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Abstract: Seismic data provides integral information in geophysical exploration, for locating hydro-
carbon rich areas as well as for fracture monitoring during well stimulation. Because of its high
frequency acquisition rate and dense spatial sampling, distributed acoustic sensing (DAS) has seen
increasing application in microseimic monitoring. Given large volumes of data to be analyzed in
real-time and impractical memory and storage requirements, fast compression and accurate inter-
pretation methods are necessary for real-time monitoring campaigns using DAS. In response to the
developments in data acquisition, we have created shifted-matrix decomposition (SMD) to compress
seismic data by storing it into pairs of singular vectors coupled with shift vectors. This is achieved
by shifting the columns of a matrix of seismic data before applying singular value decomposition
(SVD) to it to extract a pair of singular vectors. The purpose of SMD is data denoising as well as
compression, as reconstructing seismic data from its compressed form creates a denoised version of
the original data. By analyzing the data in its compressed form, we can also run signal detection and
velocity estimation analysis. Therefore, the developed algorithm can simultaneously compress and
denoise seismic data while also analyzing compressed data to estimate signal presence and wave
velocities. To show its efficiency, we compare SMD to local SVD and structure-oriented SVD, which
are similar SVD-based methods used only for denoising seismic data. While the development of
SMD is motivated by the increasing use of DAS, SMD can be applied to any seismic data obtained
from a large number of receivers. For example, here we present initial applications of SMD to readily
available marine seismic data.

Keywords: data compression; noise reduction; machine learning; singular value decomposition

1. Introduction

The last decade has seen a great increase in hydrocarbon production from unconven-
tional reservoirs. However, there are still many challenges in predicting their production
potential. The quantity of hydrocarbons produced depends on the distribution and quan-
tity of fractures present in the reservoir. Fracture identification and monitoring can be done
by analyzing microseismic data [1]. With the goal of improving the ability to track the
fracture distribution, the amount of seismic data acquired during reservoir monitoring has
been increasing.

Recent developments in reservoir monitoring use fiber optic cables to record both
low frequency strain and seismic waves in a technique called distributed acoustic sensing
(DAS) [2]. DAS provides a new and unique view of the reservoir by recording strain rate
data with a high sample rate and dense spatial sampling. Higher recording rates and more
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receiver positions increase the amount of microseismic activity recorded while monitoring
the reservoir. Recording microseismic events with DAS significantly increases the memory
requirement of the monitoring data. Thus, data processing methods that can compress
the data and reduce its noise would complement the new instrumental developments in
reservoir monitoring.

Signal processing algorithms are often based on the transformation of signal into a
new domain. Early examples of compression involve discrete cosine transform [3] and
wavelet transforms [4–6] which use cosine functions or wavelets to represent the data in
order to reduce the memory requirements. Reduced-rank methods, which approximate
the noiseless seismic data using low rank matrices and tensors, have been used in noise
reduction [7] while also reconstructing missing data [8,9]. In recent years, dictionary
learning has seen wide application in seismic data. Because of its ability to provide a
compact and informative representation of seismic signals, it has been used for both
noise reduction [10–12] and data compression [13,14]. Unfortunately, the drawback of
the dictionary learning applications is the computation time that comes with learning
and updating the dictionary. There have been successful efforts to reduce the associated
computational times [15], but the computational cost of applying dictionary learning to
microseismic DAS recordings is still to great. Thus far, dictionary learning methods have
been applied to data collected by geophones, which can be very large but are still much
smaller than data obtained by a single fiber-optic cable which can sample strain thousands
of times a second on hundreds, even thousands of receiver locations. Since DAS is used for
microseismic monitoring, the great amounts of data would need to be processed in real
time, which puts a constraint on the computation time of processing methods.

To achieve computationally efficient compression and denoising, we created a new
data decomposition method by improving and further developing ideas developed as a
part of the local SVD [16]. Similarly to the previously mentioned reduced-rank methods,
local SVD applies SVD to a window in seismic data and represents the data using a small
number of singular vectors. What makes local SVD unique is the process of shifting the
columns of the window to maximize their correlation prior to applying SVD. This allows
singular vectors to capture the signal in seismic data with high accuracy, while ignoring
most of the noise. Once the data in the window is processed with SVD, the window is
moved to the next location. This process is repeated until column shifting and SVD have
been applied to every part of the data matrix. The path of the moving window as well as
the number of singular vectors used at each location are predetermined. Local SVD can
enhance a seismic data set even if it contains multiple wave arrivals. However, local SVD
struggles to capture seismic signals if waves with different dips are interfering or present
in the same window. The “dip” of the wave refers to the slope of the wave in the matrix,
or how much the row position of a wave changes as we move from one column to its
adjacent column.

Some of the problems encountered with local SVD were resolved with the develop-
ment of structure-oriented singular value decomposition (SOSVD) [17]. By using plane
wave destruction [18], SOSVD can identify several dominant slopes at each window loca-
tion. While using plane wave destruction provides a noticeable improvement, numerical
artifacts can still appear at the intersection of the waves with different slopes.

Our method is inspired by the SOSVD and local SVD, and it also shifts the columns
of the matrix before applying SVD. However, in order to avoid numerical artifacts, we
use different processes to determine how columns should be shifted. Specifically, we do
not use a moving window with a predetermined path. Instead, we use a geometric mean
filter that adaptively chooses which elements to use in the geometric mean. We apply
the geometric mean filter to seismic data in order to highlight areas which contain wave
arrivals. The windows from the matrix to which we apply SMD depend on the results of
the geometric mean filter. This allows us to use more singular vectors to describe areas with
multiple wave arrivals, and fewer singular vectors to describe areas dominated by noise.
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Additionally, local SVD and SOSVD use SVD results solely to denoise seismic data.
They use them to reconstruct denoised version of seismic data as soon as they obtain them
and do not discuss the compression achieved by storing SVD results. In our work, instead
of reconstructing the data immediately, we store the SVD results. The final product of our
algorithm is the collection of SVD results, that can later be reconstructed into the denoised
version of original data. By doing this, our algorithm can be used for data compression
as well as noise suppression. We call our new method the shifted-matrix decomposition,
or SMD for short.

It should also be noted that DAS has seen increasing use outside geophysical explo-
ration. Distributed acoustic sensing has been used to record signals from earthquakes and
volcanic events [19]. Because of its unprecedented spatial and temporal resolutions, DAS
is expected to see increasing use in earthquake monitoring, imaging of faults and many
other geologic formations, and hazard assessment [20]. The growing potential of DAS
application outside of geophysical exploration, adds importance to our method, which we
believe will play an integral role in the processing of DAS data.

We organize the paper as follows: First we give an overview of singular value de-
composition and present two simple examples that show advantages and drawbacks of its
application to seismic data. Next, we demonstrate the improvements achieved by shifting
the traces before extracting singular vectors. In the following subsection, we describe in
detail each step of the SMD algorithm. The SMD algorithm depends on several parameters.
The optimal values of said parameters are determined in a machine learning stage follow-
ing the algorithm description subsection. In the training stage we use seismic field data
obtained from marine seismic gathers, which has a large amount of interference between
coherent waves, and noise which can be difficult to differentiate from signal. After training
on marine seismic gathers, SMD provides accurate results on other seismic data as well as
marine seismic gathers, which allows us to skip the training stage in future applications.
To confirm the accuracy of SMD, we reproduce synthetic data from [17], and compare
results of SMD to results of local SVD and SOSVD. The SMD is then tested on real seismic
data. While SMD is primarily developed for application to microseismic data recorded by
DAS, we currently do not have access to such data. Instead, we apply SMD to field data
obtained from marine seismic gathers [21]. The results of applying SMD to field data are
used to reconstruct a denoised version of the data as well as to estimate the elastic wave
velocity. Finally, we discuss possible future applications of SMD and how its results could
be used in signal detection during seismic monitoring.

2. Materials and Methods
2.1. Singular Value Decomposition

Consider seismic data stored in a matrix M ∈ Rnt ,nr , where nr is the number of the
receivers recording the data and nt is the number of time samples. An element of the matrix
Mi,j describes the ground motion at the jth receiver, and at the ith time step. Singular value
decomposition method is a common matrix decomposition method that can be used to
express the matrix M of rank r as the product of matrices:

M = UrDrVr
T , (1)

where Ur = [u1, u2, . . . , ur] contains the r left singular vectors as columns, the diagonal
matrix Dr = diag(λ1, λ2, .., λr) contains the r singular values, and Vr = [v1, v2, .., vr]
contains the r right singular vectors as columns. In traditional SVD, the left singular
vectors and right singular vectors are normalized. However, multiplying the right singular
vector by the singular value, allows us to store the singular value in the right singular
vector, which slightly reduces the memory requirements of SMD results. For that reason,
from this point on, the “right singular vector” refers to the normalized right singular vector
multiplied by the singular value. Equivalent to Equation (1), SVD can also be used to
express the the matrix M as a sum of outer products of left singular vectors and right
singular vectors weighted by singular values [7]. However, due to the way we define the
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right singular vector in this work, we can express is as just a sum of outer products of left
singular vectors and right singular vectors:

M =
r

∑
k=1

ukvkT
. (2)

While Equation (2) may be less common, regarding SVD as sum of outer products
is helpful for understanding the processes of SMD. In this work, we refer to any column
from U as a column vector, and any column from V as a row vector. This is because in the
outer product ukvkT

all columns are multiples of the column vector uk, and all rows are
multiples of the row vector vkT

.
Singular value decomposition can also be used as a data compression method. We

assume singular values in Dr decrease from first to last row. When applying SVD to seismic
data, the initial singular values are much greater than the average singular value in Dr,
and describe most of the signal. By neglecting the small singular values, the singular value
decomposition can be used to approximate matrix M as

M ≈
rs

∑
k=1

ukvkT
, (3)

where (rs << r). By using only the first few singular vectors to describe the the matrix
M we can significantly decrease the memory requirement of the seismic data. In some
cases, a few pairs of singular vectors can very accurately describe the data stored in M. For
example, if a wave packet arrives at all receivers at the same time, all columns in M will
contain the same pattern, and in that case, we can represent M using a single outer product
(see Figure 1).

Figure 1. (a) A matrix showing a single wave arriving to all receivers at the same time. (b) A pair of
singular vectors obtained by applying SVD to the matrix. (c) The outer product of the two singular
vectors which matches the original matrix.

However, if the wave packet arrives at the receivers at different times, as in Figure 2,
we can no longer represent the matrix M using a single outer product. Figure 2 shows
an example of the errors that will occur if reconstruction of the data from a single outer
product is attempted. Though in practice this would never be done, the example does
show that greater data compression can be achieved in this framework if signals in data
are aligned prior to a decomposition.

If there is significant variation in signal time position for different receivers, a large
number of singular vectors is needed to properly represent the signal. This negatively
affects the compression as well as denoising, since using more singular vectors would also
include representing more of the noise. Any methods utilizing SVD, such as PCA [22],
will be subject to the same challenges. We note that PCA and SVD have been used
interchangeably in terms of data compression. A mathematical relation between them is
demonstrated in [23].
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Figure 2. (a) A matrix showing a wave arriving to the receivers at different times (b) A pair of
singular vectors obtained by applying SVD to the matrix. (c) The outer product of the pair of singular
vectors which is very different from the original matrix.

The issues encountered with regular SVD (or PCA) were first addressed with the
development of a local SVD by Bekara and Van der Baan [16], and later improvements led
to the development of SOSVD by Gan et al. [17]. In both of these methods SVD is applied
to a window Mw from matrix M with columns shifted in such a way to maximize the
correlation between columns. The shape of the window doesn’t change as the columns
are shifted. This can be achieved in several ways, one of which is simply applying a wrap
around condition so that values off the end of a matrix column, for example, are inserted at
its beginning (and vice versa). An example of window shifting is described in Figure 3.

Figure 3. (a) The original data matrix M. (b) A selected window Mw from the original data matrix
M. (c) The matrix Msw, obtained by shifting the columns of Mw to maximize their correlation.

The resulting shifted window (Msw) resembles the matrix from Figure 1, and can be
described by the equation:

Msw = χ(Mw, s) (4)

where χ is the “shift” operator, Mw is the window subset from M and s is the shift vector.
The “shift” operator takes a matrix and a shift vector as its arguments and shifts the
columns of the matrix based on the values prescribed by the shift vector. For example,
if the value of s for column j is n, then we would replace an element Mi,j with the element
Mi+n,j. The matrix decomposition used in local SVD and SOSVD can also be described
with the Equation (5):

Mw ≈∑
k

χ(ukvkT
,−sk) (5)

where sk is the shift vector corresponding to the kth pair of left and right singular vectors uk

and vk. By using Equation (5) and plugging in M for Mw, the matrix M from the previous
example can be presented with a single outer product coupled with a shift vector as shown
in Figure 4. A simple quantitative example that shows the effectiveness of column-shifting
with a wave similar to the one from Figure 4 can be found in the Appendix A.
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Figure 4. (a) A matrix showing a wave arriving to the receivers at different times. (b) The matrix
being expressed as a pair of singular vectors and a shift vector. (c) The singular vectors and the shift
vector being used to reconstruct a matrix that matches the original.

Unfortunately, both local SVD and SOSVD seem to fail to accurately denoise seismic
data which contains interfering waves with different dips. In such scenarios, numerical
artifacts appear around the area of intersection. We solve this problem by developing
shifted-matrix decomposition (SMD) which uses a very different process for determining
the shift vector. The following subsection will give a detailed description of the processes
SMD uses to obtain the shift vectors and the pairs of singular vectors.

2.2. SMD Algorithm

The SMD algorithm can be described by the following steps:

1. Using a geometric mean filter, choose a specific point (row number and column
number) in the data matrix M at which a displacement (or pressure) from a coherent
wave was most likely recorded.

2. Using cross-correlation, find this wave in as many surrounding columns as possible.
For each column, the relative row positions of the said wave are recorded in the
shift vector.

3. Shift the columns of M using the shift vector s and record the row vector and the
column vector. Subtract the shifted outer product of row vector and column vector
from matrix M and shift the columns of M back to their original positions.

4. Repeat steps 1–3 until a certain performance criterion is satisfied.

A visual representation of the algorithm can also be found in Figure 5.
To provide a more in-depth understanding of the algorithm, in the following para-

graphs we will give a detailed description of each of the four steps.
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Figure 5. A flowchart describing the SMD algorithm.

2.2.1. Step 1

To identify a point in matrix M at which a displacement (or pressure) from a coherent
wave is likely recorded, we start by applying a geometric mean filter to the data matrix M,
to obtain the matrix E (Equation (6)):

Ei,j = |
nE

∏
q=−nE

M(i+δi,j(q)),(j+q)|
1

2n+1 . (6)

For a position (i, j), the parameter nE indicates that nE columns left of the position
(i, j) and nE columns right of the position (i, j) will be used when calculating Ei,j. If a
position (i, j) is close to the first or the final column, fewer elements are used to calculate
the geometric mean Ei,j as to avoid stepping outside the matrix boundaries. The row
positions of elements used in the geometric mean are also constrained in order to always
remain within the matrix boundaries.

What makes this filter unique is the choice of elements which are used when calcu-
lating the geometric mean. From each of the 2nE surrounding columns, only one element
is used in the geometric mean. The variable δ in Equation (6) indicates which element is
used in the geometric mean from each column. For example, when calculating the value
of the the geometric mean in position (i, j), from column j + q we take the element at row
position i + δi,j(q) to be used in the geometric mean. The process for determining the said
set of elements is described with Figure 6.
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Consider calculating the geometric mean in order to determine the value of Ei,j. Before
calculating the geometric mean, we must determine the set of elements used in the mean
(determine the values of δi,j). We start from the jth column, from which we always use the
element Mi,j (δi,j(0) = 0). Then, we proceed to find which elements to use from adjacent
columns (Figure 6a). Assuming Mi,j is positive, for column j + 1, we pick the element
between positions (i − m, j + 1) and (i + m, j + 1) which has the highest value. If the
element Mi,j were negative, we would pick the lowest value. The parameter m represents
the maximum dip of the wave rounded up to the nearest integer. The same process is
used to determine which element to use from column j− 1. For any column j + ns where
1 < ns ≤ nE, for the geometric mean, we pick the element between positions (is − 1, j + ns)
and (is + 1, j + ns) with the highest value (Figure 6b,c). The row number is is determined
by following a linear trend based on the row position i in column j and the picked row
position i + δi,j(ns − 1) in the column j + ns − 1. The same process is used to determine
which element to use from columns below j− 1.

The geometric mean filter is designed to imitate the process humans use for recogniz-
ing coherent waves in the data. When differentiating signal from noise, the distribution of
displacement (or pressure) along a long range of receivers plays an important role. A weak
wave might have an amplitude that is even smaller than that of noise in few noisy areas.
However, if the displacement (or pressure) from the wave is present in a long range of
receivers, and its arrival time follows a hyperbolic trend, a data reviewer would certainly
notice the wave. The goal of the geometric mean filter is to assign higher values to such
a weak wave than to a noisy area with high amplitudes. By testing the geometric mean
filter on a large number of examples, we found few cases in which the weak wave was
not assigned higher values than some areas of the noise. However, even in such cases the
slight increase in filter output due to the weak wave, followed a hyperbolic trend in time
on a large range of receivers, while the higher increases due to randomness of noise did
not. By applying the geometric mean filter again, to the results of the first application of
the filter, we can bring out all noticeable waves, no matter how weak, to have higher values
than any area containing only noise. As we have achieved the desired results with the
second application of the filter, a third application is unnecessary and would only increase
computation time. Therefore, once all the elements of the matrix E have been calculated,
the filter is used again, but this time on the matrix E to obtain the matrix F. When geometric
mean filter is used to obtain F, the parameter which controls the number of column used in
each geometric mean, nF, is different than nE which is used with the filter to obtain E. The
optimal values of the parameters nE and nF are determined in a machine learning stage of
the algorithm.

An example of the original data matrix M, and of the filter’s result F is given in the
Figure 7.

Matrix F is designed to produce large values at points at which a displacement (or
pressure) from a coherent wave was recorded. We select the element in F with the highest
value as the most likely element in the matrix M that describes a coherent wave. The row
and column of the selected point designates the position of the coherent wave and are
termed respectively the waveform row and waveform column, or wr and wc in equations
and Figure 7.
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Figure 6. The process of determining the set of elements (δi,j) for calculating the geometric mean at
the position (i, j). The curly braces indicate the set of elements from which the next element will be
added to the geometric mean. (a) The first element, Mi,j is automatically added to the set δi,j and the
algorithm searches for the following elements in columns adjacent to column j. (b) The two elements
from the adjacent columns are added and the search is now on columns j− 2 and j + 2. (c) Two
more elements are added to δi,j, from columns j− 2 and j + 2, and the search continues until δi,j

is complete.
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Figure 7. (a) The original data matrix M. (b) The filter’s result F with the indicated waveform row
and waveform column.

2.2.2. Step 2

In the first step we determine the position (wr and wc) of a specific point, or element,
that describes a part of a coherent wave. Thus, we know the position of said wave in only
one of the columns, namely the waveform column (wc). In the second step, we find the row
position of its waveform in the remaining columns of M, and in doing so we build the shift
vector. In this context, the shift vector records the row position of the waveform in each of
the columns, relative to the position of the waveform row (wr). Therefore, the waveform
position in any column j is equal to the sum of the waveform row wr and the jth element
of the shift vector s. The location of the waveform in the remaining columns is found using
a cross-correlation procedure.

We select a sequence (ψ) from the waveform column that contains all the elements
between rows wr − w and wr + w (Figure 8a,b). The parameter w represents the window
size when determining the sequence (ψ), and its value is determined in the machine
learning stage. The sequence of elements ψ is supposed to represent the waveform, or the
greater part of it, and we refer to it as the waveform sequence. The position of the waveform
in other columns is then determined by finding in each column a sequence of elements that
has the highest correlation with the waveform sequence (Figure 8c).

We start from the columns adjacent to the waveform column wc. The waveform
position in columns adjacent to wc must be between wr −m and wr + m, where m is the
maximum dip rounded up to the nearest integer. To reduce computation time, and to make
sure to follow the same wave throughout all the columns, in adjacent columns we search
for the ψ sequence from row wr −m− w to row wr + m + w. Initially, the range of rows in
which we search for the ψ sequence is entirely dependent on the waveform position in the
closest column. For any column position j > wc, we search for the ψ sequence from row
wr + sj−1 −m− w to row wr + sj−1 + m + w.

Once we have determined the waveform position in columns ranging from position
wc − 2l to position wc + 2l, we narrow the search window for the following columns. The
value of the parameter l is determined in the machine learning stage. At this point, for a
column j > wc + 2l we search for the waveform sequence from row ie − 1−w to ie + 1 + w.

The row position ie in column j is determined by following the parabolic trend of
waveform positions in columns j− 1, j− 1− l, and j− 1− 2l. Fitting parabolas to shift
vectors will also be used in the Discussion section, for estimating the velocities of the
recorded waves. While arrival times are usually modeled with a hyperbola, we use a
parabola because it requires fewer points on the shift vector to find its coefficients. Since
most parts of the hyperbola can locally be fairly accurately described with a parabola,
our parabolic estimates are sufficiently accurate. Narrowing the search window allows us
to estimate the waveform position in each column more quickly and to make estimating
waveform position more resilient to perturbations from noise and other waves. The optimal
values for parameters w and l are determined in the machine learning stage. Moreover,
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if the maximum correlation with the waveform sequence in a certain column is below 0 the
step terminates, as at that point we can be certain that the waveform is no longer present.

Figure 8. (a) Zoomed in area around position (wr, wc) from matrix M. (b) The selected waveform
sequence ψ. (c) The location of ψ in the surrounding columns.

2.2.3. Step 3

Once the shift vector and all the waveform positions are determined, the shift vector
and shift operator are used to shift the columns of the data matrix M so that the wave
appears in the same set of rows in each column. At that point, the waveform is similar
to the one shown in Figure 1, and it can be very accurately described as an outer product
between two singular vectors. The number of rows storing the waveform pattern is much
smaller than the total number of rows in M. Therefore, most of the elements in the column
vector are not describing the waveform, hence are not relevant, and can be ignored. The
length of the column vector need not be as long as columns in M, so it is reduced such that
its first element specifies the number of zeros before the waveform and the last element
specifies the number of zeros after the waveform. For example, the waveform row (wr)
would then be equal to the sum of the first element of the column vector (u1) and half
of the length of the recorded waveform (lw). The optimal length of the waveform that
is recorded in the column vector (lw) (i.e., the number of elements in the column vector
excluding the first and the last element), is determined in the machine learning stage. The
row vectors and shift vectors are reduced in a similar manner to the column vector since
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the waveform is often contained in only a subset of columns of M, i.e., the wave packet
may not be recorded at a subset of receiver locations. The effect of these changes is to
decrease the number of elements required to represent M, thus decreasing the memory
requirement of the SMD algorithm.

Once the two singular vectors (the column vector u and the row vector v) are extracted,
their outer product is subtracted from the matrix M. The columns of M are also shifted
back to their original locations. The new matrix Mnew can be described with the equation:

Mnew = M− χ(uvT ,−s). (7)

As a result, the majority of the located wave disappears which allows the algorithm to
focus on a potential second wave present in M. At the end of this step of the algorithm,
a wave has been subtracted from matrix M and added to the compressed data as a pair of
singular vectors and a corresponding shift vector.

2.2.4. Step 4

The three steps described above are repeated until a certain performance criterion is
met. Herein we define that criterion in terms of memory. Once the memory usage of the
compressed data reaches 20% of the original data (80% compression), the SMD algorithm
terminates. Specifically, once the number of elements used to describe all the shift vectors
and singular vectors is equal to 20% of the number of elements in the matrix describing the
raw seismic data, the performance criterion is met and the SMD algorithm terminates.

2.3. Machine Learning
2.3.1. Training Data and Scoring the Model

In the algorithm description we have introduced five parameters that influence the
results of SMD (shifted-matrix decomposition). The five parameters are nE and nF from
Step 1, w and l from Step 2, and lw from Step 3. However, we do not have an intuitive
understanding of how the results of SMD are affected by the changes to the parameters,
and we have no analytical solutions for optimal values for the parameters. For that reason,
we use supervised machine learning to find a set of parameters that provide consistently
good SMD results. Once the parameters are optimized in the training stage, SMD can be
applied to new seismic data without the need to run the training stage again. Moreover,
the parameter m, which also affects the results of SMD, is predetermined and therefore
cannot be optimized.

The first step is to define what is meant by a good SMD output. We desire the matrix
reconstructed from SMD to closely resemble the original seismogram matrix M. Specifically,
with a predefined compression rate, we want to capture a big portion of the original data,
and we want as little noise as possible to be recorded in the SMD results. We refer to the
matrix reconstructed from decomposed data as Mr. When we measured the resemblance
between M and Mr as an L1 or L2 norm of the error M−Mr, we obtained the smallest
error norms when the SMD captured a lot of the noise with a few pairs of singular vectors
and shift vectors. For this reason, rather than minimizing a norm of the error, we decided
to maximize the dot product of matrices M and Mr:

M ·Mr = ∑
i,j

Mi,j Mr
i,j. (8)

The dot product was more sensitive to SMD results representing a weak coherent wave
or a small remaining part of a large wave than it was to SMD results representing primarily
noise. We believe this is because the dot product of the two matrices is proportional to their
correlation. Recording a large area of noise with a pair of singular vectors and a shift vector
could decrease the error M−Mr by a fair amount. However, because of the randomness
of noise, the reconstructed data will still have weak correlation with the original data in the
noisy area. Recording any area with coherent waves with a pair of singular vectors and a
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shift vector usually provides high correlation between the original and the reconstructed
data in said area.

Thus, we search for a set of parameters which maximize the dot product M ·Mr.
For training data, we use recordings of reflected wave arrivals from 5 different shot-
gathers from marine seismic gathers. We use seismic field data obtained from marine
seismic gathers because the data contain a large number of coherent waves with lots of
interference, and noise with high coherence which can be difficult to differentiate from
signal. To reduce the time spent in the training stage, from each shot-gather we only use
2 s recordings containing reflected waves and the preceding noise recorded by the first
200 receivers. More details on the field data will be provided in the following section. The
five shot-gathers are labeled as M1 −M5 and data reconstructed from decomposition of
the five seismograms as Mr,1 −Mr,5. Thus, the overall quality of SMD with a given set of
parameters would be quantified as the SMD score (ζ):

ζ =
5

∑
k=1

Mk ·Mr,k. (9)

The SMD score is only used in training stage to find an optimal set of parameters,
and it will not be present in the following sections.

2.3.2. Derivative Free Optimization

There is no analytical formula directly relating the SMD score (Equation (9)) to the
five input parameters. Therefore, we cannot use a gradient analysis to find optimal values
for these parameters. Instead we use a derivative-free numerical optimization method.
Specifically, we will use a pattern search. The five parameters to be optimized can only
be natural numbers. Thus, the five parameters can be described by an element in N5.
In this optimization, we take a subset Ω of N5, to be the set of all the reasonable values
of the five parameters. Specifically, we seek an element in Ω for which SMD score has
the highest value. This is done by performing a pattern search which takes the current
position in Ω and checks adjacent points to see if any of them yield a higher SMD score. An
adjacent position is defined as a position that can be reached by changing only one of the
five parameters by the minimum amount. If the adjacent element with the highest SMD
score has a higher score than that of the current position, the optimizing position is moved
to the adjacent element. This is done until a local maximum for the SMD score is found.
To increase the likelihood of finding the global maximum, the pattern search is repeated
multiple times with a random starting location.

2.3.3. Application

Once the training stage is finished, SMD can be applied to a new seismic data set even
if it is not from a marine gather. Without going through the training stage again, SMD
was successfully applied to new marine gathers, synthetic data from [17], and to field data
collected by linearly distributed geophones. However, the discussions in the following
sections are focused on data from marine seismic gathers, rather than data gathered by
geophones. Because marine seismic gathers were obtained from a much larger number of
receivers and contain greater volumes of data, they provide a more realistic example of
applications of SMD.

Even when skipping the training stage, the parameters still need to be adjusted before
SMD is applied to new seismic data, based on the dominant frequency and the maximum
slope of the waves in the new dataset. Specifically, parameters w from Step 2 and lw from
Step 3 need to scale proportionally to the period of the dominant frequency multiplied by
the sampling rate. Moreover, parameters nE and nF from Step 1 and l from Step 2 should
scale proportionally to the period of the dominant frequency multiplied by the sampling
rate and divided by the maximum slope of arriving waves. Therefore, when applying SMD
to a seismic data set, one should also include information about the dominant frequency
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in the data set, the sampling rate of the receivers, and the maximum slope of the arriving
waves. Knowing these values allows the user to apply SMD to new seismic data sets
without going through the training stage. The flowchart in Figure 9 provides a visual
description of how SMD is applied to a set of files containing seismic data.

Figure 9. Flowchart describing the process of applying SMD to seismic data. The fourth step from
above is described by the flowchart presented in Figure 5.

3. Results

Once the SMD parameters have been optimized in the machine learning stage, its
performance is tested on three datasets. The first one is a synthetic dataset similar to one
from [17]. Structure-oriented SVD [17] was tested on several datasets and while it was
successful at reducing noise in all examples, it produced numerical artifacts in one of
them. In this work we reproduce that challenging dataset in order to demonstrate the
improvements achieved with SMD. The other synthetic data test cases from [17] contain
fewer coherent waves and don’t show interference between waves of different slopes and
are not as difficult for reliable compression and analysis. For that reason, the second and
third data sets on which SMD is tested are from field data obtained during marine seismic
gathers. The second dataset has many, interfering, strong arrivals which can together create
a complicated signal. The third dataset has fewer arrivals, but the coherent waves are much
weaker and difficult to differentiate from noise.

3.1. Synthetic Data

Figure 10 shows application of local SVD and SOSVD on the synthetic dataset
from [17], while Figure 11 shows the application of SMD to a very similar data set. To create
the synthetic data in Figure 11 we recreated the signal observed in Figure 10 and added
random noise to it.
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Figure 10. (a) Synthetic data showing several wave arrivals without noise. (b) The noisy data, created
by adding noise to the synthetic data. (c) The noisy data filtered using local SVD. (d) The noisy data
filtered with SOSVD. The blue rectangles highlight areas of interest in which local SVD and SOSVD
produce numerical artifacts. This figure was modified from [17].

In Figure 10 we see that both local SVD and SOSVD are able to remove most of the
noise. However, both local SVD and SOSVD struggle to properly reconstruct the signal in
the area highlighted by the blue rectangle in Figure 10c,b. The highlighted area contains
two waves of different slopes intersecting with each other.

Figure 11 shows results of applying SMD to the synthetic data set twice, with 95%
compression (Figure 11c) and 80% compression (Figure 11d). In both SMD applications
the coherent waves were reconstructed perfectly. We can see that there are no numerical
artifacts in the area highlighted by the blue rectangle in Figure 11c,b, which contains
intersecting waves with different slopes.

While we can see significant noise reduction, we could not find specific information
in [17] describing the amount of noise present in synthetic data in Figure 10, However,
we can estimate the signal-to-noise ratio in the synthetic data on which SMD is tested.
By measuring the root mean square value from all receivers in time increment range
from 300 to 320, where only noise is present, we can estimate the amplitude of the noise.
To estimate the amplitude of the signal, we measure the root mean square value from all
receivers in time increment range from 340 to 360, from the data presented in Figure 11a,
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which contains only pure signal. The signal-to-noise (ρ) ratio is therefore calculated with
the Equation (10):

ρ =

√
∑i=360

i=340 ∑j Mp
i,j

2√
∑i=320

i=300 ∑j Mn
i,j

2
(10)

where Mp represents the data containing only pure signal presented in Figure 11a, and Mn

represents the data from Figure 11b,c, or d, which contains some amount of noise.

Figure 11. (a) Synthetic data showing several wave arrivals without noise. (b) The noisy data, created
by adding noise to the synthetic data. (c) Data obtained by applying SMD to the noisy data with 95%
compression. (d) Data obtained by applying SMD to the noisy data with 80% compression. The blue
rectangles highlight areas of interest in which local SVD and SOSVD produce numerical artifacts.

The signal-to-noise ratios in the original data, data reconstructed from SMD results
after 80% compression, and after 95% compression were 1.9, 4.7, and 12.3, respectively.
Notice that the signal-to-noise ratio is much larger when SMD is applied with 95% com-
pression than when it is applied with 80% compression. This is because there is only a
few coherent waves present in the data. These coherent waves are represented with first
several singular vectors and shift vectors, while the following singular vectors and shift
vectors are describing noise. However, SMD results represent noise a lot less efficiently
than coherent waves, and the majority of the noise is still not recorded when SMD is
applied with 80% compression. In conclusion, the SMD application with 80% reduction in
memory requirements picked up some of the noise, while SMD application with 95% data
compression ignored the noise almost completely.



Appl. Sci. 2021, 11, 4874 17 of 27

3.2. Field Data

Finally, the SMD algorithm is tested on field data, collected between January and
March 2016 during the CREST expedition, MGL1601, aboard the R/V Marcus G. Langseth.
Pressure waves are generated by a tuned array of 36 air guns, towed at a depth of 6 m. The
resulting acoustic waves are recorded using a 12,587.5 m hydrophone streamer, towed at
the depth of 8 to 12 m, and carrying 1008 receivers. The receivers are spaced by 12.5 m,
each of them recording pressure once every 4 ms. The maximum offset between two
adjacent columns is a little greater than two rows, so we round it up to three rows. Further
information regarding data acquisition can be found in [21]. Seismic data are also available
at the NSF-sponsored Academic Seismic Portal hosted by the University of Texas Institute
for Geophysics and can be accessed at https://www.marine-geo.org/tools/search/Files.
php?data_set_uid=23597 (retrieved on 31 March 2021).

Unfortunately, when being applied to real seismic data such as in Figures 12 and 13
SMD with 95% compression cannot reconstruct the arriving waves properly. Due to
multiple reflections and dispersion, the number of coherent waves is much larger in marine
seismic gathers than in synthetic data. Furthermore, the noise has high coherence such
that it can closely resemble wave arrivals. Using SMD with 80% compression ensures
that the arriving waves will be properly reconstructed while also ensuring the noise is
drastically reduced.

Figure 12. (a) The original data from ocean seismic gathers with strong reflections. (b) The data
reconstructed after applying 80% compression with SMD to the original data. Areas highlighted in
red are enlarged 3 times along x-axis and 6 times along y-axis.

https://www.marine-geo.org/tools/search/Files.php?data_set_uid=23597
https://www.marine-geo.org/tools/search/Files.php?data_set_uid=23597
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Figure 13. (a) The original data from ocean seismic gathers with weak reflections. (b) The data
reconstructed after applying 80% compression with SMD to the original data. Areas highlighted in
red are enlarged (2 times along the x- and y-axes). The reflected waves are circled with purple lines,
direct wave with green lines, and the preceding noise with black lines.

The first data set (Figure 12) contains strong reflections arriving far after the direct
wave which can be seen at early times on the few receivers close to the source. In this test,
SMD was able to identify prominent waveform-related features while almost completely
ignoring noise-dominated sections of data. The Figure 12 highlights in red an enlarged
portion of the data (3 times along x-axis and 6 times along y-axis) in which we can see the
first arriving reflections. In the original data (Figure 12a), at the lower half of the enlarged
window we can also see the preceding noise. However, once the data is processed with
SMD (Figure 12b) the preceding noise is no longer present. A principal drawback of SMD
is that in some scenarios it will also ignore weaker incoming waves, and fail to differentiate
them from noise.

The second data set (Figure 13) is from a different shot-gather in which we can observe
weak reflections arriving closely after the much stronger direct wave. In Figure 13 the
reflections are circled with purple lines, direct wave with green lines, and the preceding
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noise with black lines. Red lines are used to highlight and enlarge (2 times along the x-
and y-axes) an example of noise interfering with the reflected waves. The reflections are
hard to differentiate from the more noticeable direct waves and because of their small
amplitude, they are noticeably distorted by noise. In this test, SMD identified and properly
reconstructed both direct waves and reflected waves, while reducing noise in all parts of
the data. The preceding noise (circled in black) is noticeably weaker in the data recon-
structed from SMD results (Figure 13b) than in the original data (Figure 13a). Furthermore,
the enlarged window (circled in red) in the original data (Figure 13a) shows reflected waves
distorted by noise. However, in the data reconstructed from SMD results (Figure 13b),
the enlarged window (circled in red) shows a more clear, denoised version of the reflected
waves. Because SMD reduces the noise everywhere in the data, the weak reflected waves
can be seen more clearly in the data reconstructed from SMD results (Figure 13b).

The examples in Figures 12 and 13 show subsets of the entire data files which are
too big to be presented in a single figure. However, the large data size provides a good
opportunity for testing the efficiency of SMD. A single data file, which contains 12 s of
recorded data, has 1008 traces, each trace containing 3000 pressure samples. Processing this
amount of data on a laptop with an i5-6200U CPU and 8 GB of RAM, without parallelization,
takes 4.2 s on average. Therefore, SMD is sufficiently fast when processing marine seismic
gathers in real time. However, distributed acoustic sensing produces produces greater
volumes of data than a long line of receivers during marine gathers.

We propose two solutions as we prepare SMD to future application on seismic data
obtained by DAS. First, the current SMD algorithm is optimized to provide a best repre-
sentation of the coherent waves, for a predefined memory requirement. To make SMD
more applicable to new developments in the data acquisition (DAS), we could run a new
training stage that considers computation time as well as the quality of the results. This
could create a new version of SMD that is more applicable to data obtained by DAS. Second
is the introduction of signal detection which we will discuss in the following section. The
large data file that requires 4.2 s of computation time is heavily populated with signal. This
is not the case during microseismic monitoring during which most of the files contain only
noise. Running an initial test to check for the presence of coherent waves, prior to fully
processing the data with SMD, may significantly reduce the time spent on processing data
during seismic monitoring.

4. Discussion

In addition to seismic data compression and noise reduction, SMD also provides a
new method of seismic data analysis. Rather than a list of displacements distributed in
space and time to describe incoming waves, we have pairs of singular vectors paired with
shift vectors. In an ideal scenario, for each arriving wave the column vector represents the
waveform, the row vector represents the amplitudes at different receiver locations and the
shift vector represents relative arrival times. Even though the ideal case is rarely achieved,
we believe that the results of SMD provide an excellent advance in the realm of seismic
analysis especially with its application of machine learning. With SMD, identifying features
that can be used for building models is facilitated when noise-reduced data is represented
in the SMD-compressed format.

The application of machine learning to data compression was explored in [24], which
applied SVD to synthetic data and developed a model for estimating source location and ori-
entation. However, SMD may provide greater opportunities for machine learning application.

It is instructive to provide an example of how the SMD algorithm can help estimate
physical properties such as elastic wave velocities. To this end, herein we predict the
average acoustic velocity (α) in our model (seawater) by analyzing the results of the SMD
algorithm. Specifically, we use curvature of the shift vectors, and the zero offset time to
estimate the average velocity of the reflected waves. Since we have a controlled source,
a wave’s zero offset time is simply it’s row position in the first column of the data matrix
multiplied by the time difference between consecutive recordings (td). Since the row
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position of a wave can be determined from the shift vector and the first element of the
column vector, our wave velocity estimation is obtained solely from the data stored in
SMD results.

To derive the formula for wave velocity we must make several assumptions about our
surroundings. First, we assume that the reflecting surface (the ocean floor) is horizontal,
and that the depth of the ocean floor (z f ) is significantly larger than the horizontal distance
from source to the receiver (x � z f ). This gives us the expression for the total distance
travel by the reflected waves (d):

d ≈ 2z f +
x2

4z f
. (11)

Since we are considering the average acoustic velocity (α) in our model, we can rewrite
the expression (11) in terms of the reflected wave travel-time (T):

T ≈
2z f

α
+

x2

4z f α
. (12)

The zero offset time T0 is defined as travel-time T at zero horizontal distance (x = 0):

T0 ≈
2z f

α
. (13)

Taking the second derivative of the expression (12) with respect to horizontal position
x gives:

∂2T
∂x2 ≈

1
2z f α

. (14)

Using expression (13) to substitute (2z f ) with (T0α) in expression (14) gives:

α ≈
(∂2T

∂x2 T0

)−1
2

(15)

Expression (15) can be used to calculate the acoustic velocity if we can express both
∂2T
∂x2 and T0 in terms of SMD results.

In Section 2.2.2 it is explained that the row position (pj) of a wave in any column j is
equal to the sum of the jth element of the shift vector (s) and the waveform row (wr):

pj = sj + wr, (16)

In Section 2.2.3 it is explained that the waveform row (wr) can be obtained from
the first element of the column vector (u) and the predetermined length of the recorded
waveform (lw):

wr = u1 +
lw − 1

2
. (17)

Using expressions (16) and (17), the zero offset time (T0) can be described with the
row position of the wave in the first column (p1) multiplied by the time difference between
consecutive recordings (td):

T0 ≈ td(s1 + u1 +
lw − 1

2
). (18)

The expression (18) will be used to obtain the zero offset time from SMD results.
If we assume that the relative arrival times were accurately recorded by the shift

vector, we can make the following substitution:

∂2T
∂x2 =

s′′td

x2
d

(19)
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where xd is the distance between adjacent receivers. In the expression (19), s′′ is the second
derivative of an element in the shift vector s with respect to the position (j) of the element
in the shift vector.

The value of s′′ is determined by fitting a parabola to first nr elements of the shift
vector. The parameter nr need not have an exact value. While we want to use enough
elements from the shift vector to confidently fit a parabola, we also want to only use data
from the receivers close to the source in order to follow the (x � z f ) condition. Therefore,
the parameter nr is set to 50. Once we fit the parabola, the value of s′′ is estimated to be the
quadratic coefficient c2, multiplied by 2:

j ∈ [1, nr] : sj ≈ c0 + c1 j + c2 j2,

s′′ = 2c2.
(20)

By plugging the expressions (18)–(20) into expression (15) we estimate the acoustic
velocity. However, the values of a shift vector can be affected by interfering waves, or noise.
To minimize the error from those sources, we estimate the velocity based on the first ns
pairs of shift vectors and column vectors. Similar to nr, the ns parameter does not need
to be set to any specific value. In this example, the parameter ns is set to 5. The average
acoustic velocity α is estimated as the weighted average of the results from the first ns
extracted pairs of a of shift vector and a column vector. Each term is weighted by the
quality of the parabolic fit, which is equal to the inverse of the error norm e:

sk → {ck
0, ck

1, ck
2}

ek =
nr

∑
j=1

(
sk

j − (ck
0 + ck

1 j + ck
2 j2)

)2,

esum =
ns

∑
k=1

1
ek ,

α =
ns

∑
k=1

(
(2ck

2)(s1 + uk
1 +

lw
2
)

t2
d

x2
d

)−1
2
( 1

ekesum

)
.

(21)

The formula for α, defined in expression (21), was applied to 20 marine field data
files, each recording a seismic response from a unique and controlled seismic source. For
each file, we used the formula from expression (21) to estimate the velocity. The average
estimated velocity was 1601 m

s and the standard deviation among the results was 236 m
s .

Considering the ocean depth being about 3 km, the correct average acoustic velocity was
likely about 1500 m

s . If we assume the correct average wave velocity experienced by the
reflected waves was 1500 m

s , then the average and the median error from the 20 velocity
estimates were 12.1% and 8.3%, respectively.

The experiment in this subsection proves that there is a strong correlation between the
shift vector and relative arrival times of the wave at different receivers. We were able to use
that correlation to estimate the velocity of the waves without relying on any information
about the medium through which the waves were traveling. We believe that there is also a
strong correlation between the column vector and the waveform, as well as between the
row vector and the relative amplitudes of the waveform at different receivers. However,
proving these correlations will require further testing.

In this example, SMD was applied to seismic data from a controlled source. In such
cases we can always be certain that there are coherent waves present. However, we are
planning a wide range of applications for SMD. During microseismic monitoring, often
recorded by DAS, we might want to analyze coherent waves that are not coming from
controlled sources. Therefore, when applying SMD to data from microseismic monitoring
we do not know in advance whether the data contains signals of interest. For that reason,
we developed a method for recognising coherent signal in noisy data, that also relies solely
on the results from SMD.
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We created a method that can differentiate between noisy data and data containing
signal, by measuring the curvature in the first several shift vectors. Applying SMD to
noisy data without coherent waves returns a set of completely unrelated shift vectors.
On the other hand, applying SMD to data containing coherent waves, usually coming
from the same source, returns a set of shift vectors most of which have similar curvatures.
Therefore, the method differentiates between noisy data and data containing coherent
waves, by calculating the standard deviation among the curvatures from the first 10
extracted shift vectors. To test this method, we applied SMD separately to two subsets of
data from each of the 20 previously mentioned data files. The first subset contains only the
recordings of noise, and the second subset contains recordings of both the coherent waves
and the preceding noise (Figure 14).

Figure 14. Two subsets from a marine field data file. The first subset contains only noise, and the
second subset contains both a part of the coherent waves and some of the preceding noise.

For each subset, we use expression (20) to estimate the curvatures of the first 10
extracted shift vectors and then we compute the standard deviation of the 10 curvature
values. The results are presented in Figure 15, in which the standard deviation for each
subset without coherent waves is presented in blue, and the standard deviation for each
subset containing coherent waves is presented in red. Due to shift vector curvature having
random values when SMD results represent noise, the standard deviation among shift
vector curvatures should be greater for the data subsets which contain only noise. As can
be seen in Figure 15, the standard deviation among shift vectors is consistently lower for
subsets containing coherent waves, which are presented in red. This confirms that we can
differentiate between data containing only noise and data containing signal, by using our
described method.

It is important to emphasize that this signal detection method does not contain any
information regarding the amplitude of the waves. It is entirely dependent on the curvature
of the recorded shift vectors, which is a unique property. This means that this method,
while accurate, can also be used to complement other signal detection methods, all of which
rely on other properties in seismic data (such as STA/LTA for example, which relies on the
amplitudes of the waves). Furthermore, this signal detection method only requires the first
10 shift vectors, which can be acquired very quickly compared to the to the processing time
of the SMD. Therefore, when applying SMD to data obtained during seismic monitoring,
we suggest first running a quick version of SMD that only extracts the first 10 shift vectors



Appl. Sci. 2021, 11, 4874 23 of 27

in order to run signal detection. If the presence of coherent waves is confirmed, SMD may
continue to fully process the data.

Figure 15. Standard deviation of shift vector curvature from each of the 20 data files. The results
from subsets containing only noise are presented in blue and the results from subsets containing
parts of coherent waves are presented in red.

The analysis of SMD results that was conducted in this subsection was not based on
machine learning but instead on our understanding of the correlations between compressed
data and attributes of the recorded waves. In the future, those strong correlations will
be used with machine learning to train algorithms to accurately infer various properties
of the source and the surrounding velocity model directly from compressed data. Addi-
tionally, application of data from marine surveys is difficult because of large amounts of
interference between arriving waves. Thus, the SMD method may be more effective in
different circumstances, such as in unconventional reservoirs monitored by distributed
acoustic sensing.

Thus far, we only considered application of SMD to two-dimensional seismic data,
obtained by a single line of receivers. However, receivers may often be distributed over
an area, in a large number of lines. In such case, SMD may still be applied individually,
to the data collected from each line. However, there may be a lot of redundancy between
SMD results from each of the lines of receivers. Similar redundancies can also occur by
applying SMD to multiple files from different times, obtained by a same set of receivers. In
future work, we will take advantage of the fact that SMD results may be similar for batches
of data collected from different receivers or during different times. Dictionary learning
could be applied to SMD results to further compress the data, although we can not yet
recommend a method for learning the dictionary. Future work will therefore likely include
further compression by applying dictionary learning to SMD results from multiple data
files or multiple receiver lines.

5. Conclusions

Shifted-matrix decomposition is a powerful tool that can simultaneously compress
and improve seismic data. This is done by converting the seismic data from a matrix into a
set of pairs of singular vectors coupled with shift vectors which require less memory to
store the seismic data. Furthermore, reconstructing the seismic data from compression
results, creates a denoised version of the original data. Shifted-matrix decomposition
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provides an improvement to some of the existing denoising techniques such as SOSVD by
avoiding numerical artifacts in areas with multiple intersecting waves of different slopes.
This allows us to apply SMD to complicated field data with a large number of arriving
waves and still achieve 80% compression.

When applied to synthetic data and ocean gathers it was able to boost coherent signal
and erase the majority of the noise. In synthetic data with signal-to-noise ratio of 1.9, it was
able to increase the ratio to 4.7 in the case of 80% compression and to 12.3 in the case of 95%
compression. However, the excellent result achieved with 95% compression in the synthetic
data is an artifact of the lack of coherent noise and the small number of coherent waves.
Due to noise coherence and more complicated overlap of coherent waves, we recommend
applying 80% compression to examples of field data in order to accurately represent the
signal of interest. In field data, SMD was able to reduce the noise in areas preceding the
signal as well as in areas containing coherent waves. As a results, weak waves that were
difficult to notice in the original data, can be seen more clearly in the data reconstructed
from SMD results. The only drawbacks are that in some scenarios SMD may fail to boost
weaker signals and it is not meant to be applied to seismic data obtained from a small
number of receivers.

There is a good correlation between the physical properties such as elastic wave veloc-
ity and the results of the SMD. As an example, the average wave velocity in the medium
through which the waves propagate (seawater) was roughly estimated by analyzing the
shift vector curvature. In the future, we will use machine learning to build models that infer
with high accuracy the properties of the source and the velocity model, directly from the
SMD results. Results of SMD can also be used for other analysis, such as signal detection.
By analyzing only the first several shift vectors, we can check for the presence of coherent
waves. Because it requires such a small amount of data, this technique can be executed
very quickly by taking only the initial results of SMD. We recommend using it during
microseismic monitoring before fully processing the data with SMD.
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Appendix A. The Quantative Example

Consider a small matrix Ms ∈ R8,8 representing a simple wave arrival recorded by
8 receivers.

Ms =



0 0 0 0 0 0 0 0
0 2 3 2 0 0 0 0
1 −2 −3 −2 1 0 0 0
−1 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0


In the matrix Ms, each receiver is represented by one of the columns, and the time

increases from top row to the bottom row. The source is closest to the third receiver, and the
perceived waveform is simply:

ws =


0
1
−1
0

.

Figure A1 loosely describes a toy model that can generate the matrix Ms.

Figure A1. A toy model corresponding to the data recorded in the matrix Ms.

By applying SMD to matrix Ms we extract a pair of the singular vectors (uSMD,vSMD),
and a shift vector (s). Keep in mind that when using SMD, the singular value λSMD is
stored in right singular vector vSMD by multiplying the vector with it:



Appl. Sci. 2021, 11, 4874 26 of 27

uSMD =



0
1/
√

2
−1/
√

2
0
0
0
0
0


, vSMD =



√
2

2
√

2
3
√

2
2
√

2√
2√
2√
2√
2


, s =



1
0
0
0
1
2
3
4


.

Using the singular vectors and the shift vector we can reconstruct a matrix MSMD to
be identical to Ms:

MSMD = χ(uSMDvSMDT
, s)

MSMD =



0 0 0 0 0 0 0 0
0 2 3 2 0 0 0 0
1 −2 −3 −2 1 0 0 0
−1 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0


We can also apply regular SVD to the matrix Ms to extract a singular value λ and

singular vectors u and v:

λ ≈ 5.92, u ≈



0
0.68
−0.73
0.05

0
0
0
0


, v ≈



−0.13
0.48
0.72
0.48
−0.13
0.01

0
0


,

We can reconstruct a matrix MSVD from the extracted eigenpair with the follow-
ing equation:

MSVD = λ(uvT)

MSVD ≈



0 0 0 0 0 0 0 0
−0.53 1.93 2.90 1.93 −0.53 0.03 0 0
0.56 −2.06 −3.08 −2.06 0.56 −0.03 0 0
−0.04 0.13 0.19 0.13 −0.04 0 0 0

0 0 −0.01 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


There is a significant difference between Ms and MSVD. The data from matrix Ms

cannot be described by a single pair of singular vectors and a singular value obtained by
applying regular SVD. However, it can be described by a pair of singular vectors coupled
with a shift vector obtained by applying SMD.
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