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Abstract: Conductive oxides are widely studied as cathode materials for electrochemical cells, such
as solid oxide fuel cells (SOFCs), because of their chemical stability and high electrical conductivity
at high temperatures (800–950 ◦C). The cathode is a key component of SOFCs, accounting for the
greatest resistance loss among the SOFC components. It is important to precisely determine the
conductivity of the cathode material, but it is difficult to achieve consistency among measurements
because of errors caused by differences in the measurement methods and conditions employed by
various research teams. In this study, the total electrical conductivity of an SOFC cathode material
was measured by the DC 4-point method by investigating the geometrical parameters of the sample
and the measurement terminal and the measurement device using La0.8Sr0.2MnO3+d (LSM). The
measurement variables included the spacing between the measurement terminals (1 and 2 cm), lead
wire diameter (0.25 and 0.5 mm), specimen thickness (3, 4, and 5 mm), and the applied current (10,
50, and 100 mA). The larger the spacing between the measurement terminal and the thinner the
specimen, the smaller the standard deviation.

Keywords: solid oxide fuel cell cathode; conductive fine ceramics; LSM; DC 4-terminal method; total
electrical conductivity

1. Introduction

A fuel cell is a high-efficiency, eco-friendly power generation device that electrochemi-
cally converts chemical energy into electrical energy. Solid oxide fuel cells (SOFCs) operate
at high temperatures (800–1000 ◦C) because the cathode, anode, and electrolyte are all
made of ceramic materials, and SOFCs exhibit fuel flexibility and a high efficiency of over
80% without the use of noble metal catalysts such as Pt and Au [1–3]. As the demand
for eco-friendly, high-efficiency electrochemical systems such as water electrolysis cells
and metal smelting processes continue to increase, the application of conductive ceramic
materials is expected to expand [4,5].

The efficiency of SOFCs is known to be influenced by the electronic conductivity of the
cathode and anode and the oxygen ionic conductivity of the electrolyte [6,7]. The cathode
material is essential in SOFC systems and can affect the output of the system [8,9]. Among
the various characteristics of cathode materials for SOFCs, the total electrical conductivity
plays an important role in enabling the oxygen reduction reaction (ORR) electrochemical
catalyst to exhibit catalytic activity over the entire area of the material, and it is known
that the conductivity of the cathode material is preferred to be more than 100S/cm. [10,11].
Accordingly, it is important to accurately and precisely measure the electrical conductivity
of a material.
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Methods of measuring the total electrical conductivity of conductive oxide materials
include the DC 2-point method and the DC 4-point method. In the DC 2-point method
(Figure 1a), current flows through two electrodes connected to the specimen, and the
resistance of the specimen is also quantified through a voltmeter-connected electrode
parallel to the circuit. The measured value is not an accurate reflection of the true value
because of the contact resistance caused by the oxide film on the specimen surface and the
resistance of the electrode itself. On the other hand, in the case of the DC 4-point method,
the current flowing into the measuring electrode flows on the pA level, so that measurement
errors can be greatly reduced because the electrodes that pass current through the specimen
and the electrodes that measure voltage are separated, as shown in Figure 1b [12]. The
obtained data may not be consistent for various research teams owing to differences in
the measurement conditions, etc. Additionally, it is known that the conductivity of the
materials is affected by the fabrication method [13,14]. Different fabrication methods result
in different grain sizes that affect the contributions of the grains and grain boundaries [13],
as well as in the presence or absence of undesirable secondary phases [14].
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Figure 1. The comparison between DC 2-point method (a) and DC 4-point method (b).

If the conductivity measurement method using the DC 4 point-probe method for
conductive ceramics, including SOFC cathode materials, is standardized, data reliability
and compatibility between research groups can be improved. Herein, we investigate and
optimize various measurement conditions and techniques for the DC 4-electrode measure-
ment method to obtain precise and accurate electrical conductivity data for conductive
ceramics. The source of the error for each condition is identified.

2. Materials and Methods

Two types of La0.8Sr0.2MnO3+δ powder (LSM82-N, K-ceracell, Korea and LSM20-
HP, Fuelcellmaterials, USA) were uniaxially pressed at a pressure of 144.92 MPa to form
a bar-type green body. The green bodies were sintered at 1400 ◦C for 4 h to obtain a
3 × 5.5 × 40 mm3 specimen, which was ground to dimensions of 3 × t × 40 mm3 (where t
is the thickness, Figure 2) using a low-speed cutting tool (Minitom, Struers). The surface
of the ground specimen was polished with #1200 and #1500 sandpaper; the measurement
conditions are shown in Table 1.
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Figure 2. Schematic diagram of specimen.

Table 1. Experiment variables of DC 4-point method.

Variables Dimension

Width (w) 3 mm

Sample thickness (t) 3, 4, 5 mm

Spacing between the measurement terminals (L) 10, 20 mm

Diameter of lead wire (φ) 0.25, 0.50 mm

Applied current (I) 10, 50, 100 mA

The crystal structures of the two powders used in the experiment were measured
at intervals of 0.02◦/2θ in the 2θ range of 10–90◦ using powder X-ray diffraction (XRD
PANalytical X’pert-Pro MPD PW3040/60, Malvern Panalytical, Almelo, Netherlands).
The surface morphology of the polished specimens was confirmed using field-emission
scanning electron microscopy (FE-SEM, Hitachi S-4800, Hitachi, Tokyo, Japan).

To measure the overall conductivity, two Pt wires were fixed around the edge of the
specimen, and the other two were fixed around the center of the specimen. To calculate
the spacing (L) of the inner Pt wire and the cross-sectional area (A) of the specimen, the
width and height were measured using a Vernier caliper. The specimen was fixed in a
tube furnace, heated at a rate of 10 ◦C min−1 to the desired temperature, and maintained
for approximately 10 min. Finally, the two outer wires were connected to a DC power
supply (Keithley 2400) to pass a constant current, and the two inner wires were connected
to a digital multimeter (Agilent 34401A digital multimeter) to measure the potential. The
measurement conditions are listed in Table 1. Using the dimensions of the test specimen,
the applied current, and the measured voltage, the total conductivity of the specimen was
calculated using Equation (1) (Where, σ is the conductivity of the specimen (S/cm), V is
the measured voltage (V), and A is the cross sectional area of the specimen (cm2); the other
variables are described in Table 1 [15].

σ =
L

R × w × t
=

I × L
V × A

(1)

3. Results

Figure 3 shows the X-ray diffraction pattern of the sintered specimens of LSM_F and
LSM_K. For the XRD patterns of LSM_F and LSM_K in Figure 3, all peaks were indexed
to the La0.8Sr0.2MnO3 (LSM) perovskite structure, and no secondary phase was observed.
Both LSM_F and LSM_K had the same crystal structure as La0.8Sr0.2MnO3 (ICSD 98-005-
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1655), with the R-3m hexagonal structure. Figure 4a,b shows the surface morphology of the
sintered body. Both specimens had a density and porosity of about 6.4g/cm3 and 0.09%,
respectively. The grain sizes were calculated as 3.29 µm for LSM_K and 2.74 µm for LSM_F,
according to the Scherrer equation, which corresponded to SEM image. Therefore, it is
expected that the difference between the measured values for the two samples will be
minimized. Factors that can affect the DC 4-point measurement method are the shape
of the specimen, the distribution of defects within the specimen, the contact between the
lead wire and the specimen, and the offset of the measuring device, having excluded the
characteristics related to the crystal structure and microstructure of the sample.
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The effect of the spacing between the lead wires on the conductivity was evaluated,
as shown in Figure 5. The conductivity of each specimen with spacings of 1 cm and 2 cm
were calculated after fixing the specimen thickness (5 mm), lead wire diameter (0.50 mm),
and applied current (50 mA). Both specimens showed a value of approximately 200 S/cm
at 900 ◦C, which is similar to that of LSM, as shown in Table 2. In the case of LSM_F, the
average and standard deviation value at 900 ◦C, which is the operating temperature of
LSM, was 187.34 ± 20.31 S/cm for the 1 cm electrode spacing and 210.54 ± 11.28 S/cm
for the 2 cm electrode spacing. For LSM_K, the average and standard deviation value was
201.97 ± 13.74 S/cm at 1 cm and 204.85 ± 8.00 S/cm at 2 cm, and both specimens had a
smaller standard deviation of conductivity at 2 cm. It is considered that a wider spacing of
the lead wires is advantageous for more evenly included defects such as grain boundaries
and pores, which are randomly distributed in the specimen.
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Table 2. Literature review on Electrical conductivity of LSM.

Material
Electrical

Conductivity at 900 ◦C
(S/cm)

Fabrication Method Sintering Condition
(Temperature, Hour) Reference

LSM82 209 Acetate aqueous
solution 1400 ◦C [16]

LSM73 235 Commercial 1450 ◦C, 5 h [17]

LSM82 270 Commercial 1300 ◦C, 5 h [18]

LSM82 229
(800 ◦C, Van der Pauw) Sol-gel method 1050 ◦C, 2 h

(Brush coating) [19]

LSM82 190 ECCP 1250 ◦C, 4 h [20]

To evaluate the effect of the contact between the specimen and the lead wire, the
conductivity of each specimen according to the diameter of the lead wire was determined,
as shown in Figure 6, where the specimen thickness (5 mm), the lead wire spacing (2 cm),
and the applied current (50 mA) were fixed. When the thickness of the lead wire in LSM_F
was 0.50 mm, the average and standard deviation value was 210.54 ± 11.28 S/cm, and for a
thickness of 0.25 mm, the average and standard deviation value was 207.86 ± 12.97 S/cm.
For both specimens, the standard deviation of the conductivity was smaller for the lead
wire thickness of 0.50 mm. When the lead wire is thick, there is a smaller deviation
because the lead wire of 0.50 mm can make more stable contact with the sample than the
0.25 mm counterpart.
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To evaluate the effect of the cross-sectional area of the specimen, the conductivity
was measured by changing the thickness of the specimen to 5 mm, 4 mm, and 3 mm
with a lead wire spacing of 2 cm, lead wire diameter of 0.50 mm, and applied current of
50 mA (Figure 7). For LSM_F and LSM_K, the standard deviation gradually decreased
from 11.21 S/cm and 8.37 S/cm to 3.36 S/cm and 0.35 S/cm, respectively. In both cases,
the conductivity had a smaller standard deviation as the cross-sectional area of the sample
decreased. It was determined that the deviation of the measured value decreased as the
cross-sectional area became thinner due to the decreased number of defects in the sample
after passing through the grinding and polishing process.
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The geometric parameters of the specimen and lead wire were fixed by the specimen
thickness of 3 mm, lead wire spacing of 2 cm, and lead wire diameter of 0.5 mm. The
conductivity was measured to consider the effect of the measurement device by varying
the applied current (10, 50, and 100 mA, Figure 8). For an applied current of 10 mA,
the average and standard deviation value in the conductivity of LSM_F and LSM_K was
206.11 ± 4.78 S/cm and 192.76 ± 9.92 S/cm, respectively. When the applied current was
increased to 100 mA, the standard deviation in the conductivity of LSM_F and LSM_K
decreased 2.35 S/cm and 0.39 S/cm, respectively. This is because the influence of the
offset value when the current is not applied gradually decreases as the applied current
increases. Based on these results, more precise and accurate measurement values can be
obtained when using the 4-electrode method to investigate the conductivity of a conductive
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ceramic bulk sample by employing a longer distance between the lead wires for the voltage
measurement, thinner sample, and larger applied current.
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4. Conclusions

In this study, the DC 4-point method using La0.8Sr0.2MnO3+d (LSM) was optimized
in terms of the geometrical relationship between the sample and the lead wire used for
measurement and the measurement device. The control variables were the distance of
the lead wire (1 cm, 2 cm), the diameter of the lead wire (0.25, 0.5 mm), the thickness of
the specimen (3, 4, 5 mm), and the applied current (10, 50, 100 mA). When the lead wire
diameter was varied, the standard deviation was 11.21 S/cm at 0.5 mm and 13.06 S/cm at
0.25 mm. Compared to other variables, it was determined that the diameter of the lead wire
did not significantly affect the precision of the experiment. When the spacing between the
lead wires was 2 cm and the specimen thickness was 3 mm, the smallest standard deviation
(0.35 S/cm) was observed, which means that the experimental conditions that minimize
defects in the sample and include all the defects are more advantageous experimental
conditions. In addition, the larger the applied current, the smaller the deviation, which
was found to be less affected by the offset of the device.
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