementary Table S2). The flexion kneeangle significantly
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reduced in the case of the post-DDM for HA fatigue compared to post-DDM for QF fatigue;
(F (1,14) = 5.569; p = 0.012) (Figure 3). Further, the pairwise comparison showed that there
was a significant reduction in flexion kneeangle post-DDM task for HA fatigue condition;
(F (1,14) = 13.209; p = 0.003). The interaction effect was observed due to a decrease in
flexion kneeangle post-DDM for HA fatigue condition compared to the rest of the conditions
(F (1,14) = 6.683; p = 0.004; d = 0.938, ICC = 0.900). The pairwise comparison of the valgus
kneeangle also showed a significant reduction in the valgus kneeangle post-DDM for HA
fatigue condition (F (1,14) = 8.024; p = 0.013, ICC = 0.958). However, no significant differences
were observed in the external rotation kneeangle depending on the fatigue condition and
measurement time point.
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Figure 3. The mean and standard deviation of calculated variables. (A) Knee flexion angle; (B) knee
valgus angle; (C) BM normalized knee joint adduction moment; (D) BM normalized knee joint
extension moment; (E) BM normalized knee joint shear force; (F) normalized mean anterior ACL
force. Pre-DDM condition in black, post-DDM in gray-dhaded. Significant differences between
treatment conditions are denoted by asterisks (for detail, see Supplementary Table S2).

There was no significant interaction effect on the kneeshear and the normalized
kneeshear based on the fatigue conditions and measurement time points. The pairwise
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comparison showed that there was a significant reduction in kneeshear (F (1,14) = 4.972;
p = 0.043, ICC = 0.907) and the BM normalized kneeshear (F (1,14) = 4.947; p = 0.043,
ICC = 0.906) only in the case of the post-DDM for the HA fatigue condition compared to
the pre-DDM. There was no significant interaction effect based on the fatigue condition
and measurement time point for the extension, BM normalized extension, adduction, BM
normalized adduction, internal rotation, and BM normalized internal rotation components
of kneemom. The pairwise comparison resulted in a significant reduction in the extension
kneemom (F (1,14) = 5.603; p = 0.033, ICC = 0.905), BM normalized extension (F (1,14) = 4.808;
p = 0.046, ICC = 0.902), adduction kneemom (F (1,14) = 6.187; p = 0.026, ICC = 0.916), and
BM normalized adduction kneemom (F (1,14) = 5.995; p = 0.028, ICC = 0.918), in the case
of the post-DDM for the QF fatigue condition compared to the pre-DDM. Also, the pair-
wise comparison resulted in a significant reduction in adduction kneemom (F (1,14) = 8.493;
p = 0.011, ICC = 0.918) and BM normalized adduction kneemom (F (1,14) = 8.360; p = 0.012,
ICC = 0.918) in the case of the post-DDM for the control condition compared to the pre-
DDM task.

In the case of the ACL force, there was a significant interaction effect between fatigue
condition and the measurement time point for the mean aACL force (F (1,14) = 3.768;
p = 0.045; d = 0.878, ICC = 0.858), and BM normalized mean pACL force (F (1,14) = 3.410;
p = 0.048; d = 0.174, ICC = 0.885). The pairwise comparison resulted in a significant
reduction in the mean aACL force (F (1,14) = 6.803; p = 0.021, ICC = 0.858) and the BM
normalized mean aACL force (F (1,14) = 4.921; p = 0.044, ICC = 0.931) in the case of the
post-DDM for the QF fatigue condition compared to the pre-DDM.

4. Discussion

The study aimed to evaluate the effect of muscle-specific fatigue of the QF and HA
on the factors related to ACL injuries such as ACL load, knee angle, force, and moment
during the DDM task. Therefore, we hypothesize that the factors affecting ACL injury after
QF fatigue will decrease compared to before QF fatigue and vice-versa in the case of HA
fatigue. It was confirmed that QF is the major muscle causing ACL injury since ACL load
increased significantly after QF fatigue. However, the ACL load after HA fatigue did not
significantly decrease, which leads us to speculate that HA might not have a preventive
mechanism against ACL injury.

According to DeMorat, et al. [48], the ACL load varies according to the knee angle,
with the highest load being observed at 30◦ starting from a fully extended knee at 0◦.
Also, it was reported that the ACL load increases as the valgus and internal rotation of
the knee joints increases. Particularly, studies conducted on women showed that the knee
joints appear to be abducted up to 20◦ in DDM and landing movements [5,18]. There
was a significant reduction in the maximum flexion kneeangle and knee valgusangle after
HA fatigue in this study. An in-vivo study reported that modification to the tibiofemoral
kinematics and its moment arm affects the activation of the hamstrings [49]. Additionally,
in a closed kinematic chain, the decrease in the knee flexion angle also decreases the hip
flexion angle. Since HA has a more significant mechanical advantage at the hip joint than
at the knee joint, HA fatigue would decrease the hip and knee flexion angles [50]. This
would result in the reduction of the muscle activation requirement on the HA muscle group.
Further, a smaller moment arm of the HA at the knee would reduce torque, and the HA
muscle group would not produce enough ACL shear forces at the knee joint to prevent
ACL injury. Hence, it is considered that a direct relationship of change in knee kinematics,
particularly during a dynamic activity such as DDM, may not be enough to confirm its
effect on ACL load from this study.

During DDM, the shear force acting forward from the proximal direction of the tibia
has been reported to cause ACL injury if the force exceeds 2000 N or more [26]. Numerous
studies on the relationship between the contraction of QF and ACL load have reported that
a strong contraction of QF in an extended knee position can increase the ACL load and the
anterior tibial shear [26,48] whereas, co-contraction of the HA was reported to suppress
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the increase in ACL load by offsetting the anterior tibial shear force [24,26,51]. However,
the results of this study did not show statistically significant differences in the maximum
kneeshear in all three conditions (post-HA, post-QF, and control). Also, the maximum knee
shear force was significantly lower after HA fatigue when comparing differences between
pre and post DDM. Consequently, the mechanism by which HA reduces ACL load needs
to be reconsidered since there was a reduction in kneeshear after the fatiguing protocol in
this study which contradicts the findings of previous studies; co-contraction between HA
and QF results in a reduction of the kneeshear [24–26,28].

In order to evaluate the cause of ACL injuries, the moment acting on the knee joint
must be considered [18,52]. Tsai et al. reported that the risk of ACL injury increases with
an increase in the knee valgus angle, medial rotation angle, and adduction moment after
fatigue during a squat jump [2]. Another study evaluating the effect of muscular fatigue on
different movements by Zebis et al. reported a low activation of the QF and HA muscles
with a gradual decrease in the activity of HA during DDM [23]. The study suggested
that this reduction in HA activity after acute fatigue may increase the possibility of ACL
injury during sporting situations. In this study, there was a reduction in the knee joint’s
maximum extension and adduction moment after QF fatigue. In contrast, no significant
difference in knee moment was observed after HA fatigue. Hamstring activation has been
known to provide a posterior force to protect the ACL damage when landing with a larger
knee flexion angle [24]. However, when the hamstring is fatigued after repeated knee
extension and acts as an antagonist, a decrease in the resultant joint moment has been
reported [53]. This reduced activation of the hamstring with knee moment is considered to
have a reduced effect on ACL loading. The results of these studies show similarities to this
study, which did not show a substantial change in knee moment after hamstring fatigue.

The ACL load calculated during the DDM task in previous studies was limited to a
1-bundle ACL model [30,44,45]. Although another preceding study has used a two-bundle
ACL model, the simulation was limited to evaluate the knee flexion and extension during
gait and could be hardly used for an actual sporting condition [54]. Therefore, in this study,
the load of aACL and pACL was calculated by inserting a two-bundle ACL model into
the musculoskeletal modeling system, which was used to analyze directional diversion
and landing maneuver [21,45,54]. In this study, maximum aACL and pACL force after QF
and HA fatigue did not show significant changes. Although a significant reduction in the
mean aACL after QF fatigue at the landing phase was observed, no significant changes in
components of ACL force after HA fatigue were observed. Thus, although the hypothesis
that the reduction in the ability of the neuromuscular system to produce force due to
fatigue in QF could reduce ACL loads was indirectly proven, the hypothesis that fatigue of
the HA muscle group would increase the ACL load could not be accepted. Therefore, the
results of this study should be interpreted with caution, while more research is needed to
reach certain conclusions. Nevertheless, we suggest coaches develop training methods that
include strategies to reduce the eccentric contraction of quadriceps through knee flexion
when performing movements with a sudden change in direction, such as DDM.

To our knowledge, no prior studies have analyzed the effect of muscle-specific fatigue
of QF and HA muscle groups and its relation to the ACL injury on a dynamic motion
such as DDM. Nevertheless, gait after QF fatigue has been reported to increase the knee
external rotation angle and abduction moment [55]. Another study conducted on the effect
of fatigue on lower extremities muscles during squat jump reported an increase in the
knee joint’s external and internal rotation angles and the adduction moment, which could
increase the risk of ACL injury [2]. Although there are differences in the kinematics of the
movement performed, these changes may attribute to the decrease in the neuromuscular
ability of QF after fatigue, thereby reducing the factors related to increased ACL load such
as extension moment and adduction moment of the knee joint.

There are three primary limitations associated with this investigation. First, the
fatigue protocol utilized for the thigh muscles around the femur in this study involved only
flexion/extension of the knee joint. Therefore, the relationship of factors associated with
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the ACL injury after fatiguing the rotational component of the femur (adduction, valgus,
internal/external rotation) could not be identified. Further, future research can consider
using the fatiguing protocol with the rotational treatment to observe its effect on the factors
of an ACL injury. Secondly, we were not able to measure the muscle activity of QF and HA
during DDM. The EMG sensor had to be attached before the fatigue condition, or else the
delay in attachment could show a sign of recovery. However, as the isokinetic strength
measurement system was used to induce fatigue in this study, the sensor could not be
attached because subjects complained of pain at the sensor attachment site when strong
pressure was applied. Therefore, if a fatigue-induced protocol that minimizes interference
from the EMG sensor is developed in the future, it will increase our understanding of
muscle activation and ACL load. Finally, the participants recruited in our study were
recreationally active females. Further, research on female elite athletes from diverse sports
backgrounds (strength-oriented–endurance) or levels of training experience could provide
useful insight on the ACL injury mechanisms.

5. Conclusions

Although the ACL load after the HA fatigue did not show statistically significant
differences, there was a significant reduction in ACL load after QF fatigue. This reduction
of the neuromuscular system capacity of QF after fatigue reconfirms the previous findings
that QF is the major muscle group causing ACL injuries by reducing the extension and
adduction moment of the knee joint and thereby increasing the ACL load. Cautiously,
we may indirectly deduce that HA might not have a preventive mechanism to reduce
the risk of ACL injury even though there was a reduction in the knee valgus angle and
anterior tibial shear force after HA fatigue. Hence, in our study, we indirectly confirmed
the role of the QF and HA in increasing the risk of ACL injury using musculoskeletal
modeling approaches.
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