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Abstract: One of the problems in the development of multi-robotic systems is the safe navigation
of a group of robots. To solve it, the restrictions imposed by the structural elements of its agents
are determined. The article presents a multi-robotic system consisting of parallel and serial robots
installed on mobile platforms. The parallel robot is made based on a tripod with the ability to rotate
the robot’s base relative to the horizontal axis. The analysis of its working and technological area is
carried out, taking into account singularity zones. The developed algorithms for determining the
workspaces are based on deterministic methods for approximating the set of solutions to systems of
nonlinear inequalities. In this case, restrictions in spaces of different coordinates are presented in the
form of n-dimensional boxes. Approaches to solving two problems are proposed to determine the
possible intersection of links for the collaborative performance of tasks by a multi-robotic system.
The first task is to determine the intersection of the links for the given positions and the relative
position of the manipulators. The second is in determining the minimum distance between the
technological areas of manipulators, which consist of the workspace and all possible positions of the
intermediate links.

Keywords: multirobot system; workspace; link interference; parallel robot; collision-free workspace

1. Introduction

Currently, an important and relevant area for solving many practical problems is
multi-robotic systems. These systems have found applications in broad areas, including
military surveillance, reconnaissance, rescue operations, warehousing, air traffic control,
cluster telescopes, satellite formations in search and rescue operations, and the formation
of autonomous unmanned aerial vehicles (UAVs). A multi-robotic multi-agent system can
be described as a group of intelligent robots (agents) capable of interacting with each other
and jointly to implement various tasks [1]. Interest in the problem of coordinating the
movement of a large number of mobile autonomous vehicles through distributed control
has raised several questions about the formation, maintenance, and modification, in real
time, of vehicles of all types and has been investigated by many scientists. So, in some
particular work [2], the distributed structural stabilization of the formations of a set of
vehicles is considered using the structural potential functions obtained from the graphs of
the formation of vehicles. In [3], an artificial potential function (APF) approach for reservoir
control was considered. The formulation of the coordination problem and the presentation
of feedback laws for solving problems with local information are discussed in [4]. If there
is a communication channel between two group members, then both members gain access
to each other’s information. This bi-directional communication leads to the creation of a
special interconnection structure. Using this structure, a design method has been developed
that achieves passivity and, therefore, stability of an interconnected system. There are
several approaches to solving the formation control problem, such as behavior-based
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control [5], virtual structure-based control [6], and follower–leader control [7]. In [8], rigid
and consistent education constraints are considered that can be modeled using directed
graphs. One can also highlight the work on the formation of a circular structure. So, in [9],
the control of the formation of a circular structure and the corresponding control law for its
achievement are presented.

Safe navigation of a group of robots and the determination of the workspace of
each of the robots are important tasks when building a control system for a multi-robotic
system. To solve these problems, it is required to determine the constraints imposed by the
structural elements of its agents. To exclude collisions between agents and external objects,
it is necessary to determine the boundaries of the technological space of robots during
movement, taking into account the geometric parameters and configuration of robots.
Many scientists have proposed methods for constructing the workspace of robots [10–12].
A simple depiction of constraints was considered in [13] for a planar 3-RPR mechanism.
The study of interval analysis as an effective tool for approximating the workspace is
shown in [14–16]. Algorithms based on deterministic methods for approximating the
set of solutions to systems of nonlinear inequalities can be effectively used to determine
the workspace. The use of deterministic optimization algorithms based on the concept
of nonuniform coverings [17] to determine the workspace of parallel robots is presented
in [18,19]. Let us consider applying an approach based on the concept of nonuniform
coverings to determine the working and technological areas of robots that are part of a multi-
robotic system and then identify the positions at which a collision of robots is possible.

The paper is organized as follows—Section 2 presents a conceptual model of a multi-
robotic system. The kinematic relationships of the parallel manipulator are presented in
Section 3. The developed approach to determining the intersections of links is considered in
Section 4. An algorithm is described for implementing the developed approaches to deter-
mining the workspace, taking into account the interference of links in Section 5. Section 6
shows the results of simulation of the workspace and technological space of the parallel
manipulator, taking into account the rotation of the movable platform. Section 7 considers
the determination of the workspace and technological space of the serial manipulator.
Two problems were solved relating to the interference of manipulator links as part of a
multi-robotic system in Section 8. The first problem is solved for the given positions of
each of the manipulators, and the second is taking into account all the achievable positions
of the manipulators using the technological spaces defined in the previous sections. A
discussion on the results is provided in Section 9.

2. Formulation of the Problem

Consider a multi-robotic system with a heterogeneous structure that consists of par-
allel and serial robots installed on mobile platforms (Figure 1). A planar serial robot
(Figure 1a) contains a horizontal base 1, which is pivotally connected at point A′ with a
serial manipulator 2 with rotary joints having a gripper at the end. The parallel robot
(Figure 1b) is made in the form of a tripod with the ability to rotate the base relative to the
horizontal axis. It contains a movable horizontal base 4, which is pivotally connected to
the vertical base 5 with the possibility of its deviation from the vertical. The vertical base 5
has a drive 6. On the vertical base 5, a tripod 7 is installed. The end effector 8 is hingedly
mounted on the working platform 9 of tripod 7 with the possibility of rotation about an
axis perpendicular to the working platform 9 of the tripod. On the platform of the tripod, a
drive 10 is installed, which ensures the rotation of the end effector 8. The grip 11 is fixed at
the free end of the end effector 8.
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Figure 1. Diagram of a multi-robotic system—(a) serial manipulator, (b) parallel manipulator.

Each of the robots must reach the required position of end-effectors in the process
of performing the required operations. However, the location of the mobile platforms
and the trajectory of the end-effector to achieve this position may be different. However,
we should choose such an arrangement of platforms and trajectories that exclude colli-
sions between manipulators and external objects. Further, the paper will consider the
proposed approaches to the determination of robot links interference and technological
workspaces of robots taking into account the intersection checking in a multi-robotic system
for trajectory planning.

3. Parallel Manipulator Mathematical Model

Let us consider the scheme of a parallel manipulator based on a tripod (Figure 2). The
tripod includes three rods of variable length l1, l2, l3, which are connected by rotary joints
D1, D2, D3 to the base and spherical joints E1, E2, E3 to the working platform. The base
and work platform are equilateral triangles. When changing the lengths of the rods, the
working platform moves along the Z1 axis at a distance z1, and rotates around the X1 axis
at an angle ψ and around Y1 at an angle θ. In addition, there are additional degrees of
freedom—displacement along the X1 axes at a distance x1 and along Y1 at a distance y1
and rotation relative to Z1 by an angle α, which are determined by the formulas [20].

Figure 2. Parallel manipulator—(a) without a movable base, (b) on a movable base.
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α = Tan−1
(

sin ψ sin θ

cos ψ + cos θ

)
(1)

x1 =
r
2
(cos θ cos α + sin ψ sin θ sin α− cos ψ cos α) (2)

y1 = −r cos ψ sin α (3)

The input coordinates are the lengths of the drive links l1, l2, l3, the output coordinates
are the coordinates of the point O′ of the end effector: xO′ , yO′ , zO′ . Point O′ is located
at a distance h from the center of the movable platform. To determine the workspace,
it is necessary to first determine the set of permissible values of the linear and angular
coordinates of the center O of the movable platform, and then, for these values, determine
the set of coordinates O′ of the end effector. Coordinates O′ in the moving coordinate
system X2, Y2, Z2,

O′(2) =
[

0 0 h 1
]T . (4)

Calculate the coordinates of point O′ in the coordinate system X1Y1Z1,

O′(1) = M2_1O′(2), (5)

where M2_1 is the transition matrix from the moving coordinate system X2Y2Z2 to the
fixed system X1Y1Z1 which includes matrices of displacements and rotations along the
X1, Y1, Z1,

M2_1 =


cos θ cos α + sin ψ sin θ sin α −cos θ sin α + sin ψ sin θ cos α

cos ψ sin α cos ψ cos α
sin θ cos ψ x1
−sin ψ y1

−sin θ cos α + sin ψ cos θ sin α sin θ sin α + sin ψ cos θ cos α
0 0

cos θ cos ψ z1
0 1

 (6)

After transformation taking into account (4)–(6), we get,

O′(1) =


x1 + sin θ cos ψh

y1 − sin ψh
z1 + cos θ cos ψh

1

 (7)

Let us introduce restrictions on the geometric parameters of the mechanism,{
li − lmax ≤ 0
lmin − li ≤ 0

(8)

where lmin, lmax are determined by the design parameters of the mechanism; li is the length
of the i-th rod, which is defined as,

li =
√
(xEi − xDi)

2 + (yEi − yDi)
2 + (zEi − zDi)

2, (9)

where xEi, yEi, zEi—coordinates of the centers of the joints, point Ei; xDi, yDi, zDi—
coordinates of the centers of the joints, point Di in a fixed coordinate system.

We define the coordinates of the joints Ei in the moving coordinate system X′2Y′2Z′2 E(2)
1 =[

r 0 0 1
]T

, E(2)
2 =

[
−0.5r 0.5

√
3r 0 1

]T
, E(2)

3 =
[
−0.5r −0.5

√
3r 0 1

]T
.

We denote in (6) M11 = cos θ cos α+ sin ψ sin θ sin α; M12 = −cos θ sin α+ sin ψ sin θ cos α;
M13 = sin θ cos ψ; M21 = cos ψ sin α; M22 = cos ψ cos α; M23 = −sin ψ; M31 = −sin θ cos α+
sin ψ cos θ sin ϕ; M32 = sin θ sin α + sin ψ cos θ cos α; M33 = cos θ cos ψ.

Let us express the coordinates of the joints Ei in the moving coordinate system X1Y1Z1

E(1)
1 = M2_1E(2)

1 =
[

x1 + M11r y1 + M21r z1 + M31r 1
]T

=
[

x1 + M11r 0 z1 + M31r 1
]T

, (10)
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E(1)
2 = M2_1E(2)

2 =
[

x1 − 0.5r
(

M11 −
√

3M12

)
y1 − 0.5r

(
M21 −

√
3M22

)
z1 − 0.5r

(
M31 −

√
3M32

)
1

]T
, (11)

E(1)
3 = M2_1E(2)

3 =
[

x1 − 0.5r
(

M11 +
√

3M12

)
y1 − 0.5r

(
M21 +

√
3M22

)
z1 − 0.5r

(
M31 +

√
3M32

)
1

]T
(12)

Determine the coordinates of the joints D_i in the moving coordinate system X1Y1Z1:

D(1)
1 =

[
R 0 0 1

]T
, D(1)

2 =
[
−0.5R 0.5

√
3R 0 1

]T
, D(1)

3 =
[
−0.5R −0.5

√
3R 0 1

]T
. (13)

Substituting (10)–(13) into (9), we obtain

l1 =

√
(x1 + M11r− R)2 + (z1 + M31r)2, (14)

l2 =

(x1 − 0.5r
(

M11 −
√

3M12

)
+ 0.5R

)2
+

(
y1 − 0.5r

(
M21 −

√
3M22

)
−
√

3
2

R

)2

+
(

z1 − 0.5r
(

M31 −
√

3M32

))2
 1

2

(15)

l3 =

(x1 − 0.5r
(

M11 +
√

3M12

)
+ 0.5R

)2
+

(
y1 − 0.5r

(
M21 +

√
3M22

)
−
√

3
2

R

)2

+
(

z1 − 0.5r
(

M31 +
√

3M32

))2
 1

2

(16)

Similarly, we calculate the coordinates of the point O′ in the fixed coordinate system
X0Y0Z0:

O′0 = M1_0O′1, (17)

where M1_0 is the transition matrix from the moving coordinate system X1Y1Z1 to the fixed
system X0Y0Z0, which includes matrices of displacement along the X0 and Y0 axes and
rotation around the Y0 axis,

M1_0 =


cos ϕ 0

0 1
−sin ϕ x0cos ϕ

0 y0
sin ϕ 0

0 0
cos ϕ sin ϕx0

0 1

 (18)

After transformation, taking into account (7), (17) and (18), we obtain,

O′0 =


cos ϕ(x1 + x0 + sin θ cos ψh)− sin ϕ(z1 + cos θ cos ψh)

y1 − sin ψh + y0
cos ϕ(z1 + cos θ cos ψh) + sin ϕ(x1 + x0 + sin θ cos ψh)

1

 (19)

The coordinates of the joints Di and Ei in the fixed coordinate system X0Y0Z0 are
defined as:

D(0)
1 = M1_0D(1)

1 =
[

cos ϕ(R + x0) 0 sin ϕ(R + x0) 1
]T , (20)

D(0)
2 = M1_0D(1)

2 =
[

cos ϕ(x0 − 0.5R) 0.5
√

3R sin ϕ(x0 − 0.5R) 1
]T

(21)

D(0)
3 = M1_0D(1)

3 =
[

cos ϕ(x0 − 0.5R) −0.5
√

3R sin ϕ(x0 − 0.5R) 1
]T

(22)

E(0)
1 = M1_0E(1)

1 =


cos ϕ(x1 + M11r + x0)− sin ϕ(z1 + M31r)

0
sin ϕ(x1 + M11r + x0) + cos ϕ(z1 + M31r)

1

, (23)
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E(0)
2 = M1_0E(1)

2 =


cos ϕ

(
x1 − 0.5r

(
M11 −

√
3M12

)
+ x0

)
− sin ϕ

(
z1 − 0.5r

(
M31 −

√
3M32

))
y1 − 0.5r

(
M21 −

√
3M22

)
sin ϕ

(
x1 − 0.5r

(
M11 −

√
3M12

)
+ x0

)
+ cos ϕ

(
z1 − 0.5r

(
M31 −

√
3M32

))
1

, (24)

E(0)
3 = M1_0E(1)

3 =


cos ϕ

(
x1 − 0.5r

(
M11 +

√
3M12

)
+ x0

)
− sin ϕ

(
z1 − 0.5r

(
M31 +

√
3M32

))
y1 − 0.5r

(
M21 +

√
3M22

)
sin ϕ

(
x1 − 0.5r

(
M11 +

√
3M12

)
+ x0

)
+ cos ϕ

(
z1 − 0.5r

(
M31 +

√
3M32

))
1

. (25)

We calculate the integers corresponding to the coordinates of the point O′ to describe
the form of a partially ordered set of integers,

x(Z)
O′ =

[
xO′

δ

]
, xO′ ∈ R, x(Z)

O′ ∈ Z

y(Z)
O′ =

[
yO′

δ

]
, yO′ ∈ R, y(Z)

O′ ∈ Z

z(Z)
O′ =

[
zO′
δ

]
, zO′ ∈ R, z(Z)

O′ ∈ Z

, (26)

where δ is the approximation accuracy.
In addition to restrictions on the permissible ranges of drive lengths, it is necessary

to exclude the mechanism from falling into singularity zones in which the control of the
mechanism is lost. We use the method proposed by C. Gosselin [21], which is based
on the analysis of the Jacobi matrix of the mechanism obtained by differentiating the
constraint equations and describing the transition from generalized velocities in driving
kinematic pairs to angular or linear velocities of the end effector. According to Gosselin’s
classification [21], the tripod is characterized by singularities of only the second type, for
which the Jacobi matrix is equal to zero.

The determinant of the Jacobi matrix has the form,

det(JA) =


∂F1
∂z

∂F1
∂ψ

∂F1
∂θ

∂F2
∂z

∂F2
∂ψ

∂F2
∂θ

∂F3
∂z

∂F3
∂ψ

∂F3
∂θ

, (27)

where Fi corresponds to the bar length Formulas (14)–(16).
Because of the cumbersomeness of the formulas for each of the elements of the

determinant, we present only one of them,

∂F1
∂z = z− r

 Sb(Ca+Cb)−CbSbSa2

(Ca+Cb)

√(
Sa2Sb2

(Ca+Cb)2
+1
)


r

 Cb(Ca+Cb)+Sa2Sb2

(Ca+Cb)

√(
Sa2Sb2

(Ca+Cb)2
+1
)


−R +
r
(

Cb−Ca cos
(

2 tan−1
(

SaSb
(Ca+Cb)

)))
2

)2

+

z− r

 Sb(Ca+Cb)−CbSbSa2

(Ca+Cb)

√(
Sa2Sb2

(Ca+Cb)2
+1
)



2
−2
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where Ca = cos(θ); Ca = cos(θ), Cb = cos(ψ), Sa = sin(θ), Sb = sin(ψ). Let us write
down the condition for the occurrence of singularity zones,

det(JA) = 0 (28)

Getting into a singularity zone in which condition (28) is satisfied occurs when the
sign of the determinant of the Jacobi matrix is changed, therefore, it is necessary to add the
condition of its constancy of sign.

The given constraints make it possible to determine constraints in the space of coordi-
nates z1, θ, ψ, under which we calculate the set of positions of the end effector according
to (7), (19), (25). It should be noted that these restrictions do not allow us to exclude the
intersection of the links of the mechanism.

4. Determination of Link Intersections

The intersections of the links of the mechanism can be divided into two groups:

- Intersections at small angles between links connected by rotary joints; and
- The intersection of links that are not connected.

The first group can be defined, taking into account the restrictions on the angles of
rotation in the joints Ei:

β
(j)
i ∈ [βmin; βmax], i ∈ 1, 2, 3, j ∈ 1, 2, 3, (29)

where i is the index of the joint E, j is the index for one of the three corners of the joint Ei.
Define the angles β

(j)
1

β
(1)
1 = cos−1

(
(xD1 − xE1)(xE2 − xE1) + (yD1 − yE1)(yE2 − yE1) + (zD1 − zE1)(zE2 − zE1)√

3Rl1

)
, β

(1)
1 ∈ [0; π] (30)

β
(2)
1 = cos−1

(
(xD1 − xE1)(x1 − xE1) + (yD1 − yE1)(y1 − yE1) + (zD1 − zE1)(z1 − zE1)

Rl1

)
, β

(2)
1 ∈ [0; π] (31)

β
(3)
1 = cos−1

(
(xD1 − xE1)(xE3 − xE1) + (yD1 − yE1)(yE3 − yE1) + (zD1 − zE1)(zE3 − zE1)√

3Rl1

)
, β

(3)
1 ∈ [0; π] (32)

We define the second group of intersections using an approach based on determining
the minimum distance between the segments drawn between the centers of the joints of
each of the links. In [22], a similar condition is used, but the approach has drawbacks.
In particular, the authors propose determining the intersections of the segments on the
auxiliary plane, not the distance between the nearest points. This does not allow for
identifying such an intersection of links in which there is no intersection of the axes.

The approach proposed in the current work is as follows. Let us imagine the links in
the form of a spherocylinder. Let A1 A2 иA3 A4 be the segments connecting the centers of
the joints of the links (Figure 3).
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Figure 3. Representation of the links of the mechanism.

In this case, we write the first condition for the absence of intersections as:

Dlink <

√
(x′)2 + (y′)2 + (z′)2, (33)

where Dlink is the diameter of the links, x′, y′, z′ is the distance between the nearest points
of the segments along each of the axes and are defined as:

x′ =


min
i∈1,2

xAi −max
j∈3,4

xAj i f min
i∈1,2

xAi > max
i∈1,2

xAi,

min
i∈3,4

xAj −max
i∈1,2

xAi i f min
i∈3,4

xAj > max
i∈1,2

xAi,

0 i f
[

min
i∈1,2

xAi; max
i∈1,2

xAi

]
∩
[

min
i∈3,4

xAj; max
j∈3,4

xAj

]
.

(34)

The values y′ and z′ are defined similarly.
There is no intersection of the links when the minimum distance u between the

segments A1 A2 and A3 A4 is greater than the diameter of the links Dlink:

Dlink > u (35)

Consider two cases of relative position of links.
Case 1. The links are parallel in the case when the condition is fulfilled:

xA2 − xA1

xA4 − xA3
=

yA2 − yA1

yA4 − yA3
=

zA2 − zA1

zA4 − zA3
(36)

Determine the minimum distance between the segments by rotating the segments
relative to the point A1 so that they become perpendicular to the YOZ plane. Let us
denote for points A2, A3 and A4 the obtained coordinates of points after rotation as
A12, A13 and A14, respectively. Taking into account the rotation of the segments to the
perpendicular position to the YOZ plane, the coordinates of the points A12, A13 and A14
are calculated as:

xA1i = xA1 + c(a)
i (xAi − xA1) + s(a)

i

(
s(b)i (yAi − yA1) + c(b)i (zAi − zA1)

)
, (37)

yA1i = yA1 + c(b)i (yAi − yA1)− s(b)i (zAi − zA1), (38)

zA1i = zA1 − s(a)
i (xAi − xA1) + c(a)

i

(
s(b)i (yAi − yA1) + c(b)i (zAi − zA1)

)
, (39)
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where s(a)
i = sin

(
tan−1

(
sb(yAi−yA1)+cb(zAi−zA1)

xAi−xA1

))
, c(a)

i = cos
(

tan−1
(

sb(yAi−yA1)+cb(zAi−zA1)
xAi−xA1

))
,

s(b)i = sin
(

tan−1 yAi−yA1
zAi−zA1

)
, c(b)i = cos

(
tan−1 yAi−yA1

zAi−zA1

)
, i ∈ 2, 3, 4.

In this case, yA12 = yA1, zA12 = zA1, yA13 = yA14, zA13 = zA14.
The distance between the segments is determined as:

u =
√

u2
1 + u2

2, (40)

where u1 is the distance between the segments A1 A12 and A13 A14 in the projection onto
the YOZ plane, u2 is the distance between the nearest points of the segments along the X
axis. They are defined as:

u1 =

√
(yA13 − yA1)

2 + (zA13 − zA1)
2 (41)

u2 =


min
i∈1,12

xAi − max
j∈13,14

xAj if min
i∈1,12

xAi > max
i∈1,12

xAi,

min
i∈13,14

xAj − max
i∈1,12

xAi if min
i∈13,14

xAj > max
i∈1,12

xAi,

0 if
[

min
i∈1,12

xAi; max
i∈1,12

xAi

]
∩
[

min
i∈13,14

xAj; max
j∈13,14

xAj

]
.

(42)

Figure 4 shows examples of verification for the first case of intersection of links.
Figure 4a shows an example when u1 > Dlink, and u2 = 0, since the coordinate intervals
of the segments along the X axis intersect. In this case, u = u1, respectively, u > Dlink
and there is no intersection. Figure 4b shows an example where u1 > 0 and u2 > 0, while
u > Dlink, so there is no intersection.

Figure 4. Checking the intersection of links for case 1—(a) for u2 = 0, (b) for u2 > 0.

Case 2. Condition (36) is not satisfied, that is, the links are not parallel. Let us construct
an auxiliary plane in which the segment A3 A4 will lie and to which the segment A1 A2
will be parallel. In this case, the distance between the segments can be similarly written as:

u =
√

u2
1 + u2

2, (43)

where u1 is the distance between the segment A1 A2 and the auxiliary plane, u2 is the
distance between the nearest points of the segments A3 A4 and the projection of the segment
A1 A2 onto the auxiliary plane.

To determine u1, we calculate the normal vector:

N =

 Nx
Ny
Nz

 =

 (yA4 − yA3)(zA2 − zA1)− (zA4 − zA3)(yA2 − yA1)
(zA4 − zA3)(xA2 − xA1)− (xA4 − xA3)(zA2 − zA1)
(xA4 − xA3)(yA2 − yA1)− (yA4 − yA3)(xA2 − xA1)

 (44)
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Determine the distance u1 using the coefficient k for the length of the normal vector.

u1 =

√
(Nxk)2 +

(
Nyk

)2
+ (Nzk)2, (45)

where k =
Nx(xA1−xA3)+Ny(yA1−yA3)+Nz(zA1−zA3)

xA1 Nx+yA1 Ny+zA1 Nz
.

Let us determine, using the coefficient k, the coordinates of the point A11 as a result
of the projection of the point A1 onto the auxiliary plane:

xA11 = xA1 − Nxk, yA11 = yA1 − Nyk, zA11 = zA1 − Nzk. (46)

To define u2, rotate the construction plane around point A11 so that it is parallel to
the YOZ plane. After rotating the coordinates of the second point of the segment A12 and
points A13 and A14 of the second segment, we define as:

xA12 = xA11 + c(a)(xAi − xA1) + s(a)
(

s(b)(yAi − yA1) + c(b)(zAi − zA1)
)

, (47)

yA12 = yA11 + c(b)(yAi − yA1)− s(b)(zAi − zA1), (48)

zA12 = zA11 − s(a)(xAi − xA1) + c(a)
(

s(b)(yAi − yA1) + c(b)(zAi − zA1)
)

, (49)

xA1i = xA11 + c(a)(xAi − xA11) + s(a)
(

s(b)(yAi − yA11) + c(b)(zAi − zA11)
)

, (50)

yA1i = yA11 + c(b)(yAi − yA11)− s(b)(zAi − zA11), (51)

zA1i = zA11 − s(a)(xAi − xA11) + c(a)
(

s(b)(yAi − yA11) + c(b)(zAi − zA11)
)

, (52)

where s(a) = sin
(

tan−1
(

s(b)Ny+c(b)Nz
Nx

))
, c(a) = cos

(
tan−1

(
s(b)Ny+c(b)Nz

Nx

))
, s(b) = sin

(
tan−1 Ny

Nz

)
,

c(b) = cos
(

tan−1 Ny
Nz

)
, i ∈ 3, 4.

As a result, the definition of u2 is reduced to the problem of calculating the distance
between the nearest points of the segments A11 A12 and A13 A14 on a two-dimensional
plane, which consists of checking the intersection of the segments, and then, if there are
no intersections, the search for the smallest height dropped from the end of one segment
to another. If it is impossible to lower the height, we determine the minimum distance
between the extreme points of the segments.

Figure 5 shows examples of verification for the second case of intersection of links.
Figure 5a shows an example when u1 > Dlink, and u2 = 0, since the segments intersect
in the projection. In this case, u = u1, respectively, u > Dlink and there is no intersection.
Figure 5b shows an example where u1 < Dlink, but u > Dlink and there is no intersection
either. In Figure 5c u1 < Dlink and u2 = 0, so u < Dlink and the line segments intersect.
In Figure 5d u2 > 0, that is, the segments do not intersect in the projection, but u < Dlink,
respectively, the segments intersect.
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Figure 5. Checking the intersection of links for case 2 —(a) no intersection for u2 = 0,
(b) no intersection for u2 > 0, (c) intersection for u2 = 0, (d) intersection for u2 > 0.

5. Algorithm Synthesis

Taking into account Formulas (1)–(35), we synthesize an algorithm for approximating
the workspace of a parallel manipulator. The left sides of the system of inequalities (8)
are coordinate functions in the form gj(x), j ∈ 1, . . . , 6: g1 = lmin − l1, g2 = lmin − l2,
g3 = lmin − l3, g4 = l1 − lmax, g5 = l2 − lmax, g6 = l3 − lmax. Let us approximate the set of
solutions of system (8) for transferring the constraint of input coordinates according to (7)
and (19) into the space of coordinates z1, θ, ψ of the moving platform. The approximated
set is a covering consisting of n-dimensional boxes. To do this, we will set the initial box
B, which is guaranteed to include all possible positions of the movable platform. Let
m(B) = max

j=1,...,6
min
x∈B

gi(x) and M(B) = max
j=1,...,6

max
x∈B

gi(x). If m(B) > 0, then B does not contain

possible points for system (8) and is excluded. If M(B) ≤ 0, then each point of the box
B is a solution to the system (8). Based on this, let us add B to the coverage as an inner
box. In other cases, the box is divided into two equal boxes along the larger edge, and
for each of them, the procedure is repeated until their diameter is less than the specified
approximation accuracy δ. After that, the remaining boxes are checked for intersections
and singularity zones. Taking this into account, the resulting constraints in the form of a
set of boxes are transferred to the coordinate space of the end effector x(Z)

O′ , y(Z)
O′ , z(Z)

O′ as a

partially ordered set of integers. The set has the following structure—the values x(Z)
O′ , as

well as the corresponding values of y(Z)
O′ , are ordered in ascending order, and the values

z(Z)
O′ corresponding to each of y(Z)

O′ are ordered in ascending order and consecutive ones are
combined into intervals. To transfer the constraints, we divide each of the boxes describing
the constraints in the space z1, θ, ψ by a uniform mesh along each axis. We calculated for
each of the grid nodes the values x(Z)

O′ , y(Z)
O′ , z(Z)

O′ using (4) and (5). Let us arrange the set

of calculated values x(Z)
O′ , y(Z)

O′ and z(Z)
O′ .

The synthesized algorithm is implemented in a C ++ program. The sets of boxes are
represented as a vector using the vector standard library. A vector consists of elements, the
number of which is equal to the number of boxes. Each element consists of 2n numbers,
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that is, for each of the n dimensions of the box, two numbers describe the beginning and
end of the interval. A partially ordered set of integers is similarly represented as a vector,
but with a different structure. The vector has a three-level structure. Each of the first
level elements includes the corresponding vector of elements of the second level and one
number. The number is the x(Z)

O′ value. Each of the elements of the second level similarly
includes the corresponding vector of elements of the third level and number, while the
number is the value y(Z)

O′ . Each of the elements of the third level includes only two numbers

describing the beginning and end of the intervals of values z(Z)
O′ . Let us simulate the

workspace of a parallel manipulator using distributed computing to determine m(B) and
M(B), implemented using the OpenMP library [23].

6. Simulation Results

We investigate the workspace of the parallel manipulator without considering the rota-
tion of the rotary part of the mobile platform. Consider the change in the workspace and the
intersection of the links with restrictions on the angles of rotation of the movable platform
E1E2E3. Simulation is performed for l1,2,3 ∈ [300 mm , 600 mm ], R = 400 mm, r = 100 mm,
h = 100 mm. Conversion of the obtained sets into an STL file for three-dimensional visual-
ization of the workspace has been implemented. Also, the export for the formation of a 3D
model of the manipulator in STL format for the positions at which the intersections of the
links occur has been given. The results showed that for the ranges of angles θ ∈ [−90◦; 90◦]
and ψ ∈ [−90◦; 90◦] (Figure 6a), there are no intersections of the links. The volume of the
workspace was 6.48× 10−6 m3. Increasing the angle ranges will result in overlaps. At the
same time, the volume of the workspace increases slightly. Figure 6b shows the workspace
for θ ∈ [−95◦; 95◦] and ψ ∈ [−95◦; 95◦], and Figure 7 shows some cases of intersections.
The volume of the workspace increased insignificantly and amounted to 6.59× 10−6 m3.

Figure 6. Workspace of the parallel manipulator—(a)—for the range of angles θ and ψ± 90◦, (b)—for
the range of angles θ and ψ± 95◦.
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Figure 7. Examples of link intersections for the range of angles θ and ψ± 95◦—(a) intersection of
links OO′ and D3E3, D1D2 and E2E3, (b) intersection of links OO′ and D2E2, D1D2 and E2E3.

Simulations for other ranges of rod lengths have similarly shown the occurrence of
intersections when the range of angles θ and ψ is expanded over ±90◦. Based on the results
for further research, the above restriction on the angles of rotation of the movable platform
of the parallel manipulator was adopted.

To select the sign in the condition of constancy of the determinant of the Jacobi matrix
to exclude singularity zones, the workspace was determined both with the condition of
positiveness (Figure 8a) of the determinant, and with the condition of negativity (Figure 8b).

Figure 8. Workspace of the parallel manipulator—(a)—with a negative sign of the determinant of the
Jacobi matrix, (b)—with a positive sign.

Figure 8 shows that the inner part of the workspace corresponds to a negative value
of the determinant. Based on this, we add the condition for the negative determinant of the
Jacobi matrix to exclude singularities. The volume of the workspace, taking into account
singularity zones, was 5.71× 10−6 m3.
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Let us define the workspace of the parallel manipulator, taking into account the rota-
tion of the platform. The range of the angle of the rotary part of the platform ϕ ∈ [0◦; 90◦]
was selected with a step of 2◦ for simulation. The results are shown in Figure 9a. The
volume of the workspace due to the rotation of the platform increased from 5.71× 10−6

to 62.04× 10−6 m3. The workspace shows the many achievable end effector positions.
However, to avoid collisions of the manipulator with external objects, it is necessary to
determine the technological area, that is, the area of possible positions of all intermediate
links. So, in addition to the coordinates of the end effector, an iterative discrete determi-
nation of the coordinates of points lying on the axes of all links and the moving platform
has been added. The discrete step value does not exceed the approximation accuracy. The
results in an approximation accuracy of δ = 5 mm, as shown in Figure 9b.

Figure 9. Serial manipulator areas—(a) workspace, (b) technological area.

7. Defining the Workspace of a Serial Manipulator

Consider a serial three-link robot (Figure 10). The gripper position is completely
determined by the vector of link lengths s =

(
s(1), . . . , s(k)

)
and by the vector of an-

gles θ =
(

θ(1), . . . , θ(k)
)

between the corresponding links. The task of determining the
workspace for this work is considered in other works [24,25]. Here is a brief description of
the proposed solution.

Figure 10. Angles and links defining the configuration of the robotic arm.
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The permissible set of angles and lengths of links is a box

X =
[
s(1), s(1)

]
× . . .×

[
s(k), s(k)

]
×
[
θ(1), θ(1)

]
× . . .×

[
θ(k), θ(k)

]
(53)

where
[
s(i), s(i)

]
and

[
θ(i), θ(i)

]
are given ranges of possible values of the link length si and

angle θi, respectively.
The workspace of the robot manipulator is the image Y = F(X) of the admissible set

X, where F(s, θ) =
(

f (1)(s, θ), f (2)(s, θ)
)

is given by formulas

f (1)(s, θ) =
k

∑
i=1

s(i)· cos

(
i

∑
j=1

θ(j)

)
(54)

f (2)(s, θ) =
k

∑
i=1

s(i)· sin

(
i

∑
j=1

θ(j)

)
(55)

During the operation of the algorithm for determining the workspace of the serial
mechanism, a list of points from the set X is maintained such that its image F, which is
determined using (54) and (55), contains a finite set of pairwise incomparable points, which
after the completion of the algorithm will be an ε-approximation of the boundary of the
set Y. An algorithm for constructing an ε-Pareto set with guaranteed accuracy ε is given
in [26].

In the current work, the covering set has been transformed into an ordered set of
integers, similarly to the transformation of the covering set of a tripod. In this case, the
vector has a two-level structure, since the workspace of a serial robot is two-dimensional.

Figure 11a shows the simulation results for the following dimensions s1 = 400,
s2 = 265, s3 = 35, ranges of angles: θ1 ∈

[
π
6 , π

3
]
, θ2 ∈

[
π
6 , π

3
]
, θ3 ∈ [−π, π].

Figure 11. Serial manipulator areas: (a) workspace, (b) technological space.

The technological area was similarly defined for a serial manipulator. The results are
shown in Figure 11b.

8. Determination of Links Interference of a Multi-Robotic System

In the process of collaborative execution of tasks by a multi-robotic system, two
problems arise within the framework of determining a possible intersection of links. The
first task is to determine the presence of intersections for the given positions of each of the
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manipulators. Each of the positions can be obtained by discretizing the trajectory while
performing the operation, taking into account the time. The second task is to determine the
presence of intersections, taking into account all achievable positions of the manipulators
for a given relative position of the mobile platforms.

To solve the first problem, we use the approach to determining the intersections of
links, described in Section 3. In this case, the intersection of all combinations of manipulator
links with each other is checked. The coordinates specify the mutual position of the plat-
forms xs and ys by the angle λ of rotation of the coordinate system of the mobile platform
of the serial manipulator relative to the coordinate system of the parallel manipulator.
Checking the intersection of the links of the serial manipulator with the rotating platform
of the parallel manipulator includes turning relative to the X axis by an angle at which the
plane of the turntable coincides with the XOY plane. In this case, checking is reduced to
determine the intersections of the links of the serial manipulator with rectangles parallel to
the XOY, XOZ and YOZ planes.

Simulation was performed for xs = −100 mm, ys = −100 mm, θ = ψ = 0◦,
z0 = 500 mm, ϕ = 78◦. In the first case, for λ = 110◦, θ(1) = 30◦, θ(2) = 35◦, θ(3) =
−20◦, an intersection was found between the links (Figure 12a), in the second for λ =
110◦, θ(1) = 40◦, θ(2) = 40◦, θ(3) = 10◦ there is no intersection (Figure 12b), in the third,
for λ = 60◦, θ(1) = 30◦, θ(2) = 35◦, θ(3) = −20◦, an intersection occurs between the
link of the serial manipulator and the turntable parallel manipulator (Figure 12c). To
verify the results, visualization was implemented through automatic generation of a 3D
model of a multi-robotic system for given positions (Figure 12). The results of checking
the intersections of the manipulators links coincide with the results of checking using the
generated 3D model of the multi-robotic system. The algorithm is fast enough to check
about 106 different positions per second, which makes it possible to check intersections in
real time, discretely checking the trajectories of the manipulators.

Figure 12. Relative position of the multi-robotic system—(a) the presence of an intersection between the links of the
manipulators, (b) the absence of intersections, (c) the intersection of the serial manipulator with the rotating platform of the
parallel manipulator.

To solve the second problem, let us determine the minimum distance between the
regions. The distance ∆ between the centers of the boxes included in the technological
areas of the manipulators is determined iteratively. The dimensions of the boxes for each
of the measurements are equal to the approximation accuracy δ. Therefore, we take into
account the distance from the center of the box to the top of the box, which is

√
2δ
2 for each
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of the two boxes, between the centers of which we determine the distance. Based on this,
we write down the condition for the absence of a possible intersection of the links:

∆ > Dlink +
√

2δ (56)

If the condition is not met for any of the combinations of boxes, the iterative check stops.
Simulation was performed for the following relative positions of mechanisms xs = −300 mm,

ys = −200 mm, λ = 150◦ (Figure 13a), xs = −200 mm, ys = −200 mm, λ = 100◦

(Figure 13b) and xs = −100 mm, ys = −100 mm, λ = 45◦ (Figure 13c). In the first case,
there is no intersection of the links. In the second case, the technological areas do not
intersect, however, condition (56), which takes into account the thickness of the links, is
not met, and therefore a collision of manipulators is possible. In the third case, there are
intersections, which confirms the intersection of technological areas. The time for intersec-
tion calculating in the absence of intersections was 14 s. In the case of intersections, the
computation time can be significantly lower.

Figure 13. Relative position of technological areas of manipulators—(a) absence of intersections, (b) presence of collisions
of links without intersection of technological areas, (c) presence of intersections.

9. Discussion

Thus, the solution of two problems is given within the framework of determining the
possible intersection of links for the collaborative performance of tasks by a multi-robotic
system. The first problem is solved based on the proposed approach to determine the
intersections of the manipulator links. The results were verified using visualization by
automatically generating a 3D model of a multi-robotic system for given positions. The
implemented algorithm for checking the intersections of links has sufficient performance to
check about 106 different positions of the manipulators per second, which allows checking
in real time, discretely checking the trajectories of the manipulators. The second problem
is solved by calculating the distance between the technological areas of manipulators.
To determine them, the method of nonuniform coverings was used with the subsequent
transformation of the results into a partially ordered set of integers.

The proposed approaches can be applied in various areas of the industry. At the same
time, they can be modified, taking into account the specifics of the performed operations,
the configuration of the robots, as well as the required distances between the robot and other
objects. However, depending on these conditions, it is required to conduct a preliminary
analysis of the effectiveness of using the proposed approach in comparison with the use of
various sensors, which are often used to avoid collisions.

The proposed approach to solving the second problem can be used both to determine
a possible collision of manipulators with each other and to localize a collision with external
obstacles. In this case, it is required to determine the minimum distance not between the
technology areas, but between the technology area and the area occupied by the obstacle.
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Authors should also list the limitations of the work. For the first problem, the proposed
algorithm implies the use of fairly simple geometry for an approximated description of
solid bodies. The algorithm can be modified to use more complex geometry, but this
will increase the computational complexity. Another limitation is the need to accurately
localize the position of the moving platforms. Otherwise, the value of the safe distance
between the manipulators must be increased by the error in determining the position of
the movable platforms.

The results obtained can be used to solve the problem of control and planning the
trajectory of mobile platforms within the framework of a multi-robotic system.
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