
applied
sciences

Article

End to End Alignment Learning of Instructional Videos
with Spatiotemporal Hybrid Encoding and Decoding
Space Reduction

Lin Wang † , Xingfu Wang † , Ammar Hawbani *,† and Yan Xiong †

����������
�������

Citation: Wang, L.; Wang, X.;

Hawbani, A.; Xiong, Y. End to End

Alignment Learning of Instructional

Videos with Spatiotemporal Hybrid

Encoding and Decoding Space

Reduction. Appl. Sci. 2021, 11, 4954.

https://doi.org/10.3390/app11114954

Academic Editor: Antonio

Fernaéndez-Caballero

Received: 29 March 2021

Accepted: 18 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China;
xiaquhet@mail.ustc.edu.cn (L.W.); wangxfu@ustc.edu.cn (X.W.); yxiong@ustc.edu.cn (Y.X.)
* Correspondence: anmande@ustc.edu.cn; Tel.: +86-187-5691-8792

Abstract: We solve the problem of how to densely align actions in videos at frame level, with only the
order of occurring actions available, in order to save the time-consuming efforts to accurately annotate
the temporal boundaries of each action. We propose three task-specific innovations under this
scenario: (1) To encode fine-grained spatiotemporal local features and long-range temporal patterns
simultaneously, we test three popular backbones and compare their accuracy and training times:
(i) a recurrent LSTM; (ii) a fully convolutional model; and (iii) the recently proposed Transformer
model. (2) To address the absence of ground truth frame-by-frame labels during training, we
apply connectionist temporal classification (CTC) on top of the temporal encoder to recursively
collect all theoretically valid alignments, and further weight these alignments with frame-wise
visual similarities, in order to avoid a significant number of degenerated paths and improve both
recognition accuracy and computation efficiency. (3) To quantitatively assess the quality of the learned
alignment, we apply a comprehensive set of frame-level, segment-level, and video-level evaluation
measurements. Extensive evaluations verify the effectiveness of our proposal, with performance
comparable to that of fully supervised approaches across four benchmarks of different difficulty and
data scale.

Keywords: temporal video segmentation; temporal video alignment; connectionist temporal classifi-
cation (CTC); transformer; convolutional neural networks (CNNs); computer vision

1. Introduction

Fine-grained temporal action segmentation/alignment [1–3] is important in many
applications, such as daily activity understanding, human motion analysis, and surgical
robotics, to name a few. Given a video of length T, x = (x1, · · · , xT), the goal of temporal
segmentation/alignment is to localize each occurrence of a given action an ∈ A in the
time domain. A frame-to-action segmentation/alignment can be mathematically defined
densely, as a sequence of occurring action labels at every frame in a video π = (π1, · · · , πT),
πt ∈ A; or sparsely, as a set of temporally segmented clips ` = (`1, · · · , `N), `n ∈ A,
with each segment associated with a start time, finish time, and label. N = |`| is the length
of the transcript sequence; note that usually T � N since the sampling frequency of the
machine at the encoding end is orders of magnitude higher than the granularity of the
manual labeling at the decoding end.

The difference between the tasks of segmentation/alignment is that during training,
only the ordered sequence of video-level actions ` (defined as transcript [4–6]) is available
for alignment, while the classes of each frame are given for segmentation. Figure 1 shows
the training/testing settings in the task of temporal action alignment learning, as compared
to temporal action segmentation, where accurate dense labels of each frame are also
available during training.

Appl. Sci. 2021, 11, 4954. https://doi.org/10.3390/app11114954 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9944-5151
https://orcid.org/0000-0002-1301-3535
https://orcid.org/0000-0002-1069-3993
https://orcid.org/0000-0001-6347-8747
https://www.mdpi.com/article/10.3390/app11114954?type=check_update&version=1
https://doi.org/10.3390/app11114954
https://doi.org/10.3390/app11114954
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114954
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4954 2 of 19

Figure 1. The training/testing settings in the problem of action labeling through temporal alignment
learning. (Left) During training, only the order of the occurring actions is given, the model is learned
by maximizing the probability of all possible frame-to-label alignments. (Right) During testing, no
annotation is given, as the learned model already encodes the temporal structure of data, it predicts
the actions frame by frame without any further information.

We also restrict our focus on modeling instructional videos with relatively stable
background, usually composed of dozens of actions lasting minutes, recorded in a kitchen
or surveillance setup. Under this setting, research focus can be saved from variances in
extrinsic shooting conditions, and concentrates upon the major challenges of the task.

1.1. The Motivation of Long-Term Temporal Encoding

The first challenge lies in the relatively large temporal search space, resulting from
long-range temporal dependencies and flexible temporal length, compared to action recog-
nition (also known as action classification). In general, action alignment is more challenging
than action recognition, for the following reasons:

• In action recognition, temporal localization is not taken into account, where input
samples are previously truncated to contain exactly the temporal span of a certain
target action, leading to relatively short inputs (e.g., 2∼20 s in UCF101 datasets).
In frame-wise action alignment, inputs generally last minutes or hours. In action
recognition, background class is not taken into account, where input samples may not
contain any of the target actions.

• In action alignment, dependencies can also last temporally across seconds or even
minutes. The types of temporal dependencies include individual action durations,
pairwise compositions between consecutive actions, and long-term compositions
lasting across multiple sub-actions. As an example of a cooking instance, when
cutting a potato, it is difficult to recognize what is being cut because it tends to be
occluded by hands holding it. The recognition of frames where the potato is being cut
shares dependencies with previous frames where the potato is being taken out before
being cut.

• In action recognition, only one label needs to be assigned to the whole video, whereas
the action alignment task needs to densely assign a label to each frame. Consider a
video instance consisting of 20 frames sharing the same class.

• In action recognition, even if a convolution network correctly predicts only for
10 frames, it is still very likely to correctly predict the whole video. A powerful
temporal encoder, illustrated in Figure 2, on top of a convolution network would
not bring any improvement in this case, because per video labels do not change
whether or not per frame labels are neighboring. In action alignment, 10 accurate
but not neighboring predictions would lead to over-segmentation error with 20 seg-
ments. Bidirectional temporal encoders would be motivated to predict neighboring
segments, because they encode late samples together with the early ones for final
judgement, leading to fewer false positives compared to a purely convolutionnetwork
(see Figure 3).

Appl. Sci. 2021, 11, 4954 3 of 19

Figure 2. The proposed Hybrid-CTC structure consists of a hybrid encoder with a CTC output layer.
See Table 3 for architectural details of different temporal encoders. See Figure 4 and Section 3.4
for how the CTC layer aggregates all possible input–output alignments. See Section 4.1 for how to
sub-sample frames from raw video as pre-processing before submitting to CNN encoders.

Figure 3. Similar frame-wise accuracy may have large qualitative differences. The top row generates
neighbouring segments. The bottom row generates the same proportion of segments but they are
non-contiguous, leading to numerous over-segmentation errors.

1.2. The Motivation of Hybrid Spatiotemporal Encoding

The second challenge lies in the simultaneous encoding of low-level fine-grained
spatiotemporal features together with high-level long-range temporal patterns. Appearance
information, which can be regarded as visual features presented by static composing frames
without taking temporal order into account, also serves as vital to the start and finish
boundary indicators of actions (e.g., ‘cutting a tomato’ is often only subtly different from
‘peeling a cucumber’ spatially, such as the food types ‘tomatoes’ or ‘cucumbers’ and food
states ‘sliced’, ‘diced’, ‘peeled’, and so on).

We experiment with three deep neural network models for encoding. In each case
the encoder consists of two modules (or sub-networks): a spatiotemporal visual module
Table 2 encoding per frame into one feature vector, and a temporal module Table 3 encoding
the sequence of per-frame feature vectors into a sequence of sub-action labels. The visual
module is common across the three models; they only differ in the temporal module
(Figure 2).

1.3. The Motivation of Decoding Space Reduction

The third challenge lies in that manual annotations with per-frame action labels
for accurate training are too expensive to be feasibly applicable in practice. Automatic
extractions from instructional transcriptions [4–6] can provide label sequences of occurring
actions (hereafter referred to as ‘transcript’), without the accurate start and end frame for
each action, which further impose new challenges in two ways:

• The first challenge is that densely aligning thousands of frames to a few sub-actions
results in very large search spaces of possible alignments.

• The second challenge is that there exist degenerated alignments that are visually
inconsistent.

We introduce CTC [7] (Figure 2) to evaluate all alignments efficiently in one-pass
recursive traverse, and further incorporate frame-level visual similarities to down-weight
trivial paths which deteriorate performance. Figure 4 shows the difference of training
strategies under different granularities of supervision.

Appl. Sci. 2021, 11, 4954 4 of 19

Figure 4. Blank nodes indicate unlabeled frames. CTC addresses the problem of unknown labels by
aggregating associate paths (Equation (4)).

2. Related Work

We mainly focus on related deep end-to-end approaches, which can be grouped into
two research directions according to different annotating granularity—that is, at frame-level
(segmentation) and video-level (alignment) supervision:

2.1. Action Segmentation

Before deep neural solutions, the most prevalent were statistical models [8–10] based
on conditional independent assumption between segments, which ignore long-range de-
pendencies and have been generally outperformed by the state of the art (see Table 1 for
more quantitative performance comparison). MSB-RNN [11] uses a two-stream network
and bi-directional LSTMs to learn representations and capture dependencies between
video chunks, respectively. ED-TCN [12] uses temporal convolutions and pooling lay-
ers within an encoder–decoder architecture to learn long-range dependencies between
frames. TDRN (temporal deformable residual network) [13] proposes two parallel temporal
streams, facilitating temporal segmentation at local, fine-scale, and multiple long-range
scales, respectively, for improving the accuracy of frame classification. TCED [14] intro-
duces a learnable bilinear pooling in the intermediate layers of a temporal convolutional
encoder–decoder net, in order to capture more complex local statistics than conventional
pooling. ASRF [15] proposes to alleviate over-segmentation errors by detecting and refining
action boundaries with a dedicated boundary regression module and a wider temporal
receptive field.

One problem in this context arises from the fact that the annotation to mark action
boundaries for training is very time- and cost-intensive, leading to recent efforts trying to
train classifiers without exact start and end frames of the related action classes (which is
our case); the goal of this work is to infer frame boundaries given only an ordered list of
the occurring actions.

2.2. Action Alignment

Compared with full supervision, there are only a few approaches that rely solely on
video-level class labels to localize actions in the temporal domain. GRU + HMM [1] pro-
poses a combination of a recurrent neural network and a probabilistic model to inference
over long sequences for a temporal alignment. TCFPN + ISBA [2] proposes a pyramid
temporal convolutional network, iteratively updated by a training strategy named ISBA (it-
erative soft boundary assignment), to align action sequences with frame-wise action labels
in a more efficient and scalable fashion. CDFL [3] proposes a constrained discriminative
forward loss upon GRU + HMM ground. Duration network [16] treats the the remaining
duration of a given action as a predictable distribution conditioned on the type of action,
and obtains the best alignment by maximizing its posterior probability.

In general, these methods are still more or less hand-engineered, involving statistical
components designed on prior knowledge, and rely on sophisticated techniques to improve
performance. To our best knowledge, the inherent integration of visual similarity into the
CTC output layer with encoder–decoder spatiotemporal transducers sets our method apart

Appl. Sci. 2021, 11, 4954 5 of 19

from previous works, as the first purely end-to-end automatic approach without human in-
tervention. We select ASRF [15] and duration network [16], respectively, as representatives
of the state-of-the-art baselines under the two above-mentioned branches in Section 5.

Table 1. State-of-the-art performance under different training conditions.

Trained with
Frame-Wise

Annotations:
MPII

Cooking2 [17]
MERL

Shopping [11] 50 Salads [18] GETA [19] JIGSAWS [20,21]

MSB-RNN [11] (2016) 41.22% (mAP) 80.31% (mAP)

ED-TCN [12] (2017) 74.1% (F.Acc)
64.2% (mAP)

64.7% (F.Acc) ?

59.8% (Edit) ? 64.0% (F.Acc) 80.8% (F.Acc)
84.7% (Edit)

TCED [14] (2019)

66.3% (F.Acc) ?

62.5% (Edit) ?

75.9% (F.Acc) ??

71.3% (Edit) ??

63.4% (F.Acc)
70.9% (Edit)

82.2% (F.Acc)
87.7% (Edit)

ASRF [15] (2021)

84.5% (F.Acc) ?

79.3% (Edit) ?

84.9% (F1@0.10) ?

83.5% (F1@0.25) ?

77.3% (F1@0.50) ?

77.3% (F.Acc)
83.7% (Edit)

89.4% (F1@0.10)
87.8% (F1@0.25)
79.8% (F1@0.50)

Trained with Only
Order of Actions: Breakfast [22] Hollywood

Ext. [23] 50 Salads YouTube
Instructions [24] YouCook2 [25]

GRU + HMM [1]
(2017)

33.3% (MoF)
47.3% (IoD) ◦

11.9% (IoU)
51.1% (IoD) ◦

ProcNet [25] (2018)

50.6% (Jac.) ◦◦
37.0% (IoU) ◦◦

37.1% (Rec.) ◦◦
30.4% (Prec.) ◦◦

33.4% (F1) ◦◦
Unsupervised [26]

(2019) 41.8% (MoF ◦◦) 30.2% (MoF ◦◦?)
35.5% (MoF ◦◦??) 39.0% (MoF ◦◦)

Duration [16] (2021) 55.7% (F.Acc)
36.3% (IoU)

50.1% (F.Acc)
31.4% (IoU)

All results are reported without any form of supervision on test data, with only the temporal ordering of actions available for training, unless marked
with ◦. ◦ denotes that additional information on the temporal ordering of actions is also provided in the test video. ◦◦ denotes even weaker supervision,
where even the order of actions is not available, only un-ordered sets of the actions contained are available. All results are performed with low-level
granularity with 48 sub-action classes, where each mid-level granularity is further divided into pre-, core-, and post-phases, unless marked with
?. ? denotes that evaluations were performed at mid-level action granularity with 18 sub-action classes. The mid-level labels differentiate actions
like ‘cut tomato’ from ‘cut cucumber’, whereas the higher-level labels combine these into a single class, ‘cut’. ?? denotes that evaluations were
performed at eval-level action granularity with 9 sub-action classes such as ‘cut’, ‘peel’, and ‘add dressing’. Metrics definitions: (1) MoF
(mean-over-frames) is equivalent to F.Acc, and refers to the average percentage of correctly labeled frames. (2) IoU, IoD, and Jac. (intersection over
union/detection/prediction) refer to I∩I∗

I∪I∗ , I∩I∗
I , and I∩I∗

I∗ , respectively, where I and I∗ are ground-truth and prediction intervals, respectively. IoU
penalizes all the misalignment of proposal while Jaccard only penalizes the partition of segments beyond the ground truth. (3) Edit, F1, Prec., and Rec.:
see Equations (10)–(12) in Section 4.3 for definitions.

2.3. Automatic Feature Extraction

Automatic feature extraction is fundamental in all video recognition tasks. Early
methods normally devise hand-crafted features [27,28]. The development of deep learning
enables end-to-end automatic feature extraction, including two-stream network [29], 3D
ConvNet (C3D) [30], and inflated 3D (I3D) [31,32]. We adopt I3D for feature extraction.

2.4. Automatic Label Extraction

Automatic label extraction is also related, as our action order comes from transcripts of
video instructions [24,33]. Unlike these approaches focusing on the text processing part of
the task, we assume that the discrete target label sequences are available in training stages.

3. The Proposed Encoder–Decoder Network
3.1. Spatial Encoder

Generally, common 2D/3D backbones such as VGG [34], Residual [35], Inception [36],
and I3D [31] variants can be applied orthogonally; in our empirical practice it is found
that deep 3D backbones such as Res3D (Table 2 and Figure 5) generally yield better
performance and efficiency. The convolutional feature maps of T frame representations

Appl. Sci. 2021, 11, 4954 6 of 19

x1:T = (x1, x2, · · · , xT) obtained from the last pooling layer (i.e., pool49) with size L× W
32 ×

H
32 are fed into temporal encoding architectures.

Table 2. Network architecture of the I3D Res-50 backbone [37]. Residual blocks are shown in brackets, next to
which is the number of repeated blocks in the stack. Each convolutional layer is followed by batch normalization
and ReLU. Down-sampling is performed after each stack with a stride of 2 along dimensions of width and height.
res5 culminates with a global spatiotemporal pooling layer outputting a 512-dimensional feature vector, which is
subsequently fed to a fully connected layer outputting final class probabilities through softmax activations. The
dimension C of the last fully connected layer is equal to the number of classes in the target dataset.

Layer I3D Res-50 Output Size

res1 1× 7× 7, 64 L× W
2 ×

H
2

res2

[
1× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256

]
× 3 L× W

4 ×
H
4

res3

[
1× 1× 1, 128
1× 3× 3, 128
1× 1× 1, 512

]
× 4 L× W

8 ×
H
8

res4

[
1× 1× 1, 256
1× 3× 3, 256
1× 1× 1, 024

]
× 6 L× W

16 ×
H
16

res5

[
1× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 2048

]
× 3 L× W

32 ×
H
32

f c global pooling→ softmax 1× 1× C

Figure 5. Res-50 backbone, 2nd, 3rd, 4th residual blocks are internally similar and are therefore omitted.

3.2. Temporal Encoder

In this section, we formally describe three common temporal architectures Table 3,
and empirically compare them for this task in Section 5, in terms of performance accuracy,
training time, generalization at test time, and ease of use.

Table 3. Structural and training details of the temporal backbones used in experiments.

BLSTM Full Convolution Transformer

Dimension 2× 1024 15× (Xeption_Block + 1536) (6+ 6)× (512+ 2048+ 512)
Parameters 22 M 35 M 40 M
Optimization SGD, batch size = 1 Adam, batch size = 32 Adam, batch size = 32
Momentum 0.9 − −

Learning Rate 10−2 → 10−4 10−3 → 10−4 10−3 → 10−4

Dropout 0.3 0.8 0.1
Training Time/Batch 0.76 s/32 0.34 s 0.41 s

? Convergence (Iterations) 1.0× 106 × 32 0.8× 106 3.0× 106
? Convergence (Clock Time) 9 days 3.4 days 14 days

? Statistics are collected on the Breakfast dataset [38] on a single GPU; however, convergence curves are generally
consistent across the other datasets (Section 4.2) and are therefore omitted for presentation. The time to train the
I3D Res-50 CNN (2 weeks) is also excluded from the statistics.

3.2.1. LSTM

Following [39], we adapt a 1-layer bidirectional LSTM (BLSTM), taking the vision
feature vectors xt as input and outputting a class probability yt(πt), πt ∈ A for every frame
t. The BLSTM has 1024 cells in each direction. The overall network is trained together with
CTC (see Section 3.4.2 for training detail). The output alphabet A is therefore augmented
with the CTC blank class label, and the decoding is performed with a beam search.

Appl. Sci. 2021, 11, 4954 7 of 19

3.2.2. Full Convolution

Following [40], we adapt depth-wise separable convolution layers, which consist of a
separate convolution along the time dimension for every channel, followed by a projection
along the channel dimensions (a position-wise convolution with filter width 1). Each
spatial convolution is followed by a shortcut connection, batch normalization, and ReLU.
The overall network consists of 15 convolutional layers, also trained with a CTC loss,
with sequences decoded by using a beam search (above).

3.2.3. Transformer

Following [41], we adopt 6 encoder and 6 decoder layers, log2 |A| attention heads,
and each attention has 512 channels and is followed by two position-wise fully connected
layers with 2048 and 512, compared to that of 1536 for the fully convolutional network.
Every encoder layer is a self-attention, where the input tensor serves as the attention
queries, keys, and values at the same time.

Every decoder layer attends on the embedding produced by the encoder using com-
mon soft-attention: the encoder outputs are the attention keys and values, and the previous
decoding layer outputs are the queries. The decoder produces target class probabilities
which are matched to the ground-truth labels by CTC decoding and trained as a whole
with a cross-entropy loss.

This section demonstrates how to achieve more efficient decoding by the early elim-
ination of paths that obviously violate the visual consistency based on existing labels.
To understand how to reduce the search space of eligible candidate decoding paths, it
is necessary that we first briefly look back on how the original CTC decoding process
performs general end-to-end alignment learning in sequential signal transduction tasks.

3.3. The Original CTC Decoding

CTC sums over all possible alignments upon conditional independent assumptions.
Firstly, given a training sample of T frames:

x = (x1, · · · , xT) (1)

where t is the index of T frames and xt is a vector of frame features.
According to the conditional independence assumption (CIA) from the original CTC

formulation [7], the probability of path π = (π1, · · · , πT), πt ∈ A is the stepwise product
of the network output softmax activation yt(πt) of πt at each frame t:

P(π|x) CIA
====

T

∏
t=1

yt(πt) (2)

where yt(k) is the probability of the network outputting action k at time t, given input x,
k ∈ A (A is the collective set of all possible actions).

We refer to π over A as paths, to be distinguished from the action order l, which is
naturally produced from path πππ by applying the operator that removes repetitions B(πππ):

B(πππ) = lll (3)

The probability of l sums over all paths consistent with l:

P(l|x) = ∑
π∈B−1(l)

P(π|x) Equation (2)
======== ∑

B(π)=l

T

∏
t=1

yt(πt) (4)

Finally, the negative log likelihood of observing lll:

J = − ln P(l|x) (5)

Appl. Sci. 2021, 11, 4954 8 of 19

3.4. Decoding Search Space Reduction

One drawback of original CTC is that Equation (2) weights all paths equally, caus-
ing the sum in Equation (4) to include visually inconsistent paths πππ that deteriorate the
performance.

We incorporate visual similarity into by Equation (2) rewarding paths:

P(π|x) ∝
T

∏
t=1

φt · ψt+1
t

where: φt = yt(πt),

ψt+1
t =

{
max(θ, st+1

t) πt = πt+1
θ πt 6= πt+1

st+1
t = fsim(xt, xt+1)

(6)

where φt = yt(πt) represents the original Equation (2) formulation, and θ is a minimum
threshold of the frame similarity function st+1

t = fsim(xt, xt+1).

• When πt = πt+1 and st+1
t > θ (high similarity), ψt+1

t = st+1
t reward path to stay at

the same prediction.
• When πt = πt+1 and st+1

t < θ (low similarity), ψt+1
t = θ means no intervention after

normalization.

3.4.1. Example

Figure 6 illustrates how Equation (6) re-weights a ground-truth path and a degenerated
path. In Figure 6, there is a ground-truth path π1 and another path π2 that produces the

same action order with π1
(
B(πππ1) = B(πππ2) = `̀̀

)
, but yields different frame-wise label

sequences:

A = {Action1, Action2, Action3}, represented by green, yellow, and orange nodes, respec-
tively.

`̀̀ = green→ yellow→ orange, which is supposed to be already known during training.

πππ1 = green→ green→ green→ yellow→ yellow→ orange.

πππ2 = green→ yellow→ orange→ orange→ orange→ orange.

Figure 6. For illustration, an input with T = 6 frames and |A| = 3 annotated actions. High similarity
is indicated by thick lines between frames. Note that π1 stays at the same action prediction across
similar frames. Consequently, Equation (6) weights π1 higher over π2. In contrast, π1 and π2 are
equally treated in original CTC.

Appl. Sci. 2021, 11, 4954 9 of 19

In fact, for T = 6, |`̀̀| = 3, there are altogether
(

T − 2
|`̀̀| − 1

)
=

(
4
2

)
= 4!

2!2! = 6 distinct

paths πππi satisfying the supervised constraints B(πππi) = `̀̀, because:

• π1 has to be `̀̀(1) = green;
• πT has to be `̀̀(end) = orange; and
• The difference among different πππis is to choose at which πt, t = 2, · · · , T− 1 to transit

the node label from `̀̀(j) to `̀̀(j + 1), with j = 1, 2, · · · , |`̀̀| − 1.

To summarize, the necessary and sufficient condition for path πππ to be consistent with
the supervised action order `̀̀, if and only if:

• π1 = `̀̀(1).
• πT = `̀̀(end).
• For each middle node πt, t = 2, · · · , T − 1, there are only two possible options: (1)

Stay the same as the previous node, which means if πt−1 = `̀̀(j), πt = `̀̀(j) as well.
Whenever this case holds true, a ‘repetition’ happens in πππ. (2) Transit from πt−1 = `̀̀(j)
to the next label in `̀̀, which means πt = `̀̀(j + 1). Any other label assignment will
cause B(πππ) = `̀̀ holding false.

So far we can draw the conclusion that the only difference between valid paths πππ
and supervised action order `̀̀ is that πππ contains ‘repetitions’; by inserting and removing
‘repetitions’, πππ and `̀̀ can be converted to each other.

In this example, πt = πt+1 holds true at t = 1, 2, 4 in path π1, and t = 3, 4, 5 in path
π2. πt = πt+1 means that a ‘repetition’ happens in path πππ at frame t + 1, but there are
two cases to judge whether such a ‘repetition’ should be encouraged or not if taking into
account its consistency with the ground truth alignment.

Case 1: st+1
t > θ,

which means that apart from the supervised order information `̀̀, it is also unsupervis-
edly observed that frame t + 1 is visually in great similarity with frame t, which suggests
such a ‘repetition’ should be additionally encouraged.

At t = 1, π1
t = π1

t+1 = green holds true for πππ1 and false for πππ2, where π2
t = green 6=

π2
t+1 = yellow. πππ1 is consistent with ground truth while πππ2 is not, since st+1

t = 10 > θ.
Therefore:

• ψt+1
t = st+1

t for path π1 when st+1
t > θ is introduced to encourage π1, which has

a ‘repetition’ at t + 1 = 2 to yield a higher probability than π2 after P(π|x) re-
normalization at time step t + 1.

• ψt+1
t = θ for path π1 since π2

t 6= π2
t+1 at t = 1, which means no encouragement after

P(π|x) re-normalization at time step t + 1; the calculation remains the same as the
original Equation (3).

Case 2: st+1
t ≤ θ,

which means that apart from the supervised order information `̀̀, it is also unsupervis-
edly observed that frame t + 1 is visually not similar with frame t, which suggests such a
‘repetition’ should not be encouraged.

At t = 3, π2
t = π2

t+1 = orange holds true for πππ2 and false for πππ1, where π1
t = green 6=

π1
t+1 = yellow. πππ1 is consistent with ground truth while πππ2 is not, since st+1

t = 1 ≤ θ.
Therefore:

• ψt+1
t = θ for path π2 when st+1

t ≤ θ, which means such a ‘repetition’ at t + 1 = 4
is not encouraged and P(π|x) remains the same as the original Equation (3) after
re-normalization.

• ψt+1
t = θ for path π1 since π1

t 6= π1
t+1 at t = 3, which also means no intervention.

Appl. Sci. 2021, 11, 4954 10 of 19

3.4.2. How to Train the Proposed Decoder

The back-propagation through the CTC layer to obtain the closed form of ∂yt(k∗)
∂at(k)

is
quite cumbersome, and may last for several pages, so we chose not to present the math-
ematical derivation in too much detail; for readers interested in the complete derivation
of Equation (7) to obtain the gradient of P(`̀̀|x), it can be easily found in the relevant
literature or tutorials, such as [7,42], based on dynamic programming under chained rule
of derivation.

Here we briefly give the closed form for forward loss function calculationJ = − ln P(`|x),
together with its backward gradient w.r.t. the neural network output yt(k) (the response of
label k at time t):

P(`|x) =
J=|`|

∑
j=1

αt(j) · βt(j) (7)

∂J
∂yt(k)

= −∂ ln P(`|x)
∂yt(k)

= − 1
P(`|x)

∂P(`|x)
∂yt(k)

= − 1
P(`|x) · yt(k)

∑
j∈label(k)

αt(j) · βt(j)

∂J
∂at(k)

= ∑
k∗

∂J
∂yt(k∗)

· ∂yt(k∗)
∂at(k)

= yt(k)−
1

P(`|x)

 ∑
j∈label(k)

αt(j) · βt(j)

where:

at(k) are the un-normalised outputs before the softmax activation function is applied:
yt(k) =

exp(at(k))
∑k∗ exp(at(k∗)) , k∗ ranges over all outputs; and

αt(j), βt(j) are forward and backward variables, respectively. αt(j) is defined as the summed
probability of all paths satisfying B(π1:t) = l1:j, and βt(j) appends to αt(j) from
t + 1 that completes l, where l1:j is the first j actions of `; both αt(j) and βt(j) can be
calculated by recursive inductions:

αt(j) = αt−1(j)yt−1(b) + αt−1(j− 1)yt−1(j) (8)

βt(j) = βt+1(j)yt(b) + βt+1(j + 1)yt(j + 1)

α1(j) =

{
αt=1(j = 1) = 1

αt=1(j 6= 1) = 0

βT(j) =

{
βt=T(j = |`|) = 1

βt=T(j 6= |`|) = 0

j = 1, · · · , |`|

∂yt(k∗)
∂at(k)

in Equation (7) is the final ‘error signal’ back-propagated through the network
during training.

4. Experimental Setup
4.1. Visual Similarity Measurement

Cut the video into T/M clusters, each with length M. Set M to be conservatively shorter
than common action lengths (e.g., ∼400 frames on average in the YouCook2 dataset) so
that frames belonging to different actions do not blend into the same cluster.

Appl. Sci. 2021, 11, 4954 11 of 19

Thus, st+1
t can be set under the resulting constraints that:

• πt = πt+1 if and only if xt and xt+1 fall within same cluster;
• πt 6= πt+1 if and only if xt or xt+1 is at the boundary between clusters.

st+1
t = fsim(xt, xt+1) =

{
∞ πt = πt+1

cos(xt, xt+1) =
xt ·xt+1
|xt ||xt+1|

πt 6= πt+1
(9)

4.2. Datasets

We evaluate the proposed approach on four public available datasets: YouTube Instruc-
tional (https://www.di.ens.fr/willow/research/instructionvideos, accessed on 12 January
2021), YouCook2 (http://youcook2.eecs.umich.edu, accessed on 12 January 2021), Breakfast
(https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset, accessed on 12 Jan-
uary 2021), and 50 Salads (http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/
50salads, accessed on 12 January 2021).

YouTube Instructions [24] contains 150 samples from YouTube on five tasks: making
coffee, changing a car tire, CPR, jumping a car, and potting a plant, with approximately
two minutes per sample.

YouCook2 [25] contains about 2k samples from YouTube on 90 cooking recipes, with ap-
proximately 3∼15 steps per recipe class, where each step is a temporally aligned narration
collected from paid human workers.

Breakfast [38] contains about 2k samples on ten common kitchen tasks with approxi-
mately eight steps per task. The average length of each task varies from 30 s to 5 min.

50 Salads [18] contains 4.5 h of 25 people preparing 2 mixed salads each, with approxi-
mately 10k frames per sample. Each sub-action corresponds to two levels of granularity,
and each low-level granularity is further divided into pre-, core-, and post-phase.

4.3. Metrics

Frame-level accuracy is calculated as the percentage of correct predictions. Intuitively,
frame-wise metrics ignore temporal patterns and occurrence orders in the sequential inputs.
It is possible to achieve high frame measures but at the same time generate considerable
over-segmentation errors, as visualized later, raising the need to introduce segmental
metrics to penalize predictions that are out of order or over-segmented.

Segment-level edit distance is also known as the Levenshtein distance, and only mea-
sures the temporal order of occurrence, without considering durations. It is therefore useful
for procedural tasks in this work, where the order is the most essential.

It is calculated as segment insertions, deletions, and substitutions between predicted order
and the ground-truth sequence, then normalized to range [0∼100] in Table 4 such that
higher is better:

Edit =
|insertions|+ |deletions|+ |substitutions|

|Ground truth| (10)

https://www.di.ens.fr/willow/research/instructionvideos
http://youcook2.eecs.umich.edu
https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset
http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads
http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads

Appl. Sci. 2021, 11, 4954 12 of 19

Table 4. Accuracy across different datasets (%). All referenced baselines under both training conditions (Row
1∼4) are re-implemented under the same empirical control (i.e., identical datasets and evaluation metrics) to
facilitate consistent comparisons against our proposed variants ?. Results are means over 4 runs (variances
are omitted for readability). All differences are significant (p < 0.01). The bold-faced font highlights the best
results obtained on the given data set. The values in brackets calculate the absolute increments of the current
row (denoted by©) relative to the row referenced in the rightmost column. The second to the rightmost column
calculates the statistical means and variances of the corresponding increments across different datasets within the
same row.

Datasets
(1) 50

Salads [18]
(2013)

YouTube
Instruc-

tions [24]
(2016)

Breakfast [38]
(2016)

YouCook2 [25]
(2018)

Size (hour) 4.5 h 5 h 77 h 176 h

#Samples 50 150 2k 2k/14k

#Classes/#Sub-actions 2/17 5/− 10/62 90/open

Sample Length 4∼5 min 2 min 0.5∼5 min 5 min

Label Length 37∼72
steps 7∼10 steps 3∼10 steps 3∼15 steps

Recording (width× height× f ps) 640× 480× 30 YouTube 320× 240× 15 YouTube

Recording (Camera/Background) Fixed/Stable Dynamic/Open Fixed/Stable Dynamic/Open

Fr
am

e-
w

is
e

A
nn

ot
at

io
n

1. CNN +
BLSTM [11]
(2016)

Frame Acc. 76.9 60.8 60.6 45.8

mAP @ 0.25 72.5 47.0 64.9 33.7

Edit 71.4 41.9 61.8 28.4

2. ED-TCN
[12] (2017)

Frame Acc. 82.1 64.9 64.7 48.9

mAP @ 0.25 73.4 50.2 65.7 36.5

Edit 68.9 44.7 59.6 30.4

3. TCED [14]
(2019)

Frame Acc. 68.1 66.0 53.7 47.9

mAP @ 0.25 68.5 54.0 61.3 35.9

Edit 66.0 48.3 57.1 30.7

4. ASRF [15]
(2021)

Frame Acc. 84.5 (+4.5) 81.9 (+5.5) 67.6 (+4.5) 59.5 (+11.8) (8.05± 1.90)

mAP @ 0.25 83.5 (+11.9) 65.8 (+4.4) 72.4 (+8.3) 43.8 (+8.1) (9.53± 4.44)

Edit 79.3 (+4.1) 58.0 (−2.5) 68.9 (+3.8) 36.9 (+2.7) (8.23± 2.32)

V
id

eo
-l

ev
el

A
nn

ot
at

io
n

5. Duration
[16] (2021)
(Baseline)

Frame Acc. 70.7 67.5 55.7 42.1 ∆Base =

(© − 5.
Baseline)

mAP @ 0.25 63.2 54.2 56.6 31.5

Edit 59.3 47.8 51.3 26.9

6. I3D +
BLSTM +
CTC (Ours)

Frame Acc. 56.8 (−13.8) 54.3 (−13.2) 44.8 (−10.9) 33.8 (−8.2) (−11.54± 2.53)

mAP @ 0.25 50.8 (−12.3) 43.6 (−10.6) 45.5 (−11.1) 25.3 (−6.1) (−10.05± 2.69)

Edit 47.7 (−11.6) 38.4 (−9.3) 41.3 (−10.0) 21.7 (−5.3) (−9.07± 2.69)

7. I3D + FC +
CTC (Ours)

Frame Acc. 62.9 (−7.7) 60.1 (−7.4) 49.6 (−6.1) 37.5 (−4.6) (−6.46± 1.42)

mAP @ 0.25 56.5 (−6.6) 48.5 (−5.7) 50.6 (−5.9) 28.2 (−3.3) (−5.41± 1.45)

Edit 59.6 (+0.33) 48.1 (+0.26) 51.6 (+0.29) 27.1 (+0.15) (0.26± 0.07)
8. I3D +
Transformer
+ CTC
(Ours)

Frame Acc. 74.9 (+4.3) 71.6 (+4.1) 59.1 (+3.4) 44.6 (+2.6) (3.58± 0.78)

mAP @ 0.25 67.1 (+3.9) 57.6 (+3.4) 60.1 (+3.5) 33.5 (+1.9) (3.20± 0.85)

Edit 70.6 (+11.3) 56.9 (+9.1) 61.1 (+9.8) 32.1 (+5.1) (8.83± 2.62)

9. I3D +
Transformer
+ R-CTC
(Ours)

Frame Acc. 79.9 (+9.3) 76.3 (+8.8) 63.0 (+7.3) 47.6 (+5.5) (7.74± 1.70)

mAP @ 0.25 71.5 (+8.3) 61.3 (+7.1) 64.0 (+7.4) 35.6 (+4.1) (6.76± 1.81)

Edit 75.1 (+15.8) 60.5 (+12.7) 65.0 (+13.7) 34.1 (+7.2) (12.3± 3.68)

(1) Evaluations on 50 salads were performed at mid-level action granularity with 18 sub-action classes. ? Some
values reported in this table may differ from the values in the original literature even under the same
dataset/training/evaluation combinations due to the re-implementation; if readers are interested in the perfor-
mance originally reported, please check their citation link in the referenced methods.

Segment-level mean average precision (mAP@k) With an intersection over union (IoU)
threshold k, calculated as dividing the intersection between each pair of predicted segments
I and the ground-truth segment of the same action category I∗ by their union:

IoU(I) =
|I ∩ I∗|
|I ∪ I∗| (11)

Appl. Sci. 2021, 11, 4954 13 of 19

I is considered as a ‘true positive’ (TP) if IoU(I) ≥ k, otherwise it is a ‘false positive’ (FP).
Average precision is accumulated across all categories. mAP@k is more invariant to small
temporal shifts as compared to the above metric.

Segment-level F1-score (F1@k) With an intersection over union (IoU) threshold k, where
true positives are judged by IoU(I) ≥ k with labels same as the ground truth:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
(12)

F1 = 2 ∗ Recall · Precision
Recall + Precision

4.4. Hyper-Parameters

CNN pre-training: I3D Res-50 backbone [37] pre-trained on Kinetics [43] (https://github.
com/deepmind/kinetics-i3d, accessed on 20 August 2020).

Optimization: The BLSTM is trained with Vanilla SGD, a fixed momentum of 0.9, initial
learning rate 10−2 and reduced down to 10−4 every time the error plateaus. Following [44],
the fully convolutional network and Transformer are trained with the ADAM optimizer,
initial learning rate 10−3, reduced down to 10−4 on plateaus.

Transformer embedding: The information about the sequence order of the encoder and
decoder inputs is fed to the model via fixed positional embedding in the form of sinusoid
functions. The Transformer is trained using teacher forcing—the ground truth of the
previous decoding step is fed as the input to the decoder, while during inference the
decoder prediction is fed back.

Dropout: Following [45], the BLSTM is trained with dropout probability p = 0.3 on the
units of the inputs and recurrent layers. The fully convolutional network is trained with a
dropout probability p = 0.8 on the units of batch normalization layers. The Transformer is
trained with dropout probability dropout p = 0.1.

Termination: The loss function no longer drops on the validation set between 2 consecu-
tive epochs.

Software and Hardware: All the models are implemented in TensorFlow and trained on a
single GeForce GTX 1080 Ti GPU with 11 GB memory.

5. Results and Discussion
5.1. Ablation Analysis

Rows 5∼9 of Table 4 show the ablation studies of combining different modules elabo-
rated in Section 3. The final performance improvement can be estimated by the average
differences across the four tested benchmarks between Baseline (Row 5. Baseline) and the
best-performing 9. I3D + Transformer + R-CTC, which is denoted as ∆Base hereafter for
simplicity:

∆Base(9) = (∆F.Acc = 7.74± 1.70, ∆mAP = 6.76± 1.81, ∆Edit = 12.3± 3.68)

5.1.1. Ablation Analysis of Temporal Encoding Backbone

Rows 6∼8 investigate the impact of different temporal backbones (Section 3) separately.
The average differences between BLSTM, the fully convolutional network, and Transformer
under original CTC across the four tested benchmarks were:

∆Base(6) = (∆F.Acc = −11.54± 2.53, ∆mAP = −10.05± 2.69, ∆Edit = −9.07± 2.69)

∆Base(7) = (∆F.Acc = −6.46± 1.42, ∆mAP = −5.41± 1.45, ∆Edit = 0.26± 0.07)

∆Base(8) = (∆F.Acc = 3.58± 0.78, ∆mAP = 3.20± 0.85, ∆Edit = 8.83± 2.62)

https://github.com/deepmind/kinetics-i3d
https://github.com/deepmind/kinetics-i3d

Appl. Sci. 2021, 11, 4954 14 of 19

LSTM performed worse than the fully convolutional network, even though the recur-
rent model has full context of every decoding time step compared to the convolutional
network that only looks at a limited time window of the input. This is in accordance
with current trends shifting from recurrent networks towards purely convolutional/self-
attentional models in other related domains, such as translation [46,47] and speech [48,49].
Dedicated explorations [50,51] blame this inferiority to the inherent limitations of recurrent
structures. Although the gating mechanism alleviates the difficulty of gradient propaga-
tion, the maximum memory is still restricted to a limited distance, usually not exceeding
Θ(102) time steps. The fully convolutional model has a smaller number of parameters and
trains faster than BLSTM and bidirectional Transformer; the best-performing backbone
was the Transformer.

Training Time

Transformer and the fully convolutional network took approximately the same amount
of time to compute a batch of 32 samples (Table 3). This is in accordance with the theoretical
complexity (Θ(Td2)) for each layer of both models, where d is the dimension of channels.
Transformer has fewer channels (512) for every self-attention block, but it is in effect a
deeper model, with 3× (6 + 6) = 24 layers in total. However, the fully convolutional
network took fewer iterations to converge, completing the full curriculum in 3.5 days,
compared to the 14 days for Transformer. This may be due to the more complex contrac-
tion among the self-attention queries, keys, and values during the gradient propagation
and weight updating. In contrast, the fully convolutional model has no reverse connections
among learnable modules given a fixed context. The BLSTM naturally took more time
to run one batch, since the computations within its layers have to be executed sequen-
tially; consequently it converged in almost double the clock time of the fully convolutional
network.

5.1.2. Ablation Analysis of CTC Search Space Reduction

Row 8 and 9 investigate the impact of the decoding block (Section 3.4) separately.
The average differences between the proposed R-CTC and the standard original CTC across
the four tested benchmarks were:

∆Decoding(9− 8) = (∆F.Acc = 9.8± 1.25, ∆mAP = 6.53± 2.29, ∆Edit = 4.23± 1.58)

Generally, original CTC performed quite competitively at the order level, despite its
rather poor performance at frame-level (the finer the evaluation metric applied, the larger
the gap grew in the rightmost column of Rows 8 and 9, highlighted as brown background
cell color, growing darker as the cell value grows greater), which is consistent with its
underlying principle to learn order distributions rather than alignments. The performance
improvement was statistically significant in all 12 dataset/measurement combinations
tested, indicating that the proposed decoding procedure is effective.

Training Time

Figure 7 compares learning efficiency. The non-CTC model converged the fastest but
the final loss on validation was the highest. CTC converged slower than non-CTC baseline
because of the increased depth in the gradient propagation process. Although the gradient
depth was further increased in reduced-CTC compared to the original CTC, its convergence
process did not deteriorate but even accelerated, thanks to the significantly reduced search
space of potential alignments.

Appl. Sci. 2021, 11, 4954 15 of 19

Figure 7. Loss curves in log-scale w.r.t. the number of epochs and elapsed clock time. Vertical dotted lines of
different colors indicate that the loss function on the corresponding validation no longer dropped between two
consecutive epochs, which is the position where the virtual learning process actually terminated. (Note: Due to
time and hardware limitations, only a subset of ∼1k samples were selected for cross-validation training on the
YouCook2 dataset).

5.2. Comparison with State-of-the-Art Frame-Wise Methods

In contrast to video-level supervision, fully supervised segmentation is a much more
researched topic, and there are more diverse benchmarks available for comparison. As
expected, there was an obvious gap between the best-performing video-level methods and
the state-of-the-art frame-wise method (4. ASRF):

∆Frame(4− 9) = (∆F.Acc = 8.05± 1.90, ∆mAP = 9.53± 4.44, ∆Edit = 8.23± 2.32)

Although 11 out of the 12 current best results obtained in different dataset/measurement
combinations were provided by fully supervised approaches (highlighted in bold font
in Table 4), they rely on expensive frame-by-frame manual annotations and task-specific
hand-engineered pre-/post-processing techniques, while our proposal is purely automatic
end-to-end without human intervention, both during the training phase and after deploy-
ment. Note that on the second dataset (YouTube Instructions), our proposed 9. I3D +
Transformer + R-CTC even outperformed the best frame-wise result by a noticeable margin
in terms of order-level evaluation (+12.7% by re-normalized Edit measurement). The
performance improvement was statistically significant, indicating the possibility that the
explicit alignment learning in a purely data-driven fashion may be more effective than
fully supervised methods if end-to-end ordering information is well-learned.

5.3. Qualitative Analysis

Some representative examples are shown in Figure 8. Baseline without CTC outputs
were more noisy and over-segmented actions. CTC outputted a degenerated path, however
the order was correct. Reduced-CTC did not suffer from over-segmentation, and had better
localization and ordering.

Specifically, we found that Transformer + RCTC captured longer-range temporal
dependencies than the state of the art, especially in cases when distinct actions were
visually very similar. For example, Baseline wrongly predicted the ground-truth class ‘add
coffee’ as ‘pour coffee’, while neglecting the temporal dependencies between certain action
pairs. Our hybrid encoder also made more reliable predictions of extremely short action
instances that fell in between two long actions (‘butter pan’, ‘withdraw stove’, etc.). This
suggests that using modified temporal classification is critical for improving the accuracy
of prediction of action boundaries.

Appl. Sci. 2021, 11, 4954 16 of 19

Figure 8. Frame and alignment accuracy on randomly selected testing videos from Breakfast (Top)
and YouTube Instructions (Bottom), respectively. (Note: there is a background class () in YouTube
Instructions, usually present in between neighboring steps, whose fraction varied from 46% to 83%
across different tasks, whereas Breakfast is tightly trimmed).

6. Conclusions

We present Hybrid Reduced-CTC to align actions in instructional videos. The main
contribution is a hybrid convolutional transformer LSTM to capture long-term temporal
dynamics within and between actions, as well as the modified dynamic programming
to recursively sum together every possible alignment and reduce the decoding search
space by weighting the priority of qualified paths by their visual consistency with existing
labels. Our results were found to be competitive in terms of accuracy on four publicly
available datasets of different size and difficulty. Based on the confirmed effectiveness of
CTC in frame- and transcript-level localization, we plan to further explore its impact on the
stability of convergence, due to the observation that that CTC empirically tends to become
more difficult to converge than non-CTC models as the length of the input video increases,
which suggests more effective under-sampling techniques may be needed to adapt CTC
with longer time span.

Author Contributions: Conceptualization, L.W. and X.W.; methodology, L.W.; software, L.W.; valida-
tion, L.W., A.H., and X.W.; formal analysis, L.W.; investigation, L.W.; resources, L.W.; data curation,
L.W.; writing—original draft preparation, L.W.; writing—review and editing, A.H.; visualization,
L.W.; supervision, A.H.; project administration, A.H.; funding acquisition, X.W., Y.X., and A.H.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundamental Research Funds for the Central Universities
grant numbers WK2150110007 and WK2150110012, and the National Natural Science Foundation of
China grant numbers 61772490, 61472382, 61472381, and 61572454.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: YouTube Instructional is publicly available at https://www.di.ens.
fr/willow/research/instructionvideos, YouCook2 is publicly available at http://youcook2.eecs.
umich.edu, Breakfast is publicly available at https://serre-lab.clps.brown.edu/resource/breakfast-
actions-dataset, and 50 Salads is publicly available at http://cvip.computing.dundee.ac.uk/datasets/
foodpreparation/50salads.

Acknowledgments: We would like to thank the unknown reviewers for their effort and time spent
on this work. Hardware platform (a workstation with GeForce GTX Titan Z GPU and 6 GB RAM)
and software distribution license (Matlab Deep Learning Toolbox) were provided by the Super
Computing Center and Network Information Center of University of Science and Technology of
China, respectively. The 50 Salads dataset is distributed by the Computer Vision Image Processing
(CVIP) group at the University of Dundee, Scotland, UK; YouTube Instructions dataset is distributed
by the Willow project team at the Computer Science Department of the Ecole Normale Superieure
(DI ENS), Paris, France. The Breakfast Actions Dataset is distributed by the Serre Lab at Brown
University. YouCook2 is distributed by University of Michigan.

https://www.di.ens.fr/willow/research/instructionvideos
https://www.di.ens.fr/willow/research/instructionvideos
http://youcook2.eecs.umich.edu
http://youcook2.eecs.umich.edu
https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset
https://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset
http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads
http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/50salads

Appl. Sci. 2021, 11, 4954 17 of 19

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analysis, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

CTC Connectionist Temporal Classification
LSTM Long Short-Term Memory Network
CR-CTC Reduced Connectionist Temporal Classification
FC Fully Convolution
TM Transformer
ED-TCN Encoder–Decoder Temporal Convolutional Network

References
1. Richard, A.; Kuehne, H.; Gall, J. Weakly supervised action learning with rnn based fine-to-coarse modeling. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 754–763.
2. Ding, L.; Xu, C. Weakly-supervised action segmentation with iterative soft boundary assignment. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6508–6516.
3. Li, J.; Lei, P.; Todorovic, S. Weakly supervised energy-based learning for action segmentation. In Proceedings of the IEEE

International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6243–6251.
4. Alayrac, J.B.; Bojanowski, P.; Agrawal, N.; Sivic, J.; Laptev, I.; Lacoste-Julien, S. Learning from narrated instruction videos.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2194–2208. [CrossRef] [PubMed]
5. Tang, Y.; Ding, D.; Rao, Y.; Zheng, Y.; Zhang, D.; Zhao, L.; Lu, J.; Zhou, J. COIN: A large-scale dataset for comprehensive

instructional video analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, USA, 16–20 June 2019; pp. 1207–1216.

6. Fried, D.; Alayrac, J.B.; Blunsom, P.; Dyer, C.; Clark, S.; Nematzadeh, A. Learning to Segment Actions from Observation and
Narration. arXiv 2020, arXiv:2005.03684.

7. Graves, A. Connectionist Temporal Classification. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 61–93._7. [CrossRef]

8. Pirsiavash, H.; Ramanan, D. Parsing videos of actions with segmental grammars. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 612–619.

9. Richard, A.; Gall, J. Temporal action detection using a statistical language model. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3131–3140.

10. Lea, C.; Reiter, A.; Vidal, R.; Hager, G.D. Segmental Spatiotemporal CNNs for Fine-Grained Action Segmentation. In Proceedings
of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.;
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 36–52.

11. Singh, B.; Marks, T.K.; Jones, M.; Tuzel, O.; Shao, M. A multi-stream bi-directional recurrent neural network for fine-grained
action detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 1961–1970.

12. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks for Action Segmentation and Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

13. Lei, P.; Todorovic, S. Temporal deformable residual networks for action segmentation in videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6742–6751.

14. Zhang, Y.; Tang, S.; Muandet, K.; Jarvers, C.; Neumann, H. Local temporal bilinear pooling for fine-grained action parsing.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 12005–12015.

15. Ishikawa, Y.; Kasai, S.; Aoki, Y.; Kataoka, H. Alleviating Over-Segmentation Errors by Detecting Action Boundaries. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikola, HI, USA, 5–9 January
2021; pp. 2322–2331.

16. Ghoddoosian, R.; Sayed, S.; Athitsos, V. Action Duration Prediction for Segment-Level Alignment of Weakly-Labeled Videos. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikola, HI, USA, 5–9 January
2021; pp. 2053–2062.

17. Rohrbach, M.; Rohrbach, A.; Regneri, M.; Amin, S.; Andriluka, M.; Pinkal, M.; Schiele, B. Recognizing Fine-Grained and
Composite Activities Using Hand-Centric Features and Script Data. Int. J. Comput. Vis. 2015, 119, 346–373. [CrossRef]

18. Stein, S.; McKenna, S.J. Combining Embedded Accelerometers with Computer Vision for Recognizing Food Preparation Activities.
In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 13), Zurich,
Switzerland, 8–12 September 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 729–738. [CrossRef]

http://doi.org/10.1109/TPAMI.2017.2749223
http://www.ncbi.nlm.nih.gov/pubmed/28885149
http://dx.doi.org/10.1007/978-3-642-24797-2_7
http://dx.doi.org/10.1007/s11263-015-0851-8
http://dx.doi.org/10.1145/2493432.2493482

Appl. Sci. 2021, 11, 4954 18 of 19

19. Fathi, A.; Ren, X.; Rehg, J.M. Learning to recognize objects in egocentric activities. In Proceedings of the CVPR 2011, Colorado
Springs, CO, USA, 20–25 June 2011; pp. 3281–3288.

20. Gao, Y.; Vedula, S.S.; Reiley, C.E.; Ahmidi, N.; Varadarajan, B.; Lin, H.C.; Tao, L.; Zappella, L.; Béjar, B.; Yuh, D.D.; et al. Jhu-isi
gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling. In Proceedings
of the Modeling and Monitoring of Computer Assisted Interventions (M2CAI), MICCAI Workshop, Boston, MA, USA, 14–18
September 2014; Volume 3, p. 3.

21. Ahmidi, N.; Tao, L.; Sefati, S.; Gao, Y.; Lea, C.; Haro, B.B.; Zappella, L.; Khudanpur, S.; Vidal, R.; Hager, G.D. A dataset and
benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans. Biomed. Eng. 2017, 64, 2025–2041.
[CrossRef] [PubMed]

22. Kuehne, H.; Arslan, A.B.; Serre, T. The Language of Actions: Recovering the Syntax and Semantics of Goal-Directed Human
Activities. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), Columbus, OH, USA, 23–28
June 2014.

23. Bojanowski, P.; Lajugie, R.; Grave, E.; Bach, F.; Laptev, I.; Ponce, J.; Schmid, C. Weakly-supervised alignment of video with text.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015 ; pp. 4462–4470.

24. Alayrac, J.B.; Bojanowski, P.; Agrawal, N.; Sivic, J.; Laptev, I.; Lacoste-Julien, S. Unsupervised learning from narrated instruction
videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July
2016; pp. 4575–4583.

25. Zhou, L.; Xu, C.; Corso, J.J. Towards automatic learning of procedures from web instructional videos. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

26. Kukleva, A.; Kuehne, H.; Sener, F.; Gall, J. Unsupervised learning of action classes with continuous temporal embedding. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 12066–12074.

27. Oneata, D.; Verbeek, J.; Schmid, C. Action and event recognition with fisher vectors on a compact feature set. In Proceedings of
the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2–8 December 2013 ; pp. 1817–1824.

28. Wang, H.; Schmid, C. Action recognition with improved trajectories. In Proceedings of the IEEE International Conference on
Computer Vision, Sydney, NSW, Australia, 2–8 December 2013 ; pp. 3551–3558.

29. Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the Advances
in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 568–576.

30. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–17 December 2015; pp. 4489–4497.

31. Carreira, J.; Zisserman, A. Quo vadis, action recognition? A new model and the kinetics dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6299–6308.

32. Piergiovanni, A.; Ryoo, M.S. Representation flow for action recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9945–9953.

33. Malmaud, J.; Huang, J.; Rathod, V.; Johnston, N.; Rabinovich, A.; Murphy, K. What’s cookin’? interpreting cooking videos using
text, speech and vision. arXiv 2015, arXiv:1503.01558.

34. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the Computer
Vision and Pattern Recognition, Columbus, OH, USA, June 23–28 June 2014.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

36. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,
arXiv:1502.03167.

37. Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. Slowfast networks for video recognition. In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6202–6211.

38. Kuehne, H.; Gall, J.; Serre, T. An end-to-end generative framework for video segmentation and recognition. In Proceedings of the
2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–8.

39. Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM networks for improved phoneme classification and recognition.
In Proceedings of the International Conference on Artificial Neural Networks, Warsaw, Poland, 11–15 September 2005; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 799–804.

40. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [CrossRef]

41. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need.
In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

42. Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: Labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA,
USA, 25–29 June 2006 ; pp. 369–376.

43. Li, A.; Thotakuri, M.; Ross, D.A.; Carreira, J.; Vostrikov, A.; Zisserman, A. The AVA-Kinetics Localized Human Actions Video
Dataset. arXiv 2020, arXiv:2005.00214.

http://dx.doi.org/10.1109/TBME.2016.2647680
http://www.ncbi.nlm.nih.gov/pubmed/28060703
http://dx.doi.org/10.1109/CVPR.2017.195

Appl. Sci. 2021, 11, 4954 19 of 19

44. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 23rd International Conference on
Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y., Eds.; Conference Track
Proceedings; 2015.

45. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

46. Gehring, J.; Auli, M.; Grangier, D.; Dauphin, Y. A Convolutional Encoder Model for Neural Machine Translation. In Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers); Association for Computational
Linguistics: Vancouver, BC, Canada, 2017; pp. 123–135. [CrossRef]

47. Kaiser, L.; Gomez, A.N.; Chollet, F. Depthwise Separable Convolutions for Neural Machine Translation. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

48. Zhang, Y.; Pezeshki, M.; Brakel, P.; Zhang, S.; Laurent, C.; Bengio, Y.; Courville, A. Towards End-to-End Speech Recognition with
Deep Convolutional Neural Networks. In Proceedings of the Interspeech 2016, San Francisco, CA, USA, 8–12 September 2016;
pp. 410–414. [CrossRef]

49. Wang, Y.; Deng, X.; Pu, S.; Huang, Z. Residual Convolutional CTC Networks for Automatic Speech Recognition. arXiv 2017,
arXiv:1702.07793.

50. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. In Proceedings
of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.;
Volume 70, pp. 1243–1252.

51. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.
arXiv 2018, arXiv:1803.01271.

http://dx.doi.org/10.18653/v1/P17-1012
http://dx.doi.org/10.21437/Interspeech.2016-1446

	Introduction
	The Motivation of Long-Term Temporal Encoding
	The Motivation of Hybrid Spatiotemporal Encoding
	The Motivation of Decoding Space Reduction

	Related Work
	Action Segmentation
	Action Alignment
	Automatic Feature Extraction
	Automatic Label Extraction

	The Proposed Encoder–Decoder Network
	Spatial Encoder
	Temporal Encoder
	LSTM
	Full Convolution
	Transformer

	The Original CTC Decoding
	Decoding Search Space Reduction
	Example
	Case 1: stt+1 > ,
	Case 2: stt+1 ,

	How to Train the Proposed Decoder

	Experimental Setup
	Visual Similarity Measurement
	Datasets
	Metrics
	Hyper-Parameters

	Results and Discussion
	Ablation Analysis
	Ablation Analysis of Temporal Encoding Backbone
	Training Time

	Ablation Analysis of CTC Search Space Reduction
	Training Time

	Comparison with State-of-the-Art Frame-Wise Methods
	Qualitative Analysis

	Conclusions
	References

