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Abstract: The curvature of the NURBS curve varies along its trajectory, therefore, the commonly
used feedrate-planning method, which based on the acceleration/deceleration (Acc/Dec) model,
is difficult to be directly applied in CNC machining of a NURBS curve. To address this problem,
a feedrate-planning method based on the critical constraint curve of the feedrate (CCC) is proposed.
Firstly, the problems of existing feedrate-planning methods and their causes are analyzed. Secondly,
by considering both the curvature constraint and the kinematic constraint during the Acc/Dec process,
the concept of CCC which represents the relationship between the critical feedrate-constraint value
and the arc length is proposed. Then the CCC of a NURBS curve is constructed, and it has a concise
expression conforming to the Acc/Dec model. Finally, a feedrate-planning method of a NURBS curve
based on CCC and the Acc/Dec model is established. In the simulation, a comparison between the
proposed method and the conventional feedrate-planning method is performed, and the results show
that, the proposed method can reduce the Acc/Dec time by over 40%, while little computational
burden being added. The machining experimental results validate the real-time performance and
stability of the proposed method, and also the machining quality is verified. The proposed method
offers an effective feedrate-planning strategy for a NURBS curve in CNC machining.

Keywords: NURBS; curvature; feedrate-constraint value; feedrate planning; acceleration/deceleration

1. Introduction

The parametric interpolation based on a non-uniform rational B-splines (NURBS) curve is
gradually being applied to CNC machining of complex free-form surfaces [1–3], such as molds,
turbines, and blades, due to its advantages of a smooth machining process, high machining
efficiency, and precision [4–7]. When machining a NURBS curve, the low feedrate will increase
the machining time while an excessive feedrate will damage the workpiece and the machine
tool; therefore, feedrate planning is crucial to machining efficiency and quality [8,9].

The curvature of a NURBS curve changes along the trajectory, affecting the feedrate-
constraint value of each point on the curve path, while the feedrate of the line-segment path
is only restricted at its endpoints and the arc path has a constant feedrate-constraint value.
Therefore, the feedrate-planning method, based on acceleration/deceleration (Acc/Dec)
models [10–12], which is commonly used in line-segment and arc paths, is difficult to be
directly used in planning the feedrate of a NURBS curve. To address this problem, scholars
have conducted active research and have mainly put forward two methods: point-by-point
planning and segment-by-segment planning. The point-by-point planning method does
not use the Acc/Dec model, and it takes the interpolation period as the calculation unit to
plan the feedrate of the NURBS curve instead. Starting from the head of the NURBS curve,
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Beudaert et al. [13] planned the feedrate and calculated interpolation points along the curve
in each interpolation period with the local optimization of machining efficiency as the goal,
under the constraints of chord error, normal acceleration and others [14,15]. However,
when a constraint-satisfied feedrate cannot be planned at the current interpolation point,
the strategy of backing off for a certain distance and replanning was adopted, which
resulted in a large amount of calculations and it was difficult to be used in real-time
CNC machining. Erkorkmaz et al. [16] divided a NURBS curve into multiple windows,
and tried using a multi-core CPU to perform parallel calculations on these windows to
reduce the total calculation time. However, the point-by-point planning method was still
used to plan the feedrate in a single window. Sun et al. [17] first generated an initial
feedrate curve, and then adjusted the feedrate for the sample points on that curve that did
not satisfy the constraint by using an iterative approach until the feedrate of all sample
points met the constraint. The above point-by-point planning method suffers from the
problem of requiring multiple adjustments and replanning, so the real-time performance
of the algorithm cannot be guaranteed. The segment-by-segment planning method divides
a NURBS curve into several sub-curves, which are taken as calculation units, and the
Acc/Dec model is used to plan the feedrate in each unit. Du et al. [18] divided a NURBS
curve into sub-curves at the points with the local maximum curvature, and calculated
the feedrate-constraint value at junctions between different sub-curves, then the feedrate
was planned accordingly. However, there is a risk that the feedrate will exceed the limit
in the inner region of each sub-curve, since this algorithm only constrained the feedrate
at the junctions of sub-curves. Jia et al. [19] divided the regions of the NURBS curve of
which the feedrate-constraint value was less than the command value into independent
sub-curves, calculated the feedrate-constraint value of each sub-curve according to its
minimum radius of curvature (hereinafter referred to as “minimum-constraint principle”),
and then finally planned the feedrate. Although this method ensures that the feedrate
does not exceed the limit, the minimum-constraint principle reduces machining efficiency
due to its conservation. Bardine et al. [20] and Annoni et al. [21] divided a NURBS curve
with the criterion that the curvature of adjacent sub-curves differ by a factor of 2, after
which the feedrate of each sub-curve was also planned based on the minimum-constraint
principle. The segment-by-segment planning method described above has good real-time
performance because of no backing-off or replanning, but its feedrate-planning results
have the problem of exceeding the limit or being conservative.

Based on the studies of the above scholars, this paper constructs a critical constraint
curve of the feedrate (CCC) corresponding to a NURBS curve by considering both the
geometric constraints caused by the curvature and the kinematic constraints during the
Acc/Dec process. A CCC consists of three parts, which are a critical deceleration curve con-
structed to avoid feedrate planning failure, a straight line with a constant value equal to the
minimum feedrate-constraint value of the NURBS curve, and a critical acceleration curve to
improve machining efficiency. The concise expression of CCC can be used in combination
with existing Acc/Dec models, so the real-time planning process is ensured and the plan-
ning results will not exceed the limit. On the other hand, the conservation problem existed
in the results of feedrate planning due to the minimum-constraint principle used in previ-
ous literature can be avoided, since the values of the critical deceleration/acceleration curve
in CCC are greater than the minimum feedrate-constraint value. Therefore, the CCC-based
feedrate-planning method (CCCP) proposed in this paper can balance the computational
efficiency and the machining efficiency. In the following sections, this method will be de-
scribed in detail, and its effectiveness will be verified through simulations and experiments.
The content of this paper is organized as follows: Section 2 details the CCCP method;
Section 3 is the simulation and experiment; and Section 4 is the conclusion.
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2. Feedrate Planning of a NURBS Curve Based on CCC

NURBS is a general mathematical model for the free-form curve, and its expression [22] is:

C(u) =
∑n

i=0 Ni,p(u)wiPi

∑n
i=0 Ni,p(u)wi

, u0 ≤ u ≤ un+p+1 (1)

where Pi is the control point whose quantity is n + 1, wi is the weight, and Ni,p(u) is
the p-order basis function defined by the node vector U =

[
u0, u1, · · · , un+p+1

]
, which is

calculated as

Ni,0(u) =
{

1, u ∈ [ui, ui+1]
0, u /∈ [ui, ui+1]

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u) +

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u)
, (2)

in which, 0/0 = 0 is stipulated.
In order to ensure the machining accuracy in machining NURBS curves, the chord

error and normal acceleration should not exceed the set upper limits, ε and an, therefore,
the feedrate should satisfy the constraint described by the following formula [23,24]:

Fε,n(ρ) = min

[
2
√

2ρε− ε2

T
,
√

anρ

]
, (3)

where T is the interpolation period and ρ is the radius of curvature.
It can be seen from Equation (3) that any point on the NURBS curve has its correspond-

ing feedrate-constraint value, therefore, for any NURBS curve, there exists a curve with
the arc length as the abscissa value and the feedrate-constraint value as the ordinate value
corresponding to it, shown as C1(s) in each figure in Figure 1 (for the convenience of the
problem analysis below, C1(s) is set as a monotonically decreasing curve). Thus, the essence
of feedrate planning for a NURBS curve is to construct a feedrate curve C2(s) that lies
below C1(s), while satisfying the kinematic constraints during Acc/Dec process, with the
goal of minimizing machining time.

2.1. Problem Analysis of the Existing C2(s)-Constructing Method

When constructing C2(s), in order to shorten the machining time, the acceleration
should be performed as much as possible to obtain a higher feedrate, and there are various
methods to avoid the gradually increasing C2(s) from exceeding the limit of C1(s).

As shown in Figure 1a, the literature [25,26] valued the C2(s) as C1(s) in the overrun part
directly. However, in the high-curvature region of the NURBS curve, this method will lead
to a sharp change in the feedrate, resulting in an overrun of the tangential acceleration [27].
The literature [13] adopted a back-and-reconstruct strategy, shown in Figure 1b, but it required
multiple iterations and cannot guarantee the real-time performance. The literature [19] first
divided a NURBS curve into sub-curves, and then the method shown in Figure 1c was adopted
for a single sub-curve, conservatively setting the upper limit of C2(s) to the minimum value of
C1(s), which affects the machining efficiency.
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Figure 1. Comparison of three existing C2(s)-constructing methods: the method in the literature (a) [25,26]; (b) [13]; (c) [19].

Among the above methods, the method in the literature [13] (Figure 1b) is repre-
sentative and complex, and an analysis of its existing problems and causes is helpful to
understand and deal with the feedrate planning problem of the NURBS curve.

In Figure 1b, after the value of C2(s) at sa reaches its upper limit C1(sa), the method
performs a back-off process and reduces the value of constructed C2(s) in the range of
s ≤ sa. It can be seen that although the C2(s) before being reduced satisfies the constraint
of C1(s), there is a hidden overrun problem which leads to the failure of feedrate planning
for the subsequent trajectory.

Take any point (sb, C1(sb)) of C1(s) in Figure 2 as an example. There is a deceleration
curve Db(s) passing through this point with the upper tangential-acceleration limit aT
of the machine tool as the acceleration, which represents the limit of the deceleration
capability of the machine tool. At this time, take another point (sc, C1(sc)) on C1(s), and it
is easy to know that when the feedrate at sb is C1(sb), the value of Db(s) in the range of
s > sb cannot be decelerated below C1(s), due to the acceleration limitation of machine
tool, resulting in the feedrate at sc exceeding the limit.
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In the above process, the value of C2(s) at sb satisfies the constraint of C1(sb), but it
causes the feedrate at sc to exceed the limit. The reason is that the value of each point on
C1(s) is only the feedrate-constraint obtained by Equation (3), which mainly considers the
geometric constraint, while the kinematic constraint during the Acc/Dec process of the
machine tool is not considered.

Taking the point (sc, C1(sc)) in Figure 2 as an example, Dc(s) is the deceleration curve
that passes through this point and takes aT as the acceleration, and the value of Dc(s) at sb
is Dc(sb). Therefore, if the value of C2(s) at sb is greater than Dc(sb), it will inevitably cause
the feedrate at sc to exceed the limit, even if it satisfies the constraint C2(sb) ≤ C1(sb). It can
be seen that the point (sc, C1(sc)) will limit the feedrate C2(sb) at sb. From the arbitrariness
of sc, it also follows that any point on C1(s) with an abscissa value greater than sb will limit
the feedrate at sb. The minimum of these limit values is the kinematic-constraint feedrate
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at sb, and the smaller value between it and C1(sb) is the actual upper limit of the value of
C2(sb).

Obviously, when the method shown in Figure 1b constructing C2(s), only the geomet-
ric constraints represented by C1(s) are considered, while the kinematic constraints are not,
which leads to the overlarge value of C2(s).

Therefore, the excessive value of C2(s) and the resulting back-off and reconstructing
process can be avoided, if a composite feedrate-constraint curve that considers both geomet-
ric constraints and kinematic constraints can be generated, on which C2(s) is constructed
based. The composite feedrate-constraint curve, which ensures the real-time performance
of the C2(s) constructing process is the CCC proposed in this paper.

2.2. Establishment of the CCC Mathematical Model

The problems in the existing C2(s) constructing method and their causes are analyzed
in the previous section, which is the basis of establishment of the CCC mathematical model
in this section. Establishing the coordinate system shown in Figure 3a for any NURBS
curve segment, the abscissa is the accumulated arc length, and its maximum value is the
arc length se of the NURBS curve segment, while the ordinate is the feedrate. C1(s) in the
figure is the constraint curve, and fmin is the minimum value of C1(s).

Let the expression of the CCC to be constructed be g(s). If any point (τ, g(τ)) and
(su, C1(su)) are taken from each of g(s) and C1(s) as shown in Figure 3a, it can be known
from the content of Section 2.1 that when τ ≤ su, (τ, g(τ)) must lie below the deceleration
curve Du(s) passing through (su, C1(su)) (to simplify the derivation process, the geometric
constraint of C1(s) to (τ, g(τ)) is not considered here), namely

g(τ) ≤ Du(τ) =
√

2aT(su − τ) + C2
1(su), s ∈ [0, su] (4)

Letting

g(τ) ≤ Du(τ) =
√

2aT(su − τ) + C2
1(su), s ∈ [0, su] (5)

the following inequation can be obtained:

g(s) ≤ Du(s) =
√

λu − 2aTs, s ∈ [0, su] (6)

Since
√

λu − 2aTs is a monotonically increasing function of λu, in order to make this
inequation hold for λu corresponding to any point on C1(s), a feasible value of g(s) is:

g(s) = f1(s) =
√

λmin − 2aTs, s ∈ [0, se] (7)

where λmin is the minimum value that λu can be on C1(s). The square root of the
negative number is specified as 0. At this point, the curve corresponding to g(s) is the
critical deceleration curve f1(s) in Figure 3b. In addition, g(s) = fmin can also guarantee
that Equation (6) always holds, so the expression of g(s) is:

g(s) = max
(√

λmin − 2aTs, fmin

)
, s ∈ [0, se] (8)

The curve corresponding to this expression is shown in Figure 4. If the feedrate is
planned based on it, C2(s) can be decelerated to fmin along f1(s) and then move with a
constant feedrate to the end of the NURBS curve segment, when the constructing C2(s)
intersects with f1(s).
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Figure 3. Schematic diagram of the constructing principle of CCC. (a) Constraint on the feedrate by the deceleration curve;
(b) the constructing of the critical deceleration curve.
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Figure 4. The g(s) curve and the feedrate planning process based on it.

However, the way moving to the end of the NURBS curve with the low feedrate fmin
obviously has poor machining efficiency. Therefore, the appropriate acceleration should be
performed to improve machining efficiency. In addition, in order to avoid C2(s) exceeding
the constraint of C1(s) during the acceleration process, a critical acceleration curve can be
obtained according to the constructing method of the above critical deceleration curve f1(s)
with the following process:

Each point on a NURBS curve has a corresponding acceleration curve Au(s), of which
the expression is:

Au(s) =
√

κu + 2aTs, κu = C2
1(su)− 2aTsu (9)

If the minimum value of κu is recorded as κmin, the mathematical model of the critical
acceleration curve can be obtained as

f2(s) =
√

κmin + 2aTs (10)

which is shown in Figure 5a.
In summary, the complete mathematical model of CCC corresponding to the NURBS

curve is:
g(s) = max[ f1(s), f2(s), fmin], s ∈ [0, se] (11)

and the corresponding curve is shown in Figure 5b.
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Figure 5. (a) Constructing results of CCC; (b) the whole curve of CCC.

Equation (11) for CCC is derived based on the kinematic constraint, but whether
it satisfies the geometric constraint represented by C1(s) remains to be verified by the
following process:

The difference between g(s) and C1(s) can be obtained from Equation (11) as

g(s)− C1(s) = max

 √λmin − 2aTs− C1(s),√
κmin + 2aTs− C1(s),

fmin − C1(s)

, s ∈ [0, se] (12)

For
√

λmin − 2aTs − C1(s) in the above formula, assume there exists an arc length
value s = sd to make it greater than 0, namely√

λmin − 2aTsd > C1(sd) (13)

then the following inequation can be obtained:

λmin > C2
1(sd) + 2aTsd = λd (14)

which contradicts the setting that λmin is the minimum, therefore, the sd does not exist,
which means

√
λmin − 2aTs− C1(s) ≤ 0. Similarly, it follows that

√
κmin + 2aTs− C1(s) ≤

0, and combined with fmin − C1(s) ≤ 0, the conclusion g(s)− C1(s) ≤ 0 can be drawn.
Therefore, g(s) satisfies the geometric constraint represented by C1(s).

So far, the establishment of the CCC mathematical model is completed. The data
required in the above constructing process of CCC can be obtained by traversing the
NURBS curve segment, in which the accumulated arc length at each point on the NURBS
can be acquired by accumulating the chord length [28,29] because of the absence of an
analytical solution. The adaptive step size can be used according to the curvature of the
NURBS curve during the traversal to ensure the calculation accuracy of the accumulated
arc length.

Meanwhile, from the constructing process of CCC shown in Figure 5a and its mathe-
matical model (Equation (11)), CCC can be regarded as the fitting of C1(s) using a combined
curve. Therefore, before constructing CCC, the NURBS curve can be divided into sub-
curves appropriately to avoid the overly complicated variation of a single segment C1(s),
to improve the “fitting effect” of CCC.

2.3. The Feedrate Planning Method Based on CCC

For any NURBS curve, its corresponding CCC can be constructed according to the
method in the previous section, as shown as g(s) in Figure 6, and the feedrate planning of
the NURBS curve will be carried out in this section based on g(s). The feedrate values fs
and fe at the start/end of this NURBS curve segment can be obtained from the feedrate
look-ahead [30–32], which are treated as known quantities here.
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Figure 6. Principle of the feedrate planning of the NURBS curve based on CCC.

As shown in Figure 6, when planning the feedrate with an initial feedrate fs, the
acceleration should be performed first in order to obtain a higher machining efficiency.
That is, an acceleration curve f4(s) starting from (0, fs) should be constructed, which
intersects with f1(s) at point A. After that, deceleration should be performed along f1(s)
until it intersects with f3(s) at point B1, then a uniform motion along f3(s) holds until
the intersection point B2. Next, the acceleration is performed along f2(s) and the final
deceleration starts from the point C (the intersection point of the reverse acceleration curve
f5(s) and f2(s) with fe as the initial feedrate) to the end of the NURBS curve segment. Since
f1(s) and f2(s) are both Acc/Dec curves with aT as their accelerations, the above process
does not have the problem of tangential acceleration exceeding the limit. Therefore, when
the coordinate values of each intersection point in Figure 6 are calculated, the feedrate
planning of the NURBS curve is carried out. The method of solving each intersection point
is as follows:

A is the intersection point of f4(s) and f1(s), so the equation can be obtained as√
f 2
s + 2aTs = fA =

√
λmin − 2aTs (15)

From this, the coordinates of A are gained: sA = λmin− f 2
s

4aT

fA =

√
λmin+ f 2

s
2

(16)

For the intersection points B1, B2 and C, the coordinates can be obtained in the same way as

sB1 =
λmin− f 2

min
2aT

fB1 = fmin

sB2 =
f 2
min−κmin

2aT
fB2 = fmin

sC = f 2
e +2aTse−κmin

4aT

fC =

√
κmin+ f 2

e
2 + aTse

(17)

The above calculation process and results are based on the premise that there exists
intersection point A between f4(s) and f1(s) and intersection point C between f2(s) and
f5(s) in Figure 6. However, whether this premise holds is related to the values of variables,
such as fs and fe, therefore, it is necessary to check the premise and process the calculation
results accordingly, and the process is as follows:

(I) If fB1 ≤ min( fA, fC), the above premise holds. At this time, the feedrate-planning
result of this NURBS curve segment contains five Acc/Dec stages, shown in Figure 7.
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Figure 7. The Acc/Dec process based on CCC.

The feedrates fA, fB1 , fB2 and fC at the intersection of each Acc/Dec stage have been
obtained from Equations (16) and (17), while the values of the time parameters corre-
sponding to each intersection can be obtained from the above known feedrates and linear
Acc/Dec model, as follows: 

TA = fA− fs
aT

TB1 = TA +
fA− fB1

aT

TB2 = TB1 +
sB2−sB1

fB1

TC = TB2 +
fC− fB2

aT

TE = TC + fC− fe
aT

(18)

(II) If fB1 > min( fA, fC), let fB1 > fA, then assume f4(s) and f3(s) intersect, and
calculate the intersection point

(
sp, fp

)
of the two.

(a) If sp ≤ sB2 , then f4(s) does intersect with f3(s). At this time, the intersection points
A and B1 are the same point, and their coordinates are both

(
sp, fp

)
, while the coordinates

of the remaining intersection points are still taken as in Equation (17).
(b) If sp > sB2 , then f4(s) and f3(s) do not intersect. At this time, the intersection point(

sp, fp
)

of f4(s) and f5(s) can be obtained, and in such case, A, B1, B2, and C are the same
point of which coordinates are

(
sp, fp

)
.

The above content of (a) and (b) is the correction of the calculated values of Equa-
tion (17) in the case of fB1 > fA. If fB1 > fC, the processing flow will be similar.

At this state, for any NURBS curve segment, the corresponding five Acc/Dec stages
shown in Figure 7 can be obtained, as well as the corresponding feedrate and time parame-
ters, thus realizing the feedrate planning of the NURBS curve segment.

The above is based on the linear Acc/Dec model to realize the feedrate planning of
the NURBS curve, while when the S-shaped flexible Acc/Dec model is used, the feedrate
can be planned according to the three constraint curves of f1(s), f3(s) and f2(s) in Figure 6,
respectively. Among them, f3(s) is a constant value. The feedrate-planning method based
on f3(s) is the same as the conventional feedrate-planning algorithm based on the S-shaped
Acc/Dec model. f2(s) is an acceleration curve with the acceleration aT. Since the acceleration
of the S-shaped Acc/Dec model needs to increase from 0 to aT gradually, its average value
will be less than aT, making the planned feedrate curve lie below f2(s), so the planning result
must satisfy the constraint of f2(s). As for f1(s), in the interval 0→ sB1 , it is a deceleration
curve, but in the interval sB1 → 0, it is also an acceleration curve similar to f2(s), on which the
feedrate can be planned based as well with the S-shaped Acc/Dec model. Therefore, the CCC
constructed in this paper is also applicable for the S-shaped flexible Acc/Dec model.

3. Simulation and Experimental Results

In order to verify the effectiveness of the CCCP method proposed in this paper, the al-
gorithm simulation and machining experiment are conducted. The algorithm simulation is
conducted on a personal computer with a CPU of i3-9100F, while the machining experi-
ment is conducted on a three-axis CNC machine tool DC-6060A (KAIBO, Ningbo, China)
controlled by an independently developed CNC system, and the X/Y/Z axis travel of the
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machine tool is 600/600/260 mm respectively. The architecture of the whole experimental
platform is shown in Figure 8.
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Figure 8. The architecture of CNC machining experimental platform.

The Embedded Linux controller iTop4412 (TOPEET, Beijing, China) in the figure
is mainly used for GUI, while the ARM (STM32H743) controller runs CNC algorithms,
including G-code parsing, CCC constructing, feedrate planning, interpolation, etc. FPGA
(EP4CE22) is mainly used for fine interpolation and generating control signals for servo
drives.

The code of the CCCP method is written in C language and is used in both simulation
and experimental platforms. The main parameters used in the simulation and experiment
are shown in Table 1.

Table 1. Main parameters in the simulation and experiment.

Symbol Parameter Value

T Interpolation period 800 µs
ε Chord error 1 µm

an Normal acceleration 100 mm/s2

aT Tangential acceleration 360 mm/s2

Fcmd Command feedrate 2000 mm/min
Frpm Speed of the electric spindle 12, 000 r/min

3.1. Simulation

The curvature of the N-shaped NURBS curve shown in Figure 9 alternates between
small and large serval times along the arc length, which is typical and complex enough to
be used as a simulation test object to verify the effectiveness of the CCCP method.

In order to improve the “fitting effect” of the CCC in the CCCP method, the NURBS
curve shown in Figure 9 is first divided into sub-curves according to the monotonicity
of the curvature and whether the feedrate-constraint value is greater than the command
value (this dividing method will be used in the CCCP method, if no other dividing method
specified). Then, the CCC constructing and feedrate planning are performed on these
sub-curves. The final planning result is shown as C2(s) in Figure 10a, and its corresponding
chord error, normal acceleration and tangential acceleration are shown as subplots b, c
and d in Figure 10, respectively, which do not exceed their upper limits, indicating the
effectiveness of this method.
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Figure 9. N-shaped NURBS curve and its feedrate-constraint value.
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Figure 10. Feedrate planning results of the N-shaped NURBS curve based on CCC: (a) Feedrate;
(b) chord error; (c) normal acceleration; and (d) tangential acceleration.

The above are the results of feedrate planning of the NURBS curve in Figure 9 by using
the curvature-monotonicity and command-feedrate-threshold dividing + CCCP method,
while if the previously mentioned planning methods of command-feedrate-threshold
dividing + minimum-constraint (CFTM) in the literature [19] and curvature-threshold
dividing + minimum-constraint (CTM) in the literature [20,21] are used, the corresponding
feedrate-planning results are shown in Figure 11a,b, respectively.
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Figure 11. Planning results of the (a) CFTM and (b) CTM method.

In Figure 11a, C2(s) and C1(s) do not fit closely enough, leading the poor machining
efficiency, while in Figure 11b, although C2(s) and C1(s) fit more closely and the machining
efficiency is improved, a large number of new sub-curves are generated, which increase
the amount of calculation. In addition, feedrate in Figure 11b changes discontinuously, and
the problem of “stepping” will have a negative impact on the machining quality.

The relevant data such as the number of sub-curves and machining time corresponding
to the planning results shown in Figure 11a,b above are shown in Table 2. If C2(s) is directly
valued as C1(s) without considering the Acc/Dec process, the corresponding machining
time is the ideal value of the actual machining time. The difference between the machining
time of other planning methods and the ideal value is the time of the Acc/Dec process.

Table 2. Comparison of feedrate planning results of the N-shaped NURBS curve.

Planning Method Number of
Sub-Curves Machining Time (s) Acc/Dec Time (s)

C2(s) = C1(s) 2 1.04 0
CFTM 6 1.94 0.90

Command feedrate
threshold dividing +

CCCP
6 1.26 0.22

CTM 23 1.29 0.25
Curvature threshold

dividing + CCCP 23 1.18 0.14

In Table 2, the Acc/Dec time is reduced by 76% from 0.90 s to 0.22 s, when the
minimum-constraint principle in the CFTM method is replaced by the CCCP method.
While the Acc/Dec time can be reduced by 44% when the minimum-constraint principle
in the CTM method is replaced by the CCCP method, and its corresponding feedrate-
planning result is shown in Figure 12. While reducing the Acc/Dec time, the problem of
“stepping” in Figure 11b can be alleviated, and the smoothness of the machining process
can also be improved.
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Figure 12. Planning result of the curvature threshold dividing + CCCP method.

From the above simulation results of the N-shaped NURBS curve, it can be seen
that the CCCP method can effectively reduce the machining time without increasing the
number of sub-curves.

To further verify the effectiveness of the CCCP method, the above simulation was
repeated for a more complex butterfly-shaped NURBS curve shown in Figure 13, and the
results are shown in Table 3.
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Figure 13. Butterfly-shaped NURBS curve and its feedrate-constraint value.

Table 3. Comparison of feedrate planning results of N-shaped NURBS curve.

Planning Method Number of
Sub-Curves Machining Time (s) Acc/Dec Time (s)

C2(s) = C1(s) 48 13.93 0
CFTM 89 19.03 5.10

Command feedrate
threshold dividing +

CCCP
89 15.20 1.27

CTM 207 15.62 1.69
Curvature threshold

dividing + CCCP 207 14.91 0.98

From the data in this table, the Acc/Dec time can be reduced by 75% by replacing the
minimum-constraint principle in the CFTM method with the CCCP method, while doing
the same replacing to the CTM method can reduce the Acc/Dec time by 42%.

The above simulation results show that the planning of feedrate for NURBS curves by
using the CCCP method can ensure the real-time planning process while obtaining high
machining efficiency.

3.2. Experiment

The simulation results show that the CCCP method proposed in this paper can balance
the computational efficiency and machining efficiency. In order to check whether the CCCP
method can guarantee the final machining quality, the 2D butterfly-shaped NURBS curve
and 3D apple-shaped NURBS surface are machined on the experimental platform shown
in Figure 8. In the machining, a ball milling cutter W2QX4408 (Weidiao, Shanghai, China)
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is used, and the machining material is AlMg1SiCu aluminum and Al99.7 aluminum,
respectively. The final machining results are shown in Figures 14 and 15.
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The butterfly-shaped NURBS curve is composed of two typical curved machining
paths alternating between the flat and high-curvature regions, as shown in Figure 14.
When machining that curve, the CCCP method can effectively decrease the feedrate in the
high-curvature region to ensure the machining quality, therefore, no overcutting occurs.
While in the flat region, the CCCP method can rapidly increase the feedrate to ensure
machining efficiency. During the whole machining process, the machine tool runs smoothly
and the machining toolpath is smooth and clean.

The apple-shaped NURBS surface is a gradual surface, on which each point has
different curvature. There is a lot of reciprocal motion during the machining process, which
puts forward a higher requirement for the stability of the CCCP method. When machining
this surface, the machine tool also runs smoothly, and the machining result shown in
Figure 15 shows that the CCCP method can ensure fine surface machining quality.

The above simulation and experimental results show that, the CCCP method has good
real-time performance, and the machining efficiency can be improved while the machining
quality being ensured.

4. Conclusions

The feedrate-constraint value of the NURBS curve varies along the arc length, which
makes the feedrate planning in the CNC machining of the NURBS curve difficult. For this
reason, this paper analyzes the problems and corresponding causes of feedrate-planning
methods in literatures, and proposes the CCCP method.
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In this method, a composite feedrate-constraint curve CCC with concise expressions
is constructed, in which both the geometric and kinematic constraints of the feedrate are
considered. Then, the feedrate planning of the NURBS curve is carried out based on CCC
and the Acc/Dec model. The CCCP method avoids the iterative calculation of the point-
by-point planning method, and also does not have the conservative problem caused by the
minimum-constraint principle in the segment-by-segment planning method. Therefore,
the CCCP method can balance the computational and machining efficiency.

The simulations of N/butterfly-shaped NURBS curves show that, without increasing
the number of sub-curves, the Acc/Dec time can be respectively reduced by 44% and 42%
for replacing the minimum-constraint principle in the CTM method with the CCCP method.
The experimental results verify the real-time performance and stability of the CCCP method.
Moreover, the machining quality can also be guaranteed for both free-form curves and
surfaces. Hence, the CCCP method can balance the computational and machining efficiency,
while ensuring the machining quality. For the parametric interpolation of NURBS curves,
the CCCP method proposed in this paper offers an effective strategy to plan the feedrate,
which will promote the application of NURBS curves in CNC machining.

In view of the limited research time, the CCCP method presented in this paper
is currently implemented in single NURBS curve CNC machining in a 3-axis machine
tool, and has not been applied to double NURBS curve paths in 5-axis CNC machining,
which will be the focus of further research.
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Nomenclature

NURBS Non-uniform rational B-splines
Acc Acceleration
Dec Deceleration
CCC A critical constraint curve of the feedrate
CCCP The CCC-based feedrate-planning method
C1(s) A curve with the arc length as the abscissa value and the feedrate-constraint

value as the ordinate value
C2(s) A curve with the arc length as the abscissa value and the feedrate value as

the ordinate value
CFTM A feedrate-planning method base on command-feedrate-threshold dividing

+ minimum-constraint principle
CTM A feedrate-planning method base on curvature-threshold dividing +

minimum-constraint principle
T Interpolation period, µs
ρ Radius of curvature, mm
ε Chord error, µm
an Normal acceleration, mm/s2

aT Tangential acceleration, mm/s2
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