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Abstract: Recent methodologies for audio classification frequently involve cepstral and spectral
features, applied to single channel recordings of acoustic scenes and events. Further, the concept
of transfer learning has been widely used over the years, and has proven to provide an efficient
alternative to training neural networks from scratch. The lower time and resource requirements
when using pre-trained models allows for more versatility in developing system classification
approaches. However, information on classification performance when using different features for
multi-channel recordings is often limited. Furthermore, pre-trained networks are initially trained
on bigger databases and are often unnecessarily large. This poses a challenge when developing
systems for devices with limited computational resources, such as mobile or embedded devices.
This paper presents a detailed study of the most apparent and widely-used cepstral and spectral
features for multi-channel audio applications. Accordingly, we propose the use of spectro-temporal
features. Additionally, the paper details the development of a compact version of the AlexNet
model for computationally-limited platforms through studies of performances against various
architectural and parameter modifications of the original network. The aim is to minimize the
network size while maintaining the series network architecture and preserving the classification
accuracy. Considering that other state-of-the-art compact networks present complex directed acyclic
graphs, a series architecture proposes an advantage in customizability. Experimentation was carried
out through Matlab, using a database that we have generated for this task, which composes of
four-channel synthetic recordings of both sound events and scenes. The top performing methodology
resulted in a weighted F1-score of 87.92% for scalogram features classified via the modified AlexNet-
33 network, which has a size of 14.33 MB. The AlexNet network returned 86.24% at a size of
222.71 MB.

Keywords: neural network; transfer learning; scalograms; MFCC; Log-mel; pre-trained models

1. Introduction

The continuous research advances in the field of single and multi-channel audio clas-
sification suggests its importance and relevance in a broad range of real-world applications.
In this work, we focus on domestic multi-channel audio classification, which can be applied
to monitoring systems and assistive technology [1,2].

The majority of the existing works within this area are based on the classification of
sound events found in single channel audio [3,4] rather than classifying multi-channel

Appl. Sci. 2021, 11, 4880. https://doi.org/10.3390/app11114880 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2542-8604
https://orcid.org/0000-0001-5555-3225
https://www.mdpi.com/article/10.3390/app11114880?type=check_update&version=1
https://doi.org/10.3390/app11114880
https://doi.org/10.3390/app11114880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114880
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4880 2 of 23

audio signals containing acoustic scenes, which is required to understand the continuous
nature of daily domestic activities. Acoustic scenes refer to the sound scene recording of a
certain activity over time, while sound events refer to more specific sound classes happen-
ing at short periods of time within a duration [5]. The detection of multi-channel audio was
also found to be 10% more accurate when compared to single channel audio, considering
the case of overlapping sounds that commonly occur in real-life [6]. Such overlapping
sounds may be better detected through joint processing from different channels, reducing
the effects of background noise and other interference. A similar concept to this work is the
Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 Task 5 challenge,
which focuses on domestic multi-channel acoustic scene classification [7]. In this challenge,
top performing methods often involve the use of Log-Mel energies and Mel-frequency
Cepstral Coefficients (MFCC), while VGG-16 and VGG-ish pre-trained models are common
choices for classification. The use of Log-Mel continues to be a popular choice for features
in top performing methods of the DCASE 2019 and 2020 Task 4 challenges on sound event
detection and classification [7]. Nonetheless, the utilization of spectro-temporal scalograms
for multi-channel classification has not yet been thoroughly explored.

Log-Mel energies are a subset of spectral features, which consider the frequency
components of a signal [8]. On the other hand, MFCCs are based on the cepstral represen-
tation of a signal, which results from the Inverse Fourier Transform (IFT) of the spectral
components of the signal [8]. Although these algorithms are commonly used and are
popular for noise-free environments, they have several challenges when faced in noisy
acoustic environments [8,9].

Hence, this work aims to determine the optimum feature for domestic multi-channel
acoustic scene classification, which takes into account real-life scenarios, such as the
presence of different types of background noise. Although the DCASE 2018 Task 5 challenge
had real recordings in real environments, the specific characteristics of the noise and
reverberation were unknown. Hence, here we conduct a controlled study on these effects
using a new database with known characteristics. Experimentation is done by conducting
a thorough analysis and comparison of the classification performances and processing
time of cepstral and spectral features for several pre-trained neural network and compact
neural network models, using weight-sensitive metrics. It is important to note that the
use of weight-sensitive metrics is important, in order to take into account the biasing that
may be caused by imbalanced datasets. Further, a study on the effects of architectural
and hyper-parameter modification on the optimum pre-trained network has also been
looked into, in order to reduce the size of the network while maintaining its performance.
In turn, we propose the use of spectro-temporal features in the form of scalograms, which
are computed through a fast Fourier transform (FFT)-based continuous wavelet transform
(CWT) [10]. These features possess excellent time and frequency localization, allowing a
thorough representation of continuous signals with minimal loss of information [10]. This
is coupled with a modified AlexNet Model, which consists of 33 layers instead of 25, and
utilizes a leaky rectified linear unit (ReLU) activation function instead of a traditional ReLU
function. Finally, we also synthesize an original database, which aims to recreate scenarios
that could occur in real life, in order to test and verify the overall robustness of the system.
In summary, the contributions described in this article include:

• A detailed performance comparison between different cepstral, spectral, and spectro-
temporal features for audio classification.

• A direct performance comparison of pre-trained models and a detailed study of the
effects of network modification on the optimum model.

• The development of a modified, compact AlexNet model that maintains the model’s
accuracy while reducing the network size by over 90%, allowing compatibility with
mobile devices and applications.

• The development of a multi-channel synthetic domestic acoustic scene and event
database to test the overall system robustness.
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In this work, we focus on the classification and labelling of sound event and scenes,
which are relevant for dementia patient monitoring systems. However, applications of
the techniques explored in this work are not limited to acoustic scene classification and
can be extended to other domains. For example, the compact network and the features
examined can be modified to fit any image classification problem, such as emotion detection
systems [11] and image-based diagnosis for healthcare applications [12]. Further, features
explored in this work, as well as their combination, can also be used for regression problems,
such as the estimation of characteristics of seismic waves [13], which is based on STFT
features combined with CNN.

It is important to note that the compact neural network development is not a step
towards an actual deployment in any specific resource-limited system. Rather, we explore
and experiment the extent to which the system can be scaled down while maintaining
high performance.

2. Audio Features and Pre-Trained Neural Networks
2.1. Audio Signal Features

Audio classification is typically achieved by extracting discriminative features that
represent the underlying common characteristics of audio signals belonging to the same
class. Similar to the DCASE challenge, it is assumed that the audio signals are recorded by
microphone arrays placed at different locations (nodes) within a room. The recorded audio
signals can then be represented as:

ym(t) =
K

∑
i=1

hm,i(t) ∗ Si(t) + vm(t) (1)

where, ym(t) is the signal recorded at time t by microphone m in the array at each node, Si(t)
is the ith sound source signal (where K is the total number of sounds), hm,i(t) is the room
impulse response (RIR) from source i to microphone m, and vm(t) is additive background
noise at microphone m. The audio recordings used in this work are four-channel and are
time-aligned.

This section discusses several top performing features considered for multi-channel
acoustic scenes and evaluates them in terms of their advantages and drawbacks according
to the requirements of the system. The following subsections evaluate the possible features
according to their relevant categories within the feature engineering process [8], as shown
in Figure 1.
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Figure 1. Taxonomy of features extracted from audio.

As observed, features are sub-divided into three main categories, namely: temporal
features, spectral features, and cepstral features. Temporal features are computed in the
time-domain and have the least computational complexity [8]. Spectral features, on the
other hand, are extracted starting from the frequency representation of the signal [8].
Cepstral features then represent the rate of change within the different spectrum bands [8].
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Finally, the fusion between spectral and temporal features results in spectro-temporal
features, which combine both time and frequency attributes of a signal [8].

Since temporal features are directly extracted from the audio signal, they often deter
from providing reliable descriptors for multi-channel audio classification, as they do not
contain information about the frequency. Hence, in this work, we examine cepstral and
spectral features only. Along with this, we also examine spectro-temporal features, which
are a combination of temporal and spectral features.

2.1.1. Cepstral Features

Cepstral features represent the cepstrum, a depiction of acoustic signals that is com-
monly utilized in homomorphic signal processing, and is often characterized by the conver-
sion of signals combined through convolution, into the sums of their specific cepstra [14].
Cepstral coefficients were found to be one of the most commonly utilized features for
classification of acoustic scene and events.

The mel-frequency cepstral coefficients (MFCC) were the most widely apparent, and
are based on a filter that models the behaviour of the human auditory system [14], making it
advantageous in terms of sound identification. The MFCCs can be acquired through taking
the log of the mel spectrum. Following this, the discrete cosine transform (DCT) of the log
spectrum are obtained, with the MFCCs being the result of the DCT’s amplitudes [15].

Calculation of the MFCC coefficient starts by dividing the time-aligned four-channel
averaged audio signal yavg(t) into multiple segments. Windowing is then applied to each
of these segments prior to being subject to the discrete Fourier transform (DFT), resulting
in the short-term power spectrum P(f) [16].

The power spectrum P(f) is then warped along the frequency axis f, and into the mel-
frequency axis M, resulting in a warped power spectrum P(M). The warped power spectrum
is then discretely convolved with a triangular bandpass filter with K filters, resulting in
θ(Mk) [16]. The MFCC coefficients are calculated according to Equation (2) [16].

MFCC(d) = ∑K
k=1 Xk cos

[
d(k− 0.5)

π

K

]
, d = 1 . . . D (2)

where Xk = ln(θ(Mk)), and D << K due to the compression ability of the MFCC [16].
Nonetheless, these were also found to be prone to loss of substantial information due to
its sensitivity to noise [17]. Similarly, its performance can be affected by the shape and
spacing of the filters and the warping of the power spectrum [16]. Nevertheless, the MFCC
approach has several advantages due to its simple computation, and flexibility with regards
to integration with several other features [16].

2.1.2. Spectral Features

Spectral features are computed from the frequency components of the audio sig-
nal. The two-dimensional representation of the frequency components of an audio signal
is called a spectrogram, which often results from the application of the short time dis-
crete Fourier transform (STFT) to constantly compare the input signal with a sinusoidal
analysis function [18]. Although this representation is known to work well with neural
networks [19], the signal processing techniques used in order to display the representation
can cause inconsistency within the structure of the spectrogram [18]. Further, the majority
of the works concerning the spectrogram solely makes use of the magnitude component
representation of the audio signal, omitting the phase information [20].

Although spectral features have several advantages, the information yielded may not
be sufficient for the characterization of multi-channel audio scene acoustics. Often, they are
combined with other features in order to produce a considerable representation of the signal
magnitude [8]. However, since different audio scenes have different requirements in terms
of temporal and frequency resolutions [21], the combination of several spectral features
does not necessarily improve the accuracy of the classifier. A study by Chu, S. et al. [22] had
shown that combining several spectral features, including centroid, bandwidth, flatness,
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and asymmetry for sound classification, does not really improve the accuracy. Instead, an
increase in the computational complexity is observed due to the individual computation of
multiple features that had to be combined.

Nonetheless, the log-Mel energy features are deemed beneficial for multi-channel
acoustic scene classification and were utilized in notable related works mentioned in this
research [23,24]. Log-Mel energy features had also been a well-received choice of features
for DCASE challenge entries, as per the review of Mesaros, A. et al. [25], due to the two-
dimensional matrix output that it yields, which is a suitable input for the CNN classifier.
Log-Mel features are extracted through the application of a STFT applied to Hamming
windowed audio segments [9]. A Mel-scale filter bank is then implemented after taking
the square of the absolute value per bin, which are then processed to fit the requirements
of the system [9].

2.1.3. Spectro-Temporal Features

Spectro-temporal features stem from the fusion of temporal and spectral features.
Although not widely explored in the field of multi-channel audio classification, several
works have devised algorithms that integrate the use of both temporal and spectral features
for acoustic event detection [26,27]. Cotton, et al. proposed the use of a non-negative matrix
factorization algorithm in order to detect a set of patches containing relevant spectral and
temporal information that best describes the data [27]. The results achieved in their
experiment suggest that their features provide more robustness in noisy environments
as opposed to MFCCs as sole features. Schroder, et al. [26], on the other hand, devises a
spectro-temporal feature extraction algorithm through two-dimensional Gabor functions
for robust classification.

Nevertheless, these algorithms were tested solely on acoustic events as opposed to
acoustic scenes. Similarly, the applicability of these algorithms to multi-channel audio
scenes remains controversial; aside from not being widely utilized, comparison against
other top performing feature combinations for the same application were not apparent.

However, one of the most notable works in the field of spectro-temporal features
is scalogram features, which are computed through the continuous wavelet transform
(CWT) [28]. Such methods consider both the time and frequency components of a signal.
The time components represent the motion of the signal, and the frequency components
symbolize the pixel positions in an image [28]. Taking a computer vision approach, the
velocity vectors are first calculated through multi-scale wavelets, which are localized in
time [29]. The CWT of a continuous signal is defined by Equation (3) [29].

CWTc(s, t) =
∫ ∞

−∞
yavg(u)

1√
s

ψ∗
(

u− t
s

)
du (3)

where ψ∗ refers to the complex conjugate of the mother wavelet, t refers to the time
domain, u signifies the signal segment, and s refers to the scale, which is a function of
the frequency [29].

Separation of the audio channels is then performed via the low-dimensional models
that reverberated from the firmness of the harmonic template models [28]. Such a process
is beneficial for multi-channel audio classification due to its ability to separate mixed audio
sources, which allows a thorough analysis for individual audio channels.

The scalogram is a visual representation of the absolute value of the CWT coefficients,
represented by Equation (4) [30]:

E(s, t) = |CWTc(s, t)|2 (4)

Nonetheless, despite its advantages, computation of CWT coefficients are often ex-
tensive and are subject to high computational time duration [31]. Wavelets are computed
through comparing and inverting the DFT of the signal against the DFT of the wavelet,
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which can be computationally expensive. Thus, integration of other techniques in order to
reduce this complexity must also be examined.

2.2. Pre-Trained Networks

Convolutional neural networks (CNN) have been commonly used for multi-channel
sound scene classification in the recent years. CNNs are a sub-type of neural networks that
utilize multiple convolution stages for classification [32]. Similar to the traditional neural
network, CNNs are composed of three layers, namely: the convolutional layer, the pooling
layer, and the fully connected layer [33]. Nonetheless, instead of a traditional fully con-
nected layer, only a subset of the previous layer neurons is connected to the next ones. This
suggests improvements in run time, computational complexity, and memory requirements.

There are various pre-trained convolutional neural network models for classification.
This is achieved through the use of transfer learning, which allows the reuse of a previously
trained network’s weights to train a new network model [34], typically using new training
data representing new classes. Several advantages of transfer learning include an improved
efficiency both in time duration requirements of the model building process, training, and
the learning workflow [35]. Further, several research works also report improved results
by using transfer learning on pre-trained networks as opposed to training a network
from scratch [36].

Various examples of pre-trained CNN models include AlexNet [37], GoogleNet [38],
ResNet [39], Inception-ResNet [40], Xception [41], SqueezeNet [42], VGGNet [43], and
LeNet [44]. These networks are trained with large datasets, and the weights are saved in
order to be re-used for transfer learning. Table 1 provides a summary of the comparison
between these pre-trained networks in terms of their basic characteristics, including the
year of introduction, network size in MB, image input size, number of layers, number of
parameters, and the 5% error rate. Nonetheless, as per our previous works, the AlexNet
model returns the highest accuracy for domestic audio classification applications [45,46].

Table 1. General Comparison Summary between Pre-trained CNN Models.

Model Year Size (MB) Input Size Layers Parameters 5% ER

AlexNet [37] 2012 227 227 × 227 8 62.3 million 16.4%
GoogleNet [38] 2014 27 224 × 224 22 4 million 6.70%

ResNet [39] 2015 167 224 × 224 101 * 25 million 3.57%
Inception-ResNet [40] 2017 209 299 × 299 164 * 55.9 million

Xception [41] 2016 85 299 × 299 71 22.9 million
SqueezeNet [42] 2016 5.2 227 × 227 18 1.25 million

VGGNet [43] 2014 515 224 × 224 41* 138 million 7.30%
LeNet [44] 1998 7 60,000 28.2%

* Number of layers may vary depending on the version used.

3. Experimental Methodology

Based on the above discussion on the advantages and disadvantages of different
feature and classification techniques, this section starts by explaining the dataset utilized
and details the methodology and process we used to carry out this study.

3.1. Synthetic Domestic Acoustic Database

Synthesizing our own database allows the production of data that address issues
commonly faced in a certain environment and recreates scenarios that could occur in real
life. This includes noisy environments, as well as various source-to-receiver distances.
Furthermore, this also provides the exact locations of the sound sources.

For this work, the generation of the synthetic database was done based on a 92.81 m2

one-bedroom apartment modelled after the Hebrew Senior Life Facility [47], illustrated
in Figure 2. We assumed a 3 m height for the ceiling. Multi-channel recordings were
aimed for; hence, microphone arrays were placed on each of the four corners of the six
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rooms at 0.2 m below the ceiling. This produced four recordings, one from each of the
receiver nodes.
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database, dimensions in meters [47].

Accordingly, the microphone arrays were composed of four linearly arranged omnidirec-
tional microphones with 5 cm inter-microphone spacing (n), as per the geometry provided in
Figure 3, where d refers to the distance from the sound source to the microphones.
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Dry samples are taken from Freesound (FSD50K) [48], Kaggle [49], DESED Synthetic
Soundscapes [50], and Open SLR [51], depending on the audio class. Due to the variations
in sampling frequency, some of the audio signals were down sampled to 16 kHz for
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uniformity purposes. The room dimensions, source and receiver locations, wall reflectance,
and other relevant information, were then used in order to calculate the impulse response
for each room using the image method, incorporating source directivity [52]. This was
then convolved with the sounds, specifying their location, in order to create the synthetic
data. The data generated included clean signals, as well as different types of noisy signals,
including: children playing, air conditioner, and street music, added at three different SNR
levels: 15 dB, 20 dB, and 25 dB. The duration of each audio signal was uniformly kept at 5-s,
as this was found to provide satisfactory time resolution for the sound scenes and events
detected in this work.

Table 2 describes this dataset. This data was curated such that the testing data
consisted of one noise level for each node. Any instances of the data contained in the test
set were then removed from the training data. The testing set content is summarized for a
specific sound being recorded at four nodes:

• Node 1: Clean Signal with 15 dB Noise
• Node 2: Clean Signal with 20 dB Noise
• Node 3: Clean Signal with 25 dB Noise
• Node 4: Clean Signal

Table 2. Summary of the Source Node Estimation Dataset.

Category Training Data Testing Data

Absence/Silence 11,286 876
Alarm 2765 260

Cat 11,724 1080
Dog 6673 792

Kitchen Activities 12,291 1062
Scream 4308 376
Shatter 2877 370

Shaver/toothbrush 11,231 1077
Slam 1565 268

Speech 30,113 2374
Water 6796 829

TOTAL 101,629 9364

This ensures that even when the same sound is being recorded by the four nodes
present, it reduces the chances of biasing through the addition of different types of noise at
different SNR levels. Further, this was also designed to reflect real life recordings, where
the sound from different microphones may differ based on their distance to the source and
other sounds present in their surroundings.

As observed, audio classes used in the generation of this database focus on sound
events and scenes that often occur, or require an urgent response, in dementia patients’
environment. Further, this was also generated through the room impulse responses of the
HebrewLife Senior Facility [47], in order to reflect a realistic patient environment. This is
because assistance monitoring systems are real-world applications of deep-learning audio
classifiers, such as the work presented in this paper. Nonetheless, this can also be extended
to other application domains as previously discussed.

3.2. Feature Extraction Using Fast CWT Scalograms

The CWT has several similarities to the Fourier transforms, such that it utilizes inner
products in order to compute the similarity between the signal and an analysing func-
tion [53]. However, in the case of CWT, the analysing function is a wavelet, and the
coefficients are the results of the comparison of the signal against shifted, scaled, and
dilated versions of the wavelet, which are called constituent wavelets [53]. Compared
with the STFT, wavelets provide better time-localization [30] and are more beneficial to
non-stationary signals [53].
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However, in order to reduce the computational requirements for deriving scalograms,
this work proposes the use of the Fast Fourier Transform (FFT) algorithm for CWT coeffi-
cients computation [30]. Such that, if we define the mother wavelet (Ψ) to be [30], where t
refers to continuous time:

ψts(u) =
1√

t
ψ

(
u− s

t

)
(5)

Then Equation (3), involving the CWT coefficients, can be rewritten as follows [30],
where yavg refers to the average of the four-channels of the audio signal:

CWTc(s, t) =
∫ ∞

−∞
yavg(u)ψ∗t (s− u)du (6)

This shows that CWT coefficients can be expressed by the convolution of wavelets
and signals. Thus, this can be written in the Fourier transform form domain, resulting in
Equation (7) [30]:

CWTc(s, t) =
1

2π

∫ ∞

−∞
yavg(ω)ψ∗s,t(ω)dω (7)

where ψ∗s,t(ω) specifies the Fourier transform of the mother wavelet at scale t:

ψ∗s,t(ω) =
√

tψ∗(tω)ejωs (8)

Further, yavg(ω) then denotes the Fourier transform of the analysed signal yavg(t):

yavg(ω) =
∫ ∞

−∞
yavg(t)ejωtdt (9)

Hence, the discrete versions of the convolutions can be represented as per Equation (10),
where n is in discrete time domain:

W(s) = ∑N−1
n=0 yavg(n)ψ∗(s− n) (10)

From the sum in Equation (10), we can observe that CWT coefficients can be derived
from the repetitive computation of the convolution of the signal, along with the wavelets,
at every value of the scale per location [30]. This work follows this process in order to
extract the DFT of the CWT coefficients at a faster rate compared to the traditional method.

In summary, CWT coefficients are calculated through obtaining both the DFT of the
signal, as per Equation (9), and the Morlet analysing function, as per Equation (8), via the
FFT. The products of these are then derived and integrated, as per Equation (6), in order to
extract the wavelet coefficients. Accordingly, the discrete version of the integration can be
represented as a summation, which is observed in Equation (10).

3.2.1. Feature Representation

Feature computation is carried out in MATLAB, exploiting functionalities provided in
the Audio System and Data Communications toolboxes. A total of 20 filter bank channels
with 12 cepstral coefficients are used for the cepstral feature extraction, as per the standard
after DCT application [54]. An FFT size of 1024 is utilized, while the lower and upper
filter bank frequency limits are set to 300 Hz and 3700 Hz. This frequency range includes
the main components of speech signals (specifically, narrowband speech), while filtering
out the humming sounds from the alternating current power, as well as high frequency
noise [55]. Further, this range is relevant to the sound classes of speech and scream,
and was found to also include the main components of the other classes. While larger
frequency ranges could also be considered, this would require much larger FFT sizes to
maintain the same frequency resolution, which in turn would increase the computational
requirements. The extraction of the feature vectors is carried out by computing the average
of the four time-aligned channels in the time domain, yavg(t). The coefficients are then
extracted accordingly, from which single feature matrices are generated. The feature
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images are resized into 227 × 227 matrices using a bi-cubic interpolation algorithm with
antialiasing [56], in order to match the input dimensionality of the AlexNet neural network
model. Figure 4 shows samples of feature images for each of the three features compared,
using the ‘Speech’ and ‘Kitchen sound’ classes.
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3.3. Modified AlexNet Network Model

Domestic multi-channel acoustic scenes consist of several signals that are captured
with microphone arrays of different sizes and geometrical configurations. As discussed
previously, CNNs have been widely popular for their advantage with regards to efficiency
when used with data of spatial behaviour [57]. Thus, the experimentation part of this work
compares different pre-trained network models for transfer learning. Modifications on
the hyper-parameters are then made on the best performing network, the response being
observed in three ways:

1. Effects of changing the network activation function.
2. Effects of fine-tuning the weight and bias factors, and parameter variation.
3. Effects of modifications in the network architecture.

Activation functions in neural networks are a very important aspect of deep learning.
These functions heavily influence the performance and computational complexity of the
deep learning model [58]. Further, such functions also affect the network in terms of its
convergence speed and ability to perform the task. Aside from exploring different activation
functions, we also look at fine-tuning the weights and bias factors of the convolutional
layers, as well as investigating the effects of the presence of convolutional layers based
on performance.

For the modified AlexNet model, we examine the traditional Rectified Linear Unit
(ReLU) activation function, along with three of its variations. The ReLU offers advantages
in solving the vanishing gradient problem [59], which is common with the traditional
sigmoid and tanh activation functions. The gradients of neural networks are computed
through backpropagation, which calculates the derivatives of the network through every
layer. Hence, for activation functions such as the sigmoid, the multiplication of several
small derivatives causes a very small gradient value. This, in turn, negatively affects the
update of weights and biases across training sessions [59]. Provided that the ReLU function
has a fixed gradient of either 1 or 0, aside from providing a solution to the vanishing
gradient problem and overfitting, it also results in lower computational complexity, and
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therefore significantly faster training. Another benefit of ReLUs is the sparse representation,
which is caused by the 0 gradient for negative values [60]. Over time, it has been proven
that sparse representations are more beneficial compared to dense representations [61].

Nonetheless, despite the numerous advantages of the ReLU activation function, there
are still a number of disadvantages. Because the ReLU function only considers positive
components, the resulting gradient has a possibility to go towards 0. This is because the
weights do not get adjusted during descent for the activations within that area. This means
that the neurons that will go into that state would stop responding to any variations in
the input or the error, causing several neurons to die, which makes a substantial part of
the network passive. This phenomena is called the dying ReLU problem [62]. Another
disadvantage of the ReLU activation function is that values may range from zero to infinity.
This implies that the activation may continuously increase to a very large value, which is
not an ideal condition for the network [63]. The following activations attempt to mitigate
the disadvantages faced by the traditional ReLU function through modifications and will
be explored in this work:

a. Leaky ReLU: The leaky ReLU is a variation of the traditional ReLU function that
attempts to fix the dying ReLU problem by adding an alpha parameter, which creates
a small negative slope when x is less than zero [64].

b. Clipped ReLU: The clipped ReLU activation function attempts to prevent the acti-
vation from continuously increasing to a large value. This is achieved cutting the
gradient at a pre-defined ceiling value [63].

c. eLU: The exponential linear unit (eLU) is a similar activation function to ReLU.
However, instead of sharply decreasing to zero for negative inputs, eLU smoothly
decreases until the output is equivalent to the specified alpha value [65].

Aside from activation functions, variations in the convolutional and fully connected
layers will also be examined. The study will be done in terms of both the number of
parameters and the number of existing layers within the network.

For parameter modification, we explore the reduction of output variables in the fully
connected layers. This method immensely reduces the overall network size [66]. However,
it is important to note that recent works solely reduce the number of parameters from
the first two fully connected layers. Hence, here we introduce the concept of uniform
scaling, which is achieved by dividing the output parameters of fully connected layers by a
common integer, based on the subsequent values.

Modification of the network architecture is also considered through examining the
model’s performance when the number of layers within the network is varied. These layers
may include convolutional, fully-connected, and activation function layers. Nonetheless,
throughout the layer variation process, the model architecture is maintained to be of a
series network type. A series network contains layers that are arranged subsequent to
one another, containing a single input, and output layer. Directed Acyclic Graph (DAG)
networks, on the other hand, have a complex architecture, from which layers may have
inputs from several layers, and the outputs of which may be used for multiple layers [67].
The higher number of hidden neurons and weights, which is apparent on DAG networks,
could increase risks of overfitting. Hence, maintaining a series architecture allows for
a more customizable and robust network. Further, as per the state-of-the-art, all other
compact networks that currently exist present a DAG architecture. Thus, the development
of a compact network with a more customizable format, and through using fewer layers,
proposes advantages in designing sturdy custom networks.

3.4. Performance Evaluation Metrics

To evaluate the performance of the proposed systems, the following aspects are investigated:

1. Per class and overall comparison of different cepstral, temporal, and spectro-
temporal features classified using various pre-trained neural network and machine
learning models.

2. Effects of balancing the dataset
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Aside from the standard accuracy, evaluations of the performances of different tech-
niques were also compared and measured in terms of their F1-scores. This is defined to be
a measure that takes into consideration both the recall and the precision, which are derived
from the ratios of True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN) [68], which can be extracted from confusion matrices.

The databases used for this research compose of unequal numbers of audio files per
category. To account for the data imbalance, two different techniques are used:

1. Balancing the Dataset

Particularly used for the initial development and experiments conducted for this
work, in this technique, the dataset was equalized across all levels in order to preserve a
balanced dataset. This is done in order to avoid biasing in favour of specific categories
with more samples. It is achieved by reducing the amount of data per level to match the
minimum amount of data amongst the categories. Selection of the data was done randomly
throughout the experiments.

2. Using Weight-sensitive Performance Metrics

Provided that the F1-score serves as the main performance metric used for the ex-
periments conducted, it is crucial to ensure that these metrics are robust and unbiased,
especially for multi-classification purposes. When taking the average F1-score for an unbal-
anced dataset, the amount of data per level may affect and skew the results for the mean
F1-score in favour of the classes with the most amount of data. Therefore, we consider
three different ways of calculating the mean F1-score, including the Weighted, Micro, and
Macro F1-scores, in order to take into account for the dataset imbalance [69].

4. Results
4.1. Feature Extraction Results
Comparison of Cepstral, Spectral, and Spectro-Temporal Features

Per-level and average comparisons using MFCC and Log-Mel spectrogram features
against the proposed CWTFT scalograms method are seen in Table 3, which is an average
of three training trials. As observed, F1-score averaging is done using three different
methods: Micro, Macro, and Weighted, in order to take into account the biasing that may
be caused by the data imbalance. Further, the table also entails the comparison of the
system performance between imbalanced and balanced data. To achieve a balanced data,
the size of the dataset is reduced to match the lowest numbered category in both training
and testing sets. As per Table 2, for each category, this turns out to be 1565 files for training,
based on the “Slam” category, and 260 files for testing, based on the “Alarm” category. This
adds up to a total of 17,215 training files and 2860 testing files.

The following results are achieved using the traditional AlexNet network, provided
that this gives us the highest results as per our previous works [45,46]. Training for the
imbalanced data is achieved at 10 epochs with 1016 iterations per epoch. However, it
is important to note that the number of epochs for the balanced data is 75, as it has less
iterations per epoch due to the lower amount of data per category. Hence, it requires more
epochs in order to reach stability.
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Table 3. Per-level comparison between imbalanced and balanced data between different types of
features, with an average of three training trials.

CWTFT Scalograms

Imbalanced Data Balanced Data

Category Accuracy Precision Recall F1-
Score Accuracy Precision Recall F1-

Score

Silence 100.0% 99.3% 100.0% 99.7% 100.0% 98.4% 100.0% 99.2%
Alarm 65.4% 63.4% 65.4% 64.4% 75.2% 83.8% 75.2% 78.7%

Cat 97.2% 82.3% 97.2% 89.1% 94.8% 77.9% 94.8% 86.1%
Dog 74.8% 74.3% 74.8% 74.5% 84.7% 89.2% 84.7% 85.8%

Kitchen 82.3% 82.4% 82.3% 82.4% 76.5% 59.3% 76.5% 67.2%
Scream 83.7% 82.4% 83.7% 83.1% 85.9% 85.2% 85.9% 86.1%
Shatter 78.2% 72.2% 78.2% 75.1% 75.4% 89.8% 75.4% 83.2%
Shaver 71.5% 83.0% 71.5% 76.8% 66.7% 75.2% 66.7% 69.5%
Slam 65.4% 70.6% 65.4% 67.9% 71.5% 82.1% 71.5% 77.6%

Speech 100.0% 97.8% 100.0% 98.9% 100.0% 92.1% 100.0% 96.7%
Water 74.2% 85.8% 74.2% 79.6% 75.2% 82.2% 75.2% 78.1%
Micro 86.0% 86.0% 86.0% 86.0% 82.4% 83.2% 82.4% 82.6%

Weight 86.0% 86.0% 86.0% 85.9% 82.4% 83.2% 82.4% 82.6%
Macro 81.2% 81.2% 81.2% 81.0% 82.4% 83.2% 82.4% 82.6%

MFCCs

Imbalanced Data Balanced Data

Category Accuracy Precision Recall F1-
Score Accuracy Precision Recall F1-

Score

Absence 100.0% 98.6% 100.0% 99.3% 100.0% 98.7% 100.0% 99.3%
Alarm 53.2% 69.7% 53.2% 60.4% 52.3% 79.4% 52.3% 62.3%

Cat 75.6% 62.6% 75.6% 68.5% 74.1% 65.3% 74.1% 72.0%
Dog 74.8% 69.7% 74.8% 72.1% 76.9% 79.4% 76.9% 78.1%

Kitchen 64.1% 71.6% 64.1% 67.7% 51.8% 48.3% 51.8% 49.2%
Scream 75.8% 71.9% 75.8% 73.8% 76.4% 74.1% 76.4% 74.3%
Shatter 69.1% 53.8% 69.1% 60.5% 72.5% 70.2% 72.5% 73.1%
Shaver 53.8% 69.6% 53.8% 60.7% 48.6% 43.8% 48.6% 45.6%
Slam 37.9% 53.0% 37.9% 44.2% 50.1% 70.6% 50.1% 57.8%

Speech 99.1% 97.0% 99.1% 98.0% 99.1% 86.3% 99.1% 94.0%
Water 48.7% 55.5% 48.7% 51.9% 50.2% 50.9% 50.2% 50.1%
Micro 77.6% 77.6% 77.6% 77.6% 68.4% 69.7% 68.4% 68.7%

Weight 77.6% 77.3% 77.6% 77.3% 68.4% 69.7% 68.4% 68.7%
Macro 68.4% 70.3% 68.4% 68.8% 68.4% 69.7% 68.4% 68.7%

Log-Mel Spectrograms

Imbalanced Data Balanced Data

Category Accuracy Precision Recall F1-
Score Accuracy Precision Recall F1-

Score

Absence 100.0% 98.4% 100.0% 99.2% 100.0% 100.0% 100.0% 100.0%
Alarm 62.5% 61.2% 62.5% 61.8% 70.2% 62.2% 70.2% 65.6%

Cat 73.4% 65.0% 73.4% 68.9% 55.9% 60.3% 55.9% 61.2%
Dog 52.2% 51.4% 52.2% 51.8% 49.8% 54.9% 49.8% 51.9%

Kitchen 51.8% 42.6% 51.8% 46.7% 32.3% 31.6% 32.3% 32.6%
Scream 43.9% 47.4% 43.9% 45.6% 54.4% 53.6% 54.4% 54.3%
Shatter 58.2% 62.2% 58.2% 60.1% 66.8% 64.2% 66.8% 65.8%
Shaver 43.1% 41.2% 43.1% 42.1% 41.9% 31.4% 41.9% 38.1%
Slam 20.2% 36.3% 20.2% 26.0% 37.2% 56.1% 37.2% 44.4%

Speech 99.1% 92.8% 99.1% 95.9% 98.1% 82.9% 98.1% 89.5%
Water 32.2% 38.7% 32.2% 35.1% 35.2% 40.7% 35.2% 37.1%
Micro 65.0% 65.0% 65.0% 65.0% 58.3% 58.0% 58.3% 58.2%

Weight 65.0% 63.9% 65.0% 64.2% 58.3% 58.0% 58.3% 58.2%
Macro 57.9% 57.9% 57.9% 57.6% 58.3% 58.0% 58.3% 58.2%
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As observed, the CWTFT scalograms have consistently achieved the highest F1-score
across all categories, exceeding the performance of the MFCC features by over 10%. As
mentioned earlier, this can be explained by the spectro-temporal properties of wavelets,
which allows excellent time and frequency localization. The Log-Mel spectrograms gather
the least F1-score out of the three features. In terms of the data imbalance, it is observed
that once data is even across all categories, it improves the performance of the smaller
categories. Nonetheless, the trade-off is that it reduces the F1-score for the categories with
more data initially. It is also evident that performances associated with classes referring to
acoustic scenes are higher than those associated to sound events. This is because sound
events occur sporadically and at different instances throughout the 5-s intervals, whereas
sound scenes are continuously present throughout the duration. Overall, the imbalanced
dataset returns higher performance. Figure 5 accordingly shows the relevant confusion
matrices for imbalanced and balanced datasets.
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In our previous works, we examined the response of the system performance by
concatenating the cepstra from individual channels [45,46]. This yielded a slightly better
performance than using a single cepstrum after averaging the four time-aligned channels
for the case of cepstral coefficients. Extracting cepstral coefficients for each channel allows
a thorough consideration of all distinctive properties of the signal, which minimizes the
loss of information. However, per-channel feature extraction did not cause improvement
with Scalogram features, yielding a result of 90.72% as opposed to 92.33% for averaging the
channels, as audio sources are already separated within its wavelet computation process.

Aside from the accuracy, execution time for the inference and resource requirements is
another important consideration that must be made when selecting features. Table 4 details
the execution time information for the three features compared, in terms of extracting the
relevant features and translating them into a 227 × 227 image. Recording the execution
time was achieved through a machine with Intel Core i7-9850H CPU @ 2.60 GHz processor,
operated in single core. The reported execution times are in seconds and are an average
of 100 different readings. As observed, scalograms also returned the shortest overall time
duration across all three features compared. The numerous processes involved with the
MFCC and Log-mel features justify the longer extraction time.

Table 4. Average execution time for inference (in s).

Parameter Scalograms MFCC Log-Mel

Feature Extraction Execution Time 0.1981 1.0076 1.0640
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CWTFT coefficients are derived through taking the product between the DFT of
the signal and the analyzing function through FFT, and inverting this in order to extract
the wavelet coefficients. On the other hand, both MFCC and Log-Mel are based on the
Mel-scale filter bank. This is based on the short-term analysis, from where vectors are
computed per frame. Further, windowing is performed to remove discontinuities, prior
to utilizing the DFT to generate the Mel filter bank. Further processes, such as the use
of triangular filters and warping, are also necessary prior to the application of the IDFT
and transformation.

It is important to note that in terms of memory usage, there are negligible differences
between the three features compared. This is because the features are being resized and
translated into a 227× 227 image through bi-cubic interpolation, in order to fit the classifier.
Nonetheless, each image translation occupies between 4–12 KB of memory, depending on
the sound class.

4.2. Architecture of Modified AlexNet-33 (MAlexNet-33)

This section discusses the results achieved through the detailed study of the effects of
modifying the traditional AlexNet architecture. The AlexNet model was found to result in
the highest F1-scores based on our previous work experiments [45,46]. In this work, we
aim to improve this network by decreasing the overall network size while maintaining
its performance. To begin with, the original layer structure of the AlexNet network is
presented in Figure 6. As observed, it contains 25 layers, with 2 regular convolution layers,
3 group convolution layers, and 3 fully connected layers.
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4.2.1. Exploring Variations of the Rectified Linear Unit and the Number of Layers

For this experiment, the response of the system to reducing the number of layers
is investigated. Further, different variations of the ReLU activation function are also
examined. Table 5 displays the different combinations tested for this experiment with
regards to decreasing the number of layers and changing the activation function, presented
as an average between 11 classes. Hence, throughout the results, it is apparent that the micro
averaging results between the four measures are the same and there are close similarities
between some of the measures. This is due to the total number of false negatives and false
positives being the same. More distinct differences between the classes can be seen in the
per-level comparison, such as that of Table 3.

Table 5. Performance Measures of Different Networks using Variations of the F1-score.

Network Type Accuracy Precision Recall F1-Score

AlexNet
Micro 86.36% 86.36% 86.36% 86.36%

Weighted 86.36% 86.72% 86.36% 86.24%
Macro 81.03% 82.99% 81.03% 81.69%

AlexNet-20
Micro 85.19% 85.19% 85.19% 85.19%

Weighted 85.19% 86.01% 85.19% 85.02%
Macro 79.68% 82.42% 79.68% 80.44%

AlexNet-20
with eLU (1)

Micro 84.30% 84.30% 84.30% 84.30%
Weighted 84.30% 84.80% 84.30% 84.18%

Macro 78.08% 81.20% 78.08% 79.22%
AlexNet-20
with Leaky
ReLU (0.01)

Micro 85.70% 85.70% 85.70% 85.70%
Weighted 85.70% 86.37% 85.70% 85.58%

Macro 79.45% 83.62% 79.45% 80.99%
AlexNet-20

with Clipped
ReLU (6)

Micro 84.10% 84.10% 84.10% 84.10%
Weighted 84.10% 84.25% 84.10% 84.04%

Macro 78.38% 78.55% 78.38% 78.26%
AlexNet-17
with Leaky
ReLU (0.01)

Micro 81.89% 81.89% 81.89% 81.89%
Weighted 81.89% 82.67% 81.89% 81.74%

Macro 75.04% 76.39% 75.04% 75.13%

From Table 5, AlexNet-20 was achieved by removing one grouped convolutional,
two ReLU, one fully connected, and one 50% dropout layer from the original network.
It is observed that removing convolutional and fully connected layers from the network
reduces its performance as well.

However, it is also apparent that using other activation functions improves the per-
formance. For instance, using a Leaky ReLU with a 0.01 parameter in place of the ReLU
activation function increased the weighted F1-score to 85.58%, having less than 1% differ-
ence from the original network’s performance. Such improvement is reportedly due to
the Leaky ReLU’s added parameter to solve the dying ReLU problem. Due to having less
layers in the system, a reduction of about 30% from the original size was also achieved.
MAlexNet-20 with a Leaky ReLU activation function has a network size of about 150 MB,
compared against AlexNet’s 220 MB network size.

Subsequent to this, the concept of a successive activation function was also looked at.
For this, two activation function layers were placed successively throughout the network.
However, as per Table 6, it is implied that using two successive activation functions does
not necessarily improve the overall system performance. However, it is also apparent that
using more than one activation function does not affect the overall size of the network.
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Table 6. Successive Activation Function Combination Summary.

Activation Function
1

Activation Function
2 Accuracy Network Size

ReLU ReLU 83.27% 157.92 MB
Leaky ReLU (0.01) Leaky ReLU (0.01) 84.32% 157.92 MB

ReLU Leaky ReLU (0.01) 85.38% 157.92 MB
Tanh Leaky ReLU (0.01) 73.49% 157.92 MB

4.2.2. Parameter Modification

The AlexNet contains three fully connected layers with parameter values of 9216, 4096,
and 4096 for the inputs, and 4096, 4096, and 1000 for the outputs. In this experiment, we
reduce the output parameters across the first two fully connected layers within the network
through scaling. The results achieved from this experiment are reported in Table 7.

Table 7. Parameter Modification Results.

Activation
Function

Input to
FC6 FC6 FC7 Num. of

Layers Scale Epochs Network
Size

Weighted
F1

ReLU 9216 4096 4096 25 (orig *) None 10 221.4 MB 86.24%
ReLU 4608 574 574 25 (equ *) Equ. 30 31.90 MB 85.76%
ReLU 4608 576 256 25 (div 16) 16 30 31.23 MB 85.15%

Leaky ReLU (0.01) 4608 576 256 25 (div 16) 16 30 31.23 MB 85.48%
Leaky ReLU (0.01) 4608 384 172 25 (div 24) 24 30 23.82 MB 86.82%

ReLU 4608 384 192 25 [64] None 30 23.85 MB 85.76%

* orig—refers to the original AlexNet layer; equ—refers to using equal fully connected layer parameters.

In here, FC6 refers to the output of the first fully connected layer, and FC7 refers to the
output of the second fully connected layer. It is important to note that the output of the last
fully connected layer corresponds to the number of classes the system aims to identify and
is not determined by parameter scaling.

As observed from Table 7, a notable improvement is observed through scaling the
output parameters of the fully connected layers through a division of 24 (from the input
parameter and fully connected sizes of the original network), which provided slightly
higher F1-score compared to the original AlexNet. Further, this results in an almost 90%
reduction in size of the network compared to the original (23.82 MB as opposed to 221.4 MB).
Uniform scaling also returns better performance compared to keeping an equal number of
parameters across all fully connected layers. Further, it also achieved a higher weighted F1-
score than the combination used by previous recent studies, for which the exact parameters
used are represented by the last entry on Table 7 [66]. It is important to note that the input
size for FC6 is automatically calculated for the modified networks. After the convolution
stages, this is found to be 4608 parameters. Quantitatively, it is implied that the output
parameters of all fully connected layers subsequent to the last fully connected layer can be
scaled down extensively, depending on the number of classes that the model is designed to
predict, keeping in mind that the fully connected output parameters are higher than the
number of possible predictions.

The number of epochs required is determined through the training accuracy and
losses graph. Generally, a lower number of output parameters slows down the training,
requiring more epochs in order to reach a well-learned network. Figure 7 displays the
difference between a traditional AlexNet and a version with lower numbers of output
parameters in the fully connected layers. The comparison was done for 10 epochs.

4.2.3. The Combination of Layer and Parameter Modification

Provided that uniformly scaling the fully connected layer parameters has proven
beneficial, in this section, we combine this technique with the advantages of modifying the
number of layers. This is done in two ways, the results for which are presented in Table 8:
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• Decreasing the number of layers: Similar to the experiment conducted in Section 3.2.1,
this reduces the number of convolutional and fully connected layers within the net-
work. For example, MAlexNet-23 refers to the removal of conv4 and relu4, maintain-
ing all fully connected layers. On the other hand, MAlexNet-20 is the same network
structure examined in Section 3.2.1.

• Increasing the number of layers: For this experiment, another grouped convolutional
layer/s with the relevant activation function was added to the network structure.
From the original AlexNet model, the grouped convolutions carry bias learnable
weights of 1× 1× 192× 2 and 1× 1× 128× 2, respectively. For this work, additional
grouped convolution functions were added, such that it has a bias learnable weight
of 1 × 1 × 64 × 2 for MAlexNet-27, and 1 × 1 × 64 × 2 and 1 × 1 × 32 × 2 for
MAlexNet-33. Accordingly, Leaky ReLu (0.01) activation functions were utilized for
all grouped convolutional layers.
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Table 8. Results for the combination of layer and parameter modifications.

Activation Function FC6 FC7 Num. of
Layers Scale Epochs Network

Size Weighted F1

ReLU 384 192 23 (n.conv4) None 30 21.19 MB 84.63%
Leaky ReLU (0.01) 384 192 23 (n.conv4) None 30 21.19 MB 83.05%
Leaky ReLU (0.01) 576 - 20 (n.conv4) None 30 27.98 MB 83.80%
Leaky ReLU (0.01) 1064 - 20 (n.conv4) Equ. 30 45.99 MB 84.66%

ReLU 1064 - 20 (n.conv4) Equ. 30 45.99 MB 82.54%
ReLU 576 - 20 (n.conv4) Equ. 30 27.99 MB 83.63%

Leaky ReLU (0.01) 576 - 20 (n.conv4) Equ. 30 27.99 MB 83.71%
Leaky ReLU (0.01) 576 - 22 (w.conv4) Equ. 30 30.64 MB 85.00%
Leaky ReLU (0.01) 384 - 22 (w.conv4) 24 30 23.56 MB 85.76%
Leaky ReLU (0.01) 384 172 23 (n.conv4) 24 30 21.16 MB 84.76%
Leaky ReLU (0.01) 384 172 27 (gconv64) 24 30 17.34 MB 86.89%
Leaky ReLU (0.01) 192 86 27 (gconv64) 48 30 13.59 MB 85.61%
Leaky ReLU (0.01) 384 172 33 (gconv32) 24 30 14.33 MB 87.92%

As per Table 8, it is observed that the top performing algorithm is the MAlexNet-33,
which is designed as a combination of both fully connected parameter scaling, as well
as the addition of two new grouped convolutional layers with bias learnable weights
of 1 × 1 × 64 × 2 and 1 × 1 × 32 × 2, and relevant activation layers. This provided a
weighted F1-score of 87.96%, exceeding the performance of the AlexNet, with a network
size of 14.33 MB. This suggests an over 95% decrease in the size of the resource require-
ments when compared to the original model. When compared to [66], this also improved
both the performance and the network size, exceeding the performance by around 2.16%
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and decreasing the network size by over 40%. Aside from the improvement in resource
requirements, decreasing the network size also returned a notable improvement in the
inference execution time, provided that they are factors linearly related to one another.

4.2.4. Comparison with Other Compact Networks

In this section, a comparison of the proposed architecture to currently existing com-
pact networks is presented. For this work, several compact pre-trained models including
SqueezeNet [42], MobileNet-v2 [70], NasNet Mobile [71], and ShuffleNet [72], are consid-
ered. A summary of the comparison is seen in Table 9, in terms of the total number of
layers, depth, type, network size in MB, the activation function used, the weighted F1-score,
the training time for 30 epochs, the network loading time, and the execution inference time
average. The network loading time is an average of five trials, while the execution time is
measured in 100 trials.

Table 9. Detailed Comparison with other Compact Neural Networks.

MAlexNet-33 SqueezeNet MobileNet-v2 NasNet Mobile ShuffleNet

Number of Layers 33 68 155 913 173
Depth 8 18 53 N/A 50
Type Series Network DAG DAG DAG DAG

Network Size 14.33 MB 3.07 MB 9.52 MB 19.44 MB 3.97 MB

Activation Function Leaky ReLU
(0.01) Fire ReLU Clipped ReLU

(C: 6) ReLU ReLU

Weighted F1-score 87.92% 84.48% 86.85% 83.38% 86.91%
Training time 178 min 273 min 599 min 1668 min 792 min

Epochs 30 30 30 30 30
Loading time average 1.10 s 1.04 s 1.32 s 2.59 s 1.62 s

Execution time average 0.0148 s 0.0159 s 0.0338 s 0.1345 s 0.0348 s

Throughout the comparison, it is important to note that, while MAlexNet-33 is a
series network, all other compact networks are DAG networks, which have a complex
architecture and a significantly larger number of layers.

As observed, our proposed network consistently provided the highest weighted F1-
score in comparison to the other compact networks. Despite having a 14.33 MB network
size, this provided negligible time differences (about 0.08-s against SqueezeNet) in terms
of loading the network. Further, it also possesses the least training and execution time
compared to the other networks.

It is also apparent that other compact networks possess a higher loading time despite
the smaller network size, which is caused by the DAG network configuration, and the
multiple layers within the architecture. Provided that the MAlexNet-33 has the least
number of layers, it creates a highly customizable network architecture. Adding more
layers of neurons increases the complexity of the neural networks. Although hidden layers
are crucial for extracting the relevant features, having too many hidden layers may cause
overfitting. In this case, the network would be limited in terms of its generalization abilities.
In order to avoid this effect, this work focuses on designing a smaller network with fewer
neurons and weights than a traditional compact neural network.

5. Discussion

Interpreting the presented results, we conclude that the use of CWTFT scalograms re-
turns the best results for audio scene and event classification applications. This is supported
by our previous experiments, which were performed using the SINS database [45,46] and
the experiments conducted in this work. This can be justified by the fact that scalograms
possess excellent time and frequency localization. Furthermore, another advantage is that
it also separates audio sources upon the wavelet computation process. Using an FFT-based
wavelet transform also returns favourable time duration requirements, which exceeded
that of cepstral and spectral features.
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There are three main discoveries found in this study:

Hypothesis 1: The Leaky ReLU activation function returned higher performance for multi-level
classification as opposed to the traditional ReLU in the majority of cases.

Verification of Hypothesis 1: This is true on a case-by-case scenario. This can be
explained by the presence of the dying ReLU problem in feature sets, which is ameliorated
through the small parameter added through the Leaky ReLU. However, it is important
to note that the presence of the dying ReLU problem could depend on several factors,
including the nature of the data being trained. In cases where this does not occur, replacing
the activation function to a Leaky ReLU may not return any advantages.

Hypothesis 2: Decreasing the number of fully connected and convolutional layers throughout the
network also slightly decreases the performance.

Verification of Hypothesis 2: Generally, convolutional layers represent high level
features within the network. Accordingly, fully connected layers flatten and combine these
features. Hence, reducing the number of these layers negatively affects the performance of
the network.

Hypothesis 3: Decreasing parameters, weight factors, and biases within the fully connected and
convolutional layers helps decrease the size of the network more, compared to when these layers are
removed completely.

Verification of Hypothesis 3: Both convolutional and fully connected layers con-
tribute to the high and low-level features from which the network learns, and are therefore
essential. However, since pre-trained models are originally trained on very large data,
large parameters, weight, and bias factors are often not necessary for the smaller dataset by
which transfer learning is being implemented for. This explains the maintenance of the
system performance despite decreasing the parameters for these layers accordingly. Based
on our experiments, scaling the parameters uniformly across fully connected layers returns
the best performance.

6. Conclusions

This study started with a per-level performance comparison against top-performing
feature extraction methodologies, which demonstrated the robustness of the proposed
CWTFT features. Further, an extensive study on pre-trained neural network modification
was also presented, aiming to reduce the size of the AlexNet model whilst maintaining the
accuracy. The top performing methodology involved the use of FFT-based CWT Scalogram
features, with a modified AlexNet model with 33 layers (MAlexNet-33). This model uses
the Leaky ReLU as its main activation function, combining strategies of both including
additional convolutional layers and uniformly scaling the parameters of convolutional
and fully connected layers in order to create the optimum network. The best performance
resulted in an 87.92% weighted F1-score at a network size of 14.33 MB. This suggests a
good improvement when compared with using the original AlexNet network with the
same features, which resulted in an F1-score of 86.24%, at a size of 221.4 MB.
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