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Abstract: We present results of large-scale Monte Carlo simulations of the 2D classical x-y model on
the square lattice. We obtain high accuracy results for the superfluid fraction and for the specific
heat as a function of temperature, for systems of size L× L with L up to 212. Our estimate for the
superfluid transition temperature is consistent with those furnished in all previous studies. The
specific heat displays a well-defined peak, whose shape and position are independent of the size of
the lattice for L > 28, within the statistical uncertainties of our calculations. The implications of these
results on the interpretation of experiments on adsorbed thin films of 4He are discussed.

Keywords: phase transitions; specific heat; Monte Carlo simulation; worm algorithm; superfluidity;
x-y model

1. Introduction

The two-dimensional classical x-y model is the simplest model to exhibit a Kosterlitz-
Thouless (KT) transition [1–4]. The KT universality class includes the superfluid phase
transition in two dimensions (2D) which is a subject of ongoing experimental and theoretical
investigation, chiefly in the context of thin films of 4He adsorbed on a wide variety of
substrates [5–10]. Theoretical results obtained by studying the x-y model, typically by
computer simulations, are utilized both to ascertain whether a particular physical system
experimentally investigated, believed to be in the same universality class, conforms with the
KT paradigm, as well as to predict the behavior of systems yet unexplored [11–14]. Decades
of computer simulation studies of the 2D x-y model, carried out on square lattices of size
as large as L = 216 [15], have yielded very precise estimates of the superfluid transition
temperature Tc and of the critical exponents associated with the transition [15–23].

Less extensively investigated is the behavior of the specific heat, which displays an
anomaly at a temperature ∼ 17% above Tc, in numerical simulations of the x-y model on
square lattices of size L = 28 [19]. The position of the peak appears to depend weakly on
the size of the simulated lattice, but to our knowledge no systematic study has yet been
carried out, aimed at establishing whether such an anomaly occurs in the thermodynamic
limit, and its actual location. There have been also speculations that the width of the peak
may narrow in the thermodynamic limit, and the peak itself may evolve into a cusp [17].
There is presently no consensus regarding the physical interpretation of such an anomaly,
which does not appear to signal the occurrence of any phase transition. Interestingly,
experiments on 4He monolayers [24], as well as computer simulations [25] (including of
2D 4He [26]) have also yielded evidence of a peak in the specific heat at temperature above
the superfluid transition temperature.

To our knowledge no further studies have been carried out of the specific heat, beyond
that of Ref. [19], aimed at establishing any possible shift in temperature of the peak, as
the lattice size is increased, as well as the general shape of the curve. One reason for
this state of affairs is that the calculation of the specific heat in direct numerical (Monte
Carlo) simulations is affected by relative large statistical uncertainties, due to the inherent
“noisiness” of the presently known specific heat estimators. However, the (almost) three
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decades elapsed since the publication of Ref. [19] have witnessed both an impressive
increase in the available computing power, as well as the development of more efficient
and sophisticated simulation methods. In light of that, it seems worthwhile to revisit this
issue, which is of potential experimental relevance, as the x-y model is sometimes invoked
in the interpretation of measurements of the specific heat of thin 4He films, as well as
utilized predictively, in the same context [13,14].

In this article, we report results of large scale computer simulations of the 2D x-y
model on the square lattice, performed using the Worm Algorithm in the lattice flow
representation [27]. We carried out simulations on square lattices of size up to L = 212. Our
main aim is to study the specific heat, and provide robust, reliable information about its
behavior in the thermodynamic limit; in order to validate our study, we also computed
the superfluid transition temperature and spin correlations, comparing them to the most
recent theoretical estimates. We obtain a value of Tc consistent with that of Ref. [15], which
is presently the most accurate published result. We present strong numerical evidence
confirming the presence of the specific heat anomaly in the thermodynamic limit, its shape
remaining essentially unchanged with respect to that on a lattice of size L = 28. We estimate
the position of the peak of the specific heat in the thermodynamic limit to be at temperature
1.043(4) (in units of the coupling constant).

This paper is organized as follows. In Section 2, we briefly describe our computational
methodology, in Section 3, we analyze the MC data and present the results. We outline our
conclusions in Section 4.

2. Model and Methodology

The Hamiltonian of the classical x-y model is given by

H = −J ∑
〈ij〉

si · sj (1)

where the sum runs over all pair of nearest-neighboring sites, and si ≡ s(cos θi, sin θi) is a
classical spin variable associated with site i. We assume a square lattice of N = L× L sites,
with periodic boundary conditions. Henceforth, we shall take our energy (and temperature)
unit to be Js2. We investigate the low-temperature physics of this model by carrying out
classical Monte Carlo simulations, based on the methodology mentioned above, which is
extensively described in the original reference [27] and will therefore not be reviewed here.
Details of our calculations are standard.

As mentioned above, an important part of this work consists of studying the superfluid
transition, in order to compare our results with those of existing studies and gauge therefore
the accuracy of our methodology. We determine the superfluid transition temperature Tc
in two different ways. The first consists of computing the superfluid fraction ρs(L, T) on
a lattice of size L, as a function of temperature, using the well-known winding number
estimator [28]. We then determine a size-dependent transition temperature Tc(L) based on
the universal jump condition [29]

ρs(L, Tc) = fr
2Tc

π
(2)

where fr = 1− 16πe−4π [30]. Equation (2) can be used to obtain an estimate of the transition
temperature (Tc(L)) on a lattice of finite size. In order to extrapolate the value of Tc(L) to
the thermodynamic (L→ ∞) limit (referred to as Tc), we fit the results for Tc(L), obtained
for different system sizes to the expression [31]:

Tc(L) = Tc +
a

(lnbL)2 (3)
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where a, b are constant. It should be noted that other expressions have been proposed,
aimed at extracting Tc [23]; we come back to this point when discussing our results.

The superfluid transition temperature can also be inferred from the behavior of the
spin correlation function [32], specifically from the divergence of the correlation length ξ as
T → Tc, namely [1–3]:

ξ(T) ∼ A e
c√
t (4)

where A, c are constant (c ≈ 1.5 [32]), and t = (T−Tc)
Tc

is the reduced temperature. Above
Tc, the correlation length ξ(T) can be obtained from the computed correlation function
by means of a simple fitting procedure, illustrated in Ref. [16]. Using the best fit to
Equation (4), an estimate of Tc is obtained; the accuracy of the estimated Tc increases with
the size of the system studied. The estimates of Tc obtained in the two ways illustrated
above are consistent within their statistical uncertainties; however, we find that the first
procedure, based on the universal jump of the superfluid fraction, affords a considerably
more accurate determination of Tc.

Moreover, we calculate the specific heat (i.e., the heat capacity per site) through the
direct estimator of the heat capacity [33], based on the mean-squared fluctuations of the
total energy E:

C =
1
L2 β2(〈E2〉 − 〈E〉2), (5)

where β = 1/T is the inverse temperature. This estimator is numerically “noisy”, and for
this reason the numerical differentiation of the computed energy values with respect to the
temperature has often been preferred [16]. In our case, however, we found it possible to
obtain reasonably accurate estimates of the specific heat using Equation (5), thanks to the
available computing facilities and the methodology adopted.

3. Results

We begin the presentation of our results by illustrating our estimates for the superfluid
fraction as a function of temperature for the various lattice sizes considered, and by
discussing the determination of the transition temperature, which we compare to those
provided in other works. Figure 1 shows the computed value of ρs(L, T); the critical
temperature Tc(L) for a given system size is determined by the universal jump condition,
namely the intersection of the ρs(L, T) curve with the straight line given by the right hand
side of Equation (2). The intersection point is estimated by drawing a straight line between
the two adjacent values of ρs(L, T) within which the intersection can be established to take
place, within the precision of our calculation.

As expected, both Tc(L) and ρs(L, Tc(L)) display a slow decrease as a function of L.
In order to extrapolate the value of Tc in the thermodynamic (L → ∞) limit, we fit the
computed Tc(L) to Equation (3), as proposed in Ref. [15]. This procedure is illustrated
in Figure 2. Our estimate is Tc = 0.8935(5), which is consistent with that of Ref. [15],
namely 0.89289(5), even though their quoted uncertainty is a factor ten smaller than ours, a
fact to be ascribed to the significantly (sixteen times) greater system sizes adopted therein.
Our estimate of Tc is also in perfect agreement with the more recent result of Ref. [23], in
which the same computational methodology utilized in this work was adopted, on the
same system sizes. Their results are of precision comparable to ours; they make use of a
different, more elaborate fitting form for Tc(L), but their resulting estimate for Tc is entirely
consistent with ours, and has the same uncertainty.
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Figure 1. The superfluid fraction ρs versus temperature, for the different lattice sizes considered.
Statistical errors are smaller than symbol sizes. The straight line corresponds to the universal jump
condition (right hand side of Equation (2)).

Figure 2. The critical temperature Tc(L) versus the system size L. Solid line is a fit to the data using
Equation (3).

As mentioned in Section 2, as a further check of our results we estimated the critical
temperature Tc independently through the spin correlation length. In this case, the com-
puted spin correlation function for a given system size yields an estimate of Tc, obtained
first by extracting the correlation length ξ(T) as a function of temperature, and then fitting
the results to Equation (4). An example of this procedure is shown in Figure 3, for the
largest system size considered here, which is the one that yields the estimate of Tc with the
smallest uncertainty. Such an estimate, namely 0.893(3), is consistent with that obtained
from the superfluid fraction, but it is considerably less accurate.
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Figure 3. The correlation length ξ as a function of the temperature, for a system of size L = 4096. The
solid line is a fit to the data using expression (4). Inset shows the computed spin correlation function
G(r) for a temperature T = 0.96.

Our result for Tc gives us sufficient confidence on the reliability of our data and
simulation. Therefore, we now discuss the most important part of this work, namely the
behavior of the specific heat C(T). It is worth restating that previous numerical studies
of the 2D x-y model [16,19] have yielded results for this quantity only for square lattices
of size up to L = 256. Such studies yielded evidence of a peak in the specific heat at a
temperature above Tc; the position of this peak depends fairly strongly on system size
for L ≤ 128. On the other hand, the shape of C(T) appears to change little going from
L = 128 to L = 256, suggesting that the anomaly may indeed be a genuine physical feature
of the model and not an artifact of numerical simulations carried out on finite systems of
small size.

Figure 4 shows our results for the specific heat for the various system sizes, showing
that the curve indeed appears to stabilize for L > 256. The inset of Figure 4 shows the
position of the peak, which, within the statistical uncertainties of our calculation, is indepen-
dent on system size. Our best estimate of the peak position is TP = 1.043(4) = 1.167(1) Tc.
The height of the peak is approximately 1.45. Altogether, therefore, our simulations aimed
at characterizing quantitatively the specific heat anomaly, carried out on lattices of sig-
nificantly greater size than those of all previous studies (of the specific heat), revise the
position of the peak to a slightly higher temperature, and reduce its height by a few percent.
However, the presence of the anomaly, its overall shape, the fact that it remains broad (i.e.,
it does not approach a cusp in the thermodynamic limit) and that it occurs at a different
temperature than the superfluid transition, can in our view be regarded at this point as
well-established. It is worth reminding that the presence of such an anomaly has been theo-
retically predicted using different approaches, furnishing results in quantitative agreement
with those of Monte Carlo simulations [34].
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Figure 4. The specific heat C versus the temperature T for different lattice sizes. The inset shows the
position of the peak as a function of lattice size.

4. Conclusions

Summarizing, we have carried out extensive Monte Carlo simulations of the 2D x-y
model, making use of the Worm Algorithm. The twofold purpose of our study was that
of assessing the effectiveness of the methodology, which to our knowledge has not yet
been applied this particular model (we became aware of Ref. [23] while this work was in
progress), as well as consolidating existing theoretical results for the specific heat. We have
simulated the model on lattices of linear size up to L = 4096, obtaining for the superfluid
transition temperature results of accuracy comparable to that yielded by the most recent
numerical simulations, making use of standard computational resources. For the specific
heat, the largest system size for which we report results is sixteen times greater than that
for which Monte Carlo estimates have been published. Our results confirm the existence of
a specific heat anomaly, namely a peak, occurring at a temperature ∼ 17% higher than that
at which the superfluid transition temperature takes place. It is interesting to compare this
to 2D 4He, for which the peak in the specific heat observed in computer simulations [26] is
located at T ∼ 1.6 Tc.

It has been suggested [16,35,36] that the temperature dependence of the specific heat
correlates with that of the vortex density above the critical temperature. In this case, one
could expect a similar specific heat anomaly, which is not indicative of a phase transition,
to occur in physical systems such as atomically thin 4He films, which approach the 2D limit
and display superfluid transitions that conform with the KT paradigm. Indeed, this may
help in the interpretation of specific heat data for 4He films adsorbed on graphite, where
similar features (peaks) are often interpreted as signalling phase transitions (e.g., melting
of commensurate solid phases, see for instance Ref. [25]).
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