
applied
sciences

Article

The Steelmaking Process Parameter Optimization with a
Surrogate Model Based on Convolutional Neural Networks and
the Firefly Algorithm

Yung-Chun Liu 1 , Ming-Huwi Horng 2,* , Yung-Yi Yang 3, Jian-Han Hsu 2, Yen-Ting Chen 3, Yu-Chen Hung 4,
Yung-Nien Sun 5 and Yu-Hsuan Tsai 5

����������
�������

Citation: Liu, Y.-C.; Horng, M.-H.;

Yang, Y.-Y.; Hsu, J.-H.; Chen, Y.-T.;

Hung, Y.-C.; Sun, Y.-N.; Tsai, Y.-H.

The Steelmaking Process Parameter

Optimization with a Surrogate Model

Based on Convolutional Neural

Networks and the Firefly Algorithm.

Appl. Sci. 2021, 11, 4857. https://

doi.org/10.3390/app11114857

Academic Editor: Antonella Petrillo

Received: 8 April 2021

Accepted: 14 May 2021

Published: 25 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biomedical Engineering, Da-Yeh University, No.168, University Road, Dacun,
Changhua 515, Taiwan; ycliu@mail.dyu.edu.tw

2 Department of Computer Science and Information Engineering, National Pingtung University,
51 Min Sheng E. Road, Pingtung 900, Taiwan; magichen21@gmail.com

3 Green Energy & System Integration Research & Development Department, China Steel Corporation, 1,
Chung Kang Rd., Hsiao Kang, Kaohsiung 806, Taiwan; 148007@mail.csc.com.tw (Y.-Y.Y.);
157834@mail.csc.com.tw (Y.-T.C.)

4 Department of Intelligent Robotics, National Pingtung University, 51 Min Sheng E. Road,
Pingtung 900, Taiwan; 2589877yen@gmail.com

5 Department of Computer Science and Information Engineering, National Cheng Kung University, No 1,
University-Road, Tainan 701, Taiwan; ynsun@mail.ncku.edu.tw (Y.-N.S.); awedxzs3@gmail.com (Y.-H.T.)

* Correspondence: horng@mail.nptu.edu.tw; Tel.: +886-8-7238700

Abstract: High-strength low-alloy steels (HSLAs) are widely used in the structural body components
of many domestic motor vehicles owing to their better mechanical properties and greater resistance.
The real production process of HSLA steelmaking can be regarded as a model that builds on the
relationship between process parameters and product quality attributes. A surrogate modeling
method is used, and the resulting production process model can be applied to predict the optimal
manufacturing process parameters. We used different methods in this paper, including linear
regression, random forests, support vector regression, multilayer perception, and a simplified VGG
model to build such a surrogate model. We then applied three bio-inspired search algorithms, namely
particle swarm optimization, the artificial bee colony algorithm, and the firefly algorithm, to search
for the optimal controllable manufacturing process parameters. Through experiments on 9000 test
samples used for building the surrogate model and 299 test samples for making the optimal process
parameter selection, we found that the combination of a simplified VGG model and the firefly
algorithm was the most successful at reaching a success rate of 100%—in other words, when the
product quality attributes of all test samples satisfy the mechanical requirements of the end products.

Keywords: high-strength low-alloy steel; manufacturing process optimization; surrogate model;
firefly algorithm; VGG model

1. Introduction

Under the pressure of the fierce competition between steel companies, quality im-
provements in high-strength low-alloy steel (HSLA) products are constantly being pursued.
Abnormal variations in upstream process parameters such as alloy composition might
cause deviations in mechanical properties and thus lead to unsatisfactory quality and a high
rejection rate. To reduce the rejection rate and to effectively improve the competitiveness of
China Steel Corporation (CSC) products, we developed a dynamic process control system
to predict and monitor the mechanical properties of products before they enter downstream
production lines. If the predicted mechanical properties deviate too much from the usual
level, the system can perform quality compensation by calculating and applying appro-
priate downstream process parameters and thereby meet the final quality requirements.

Appl. Sci. 2021, 11, 4857. https://doi.org/10.3390/app11114857 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0949-6917
https://orcid.org/0000-0001-6333-2457
https://www.mdpi.com/article/10.3390/app11114857?type=check_update&version=1
https://doi.org/10.3390/app11114857
https://doi.org/10.3390/app11114857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114857
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4857 2 of 15

This is done through a sequence of up- and downstream production lines, which include
the crude making, hot rolling, cold rolling, and cold-rolled coating lines. Each line should
meet quality-level requirements, or else the overall finished products will not achieve their
required qualities. In the crude making process, iron ore is first reduced to iron by mixing
it with coal/coke and limestone in a blast furnace (BF); then, the iron is converted into steel
using a basic oxygen furnace (BOF). The hot-rolling is a mill process in which the steel
is rolled at a temperature above its recrystallization temperature. When steel is heated
past its recrystallization point, it becomes more malleable and can be properly formed and
shaped. This also allows for the 2.1ability to produce larger quantities of steel. The steel is
then cooled at room temperature, which “normalizes” it, eliminating the worry for stresses
in the material arising when quenching or work-hardening. Cold-rolling steel allows for
the creation of precise shapes. Since the process is performed at room temperature, the
steel will not shrink as it cools, as it does in the hot-rolled process. The cold-rolled use
plastic coating to protect the steel surface.

Although the CSC is a high-quality manufacturer of HSLA, a small number of non-
conforming products cause a great loss of finance and reputation. The steeling process
parameter optimization is important to promote the quality of HSLA. Most manufacturing
processes [1,2] require parameterization to achieve their optimal cost, quality, and other
properties. The number of process parameters considered usually exceeds 10 or even
100, and current approaches to their optimization require many expensive and complex
experiments. Although some physically precise simulation models have been developed,
such as the finite element method [3] and the Taguchi method [4], these need many hours
or even days for computation. Another approach is the use of surrogate models, which can
effectively decrease the number of simulations needed when applied to the problems of
process parameter optimization.

The surrogate model is an easy-to-evaluate approach to construct high-fidelity prod-
uct models [5–9], which were created by using a decision tree, artificial neural network,
radial basis function, kernel smoothing, and stochastic processes [10]. Surrogate-based
optimization tries to search for the optimal process parameters based on an established sur-
rogate model, and it requires an appropriate mechanism to do so. Genetic algorithms [11]
and model-based self-optimizations [12] have been used to iteratively improve candidate
process parameters.

Machine learning methods have been widely used in materials design and engineer-
ing, such as the predictive maintenance of anodes [13], casting steel [14], and the prediction
of the steel’s properties [15]. In this paper, we use different methods to build surrogate
models for steelmaking process parameter optimization. These methods include linear
regression (LR), random forests (RF) [16], support vector regression (SVR) [17], artificial
neural networks (ANNs) [18–21], and convolutional neural networks (CNNs) [22]. In
addition, we use three different bio-inspired search algorithms—particle swarm optimiza-
tion (PSO) [23], the artificial bee colony (ABC) algorithm [24], and the firefly algorithm
(FA) [25]—to search for optimal process parameters.

We further developed a simplified 1D version of the original 2D Visual Geometry
Group (VGG) 16 model [26,27] to establish a surrogate model between the process parame-
ters and the product quality attributes, as shown in Figure 1. This 1D VGG model is called
the simplified VGG (SVGG) model, and it can be regarded as a process for controlling
HSLA product quality attributes through its parameter inputs.

Figure 1. Surrogate model.

To meet the product quality requirements of HSLA, we applied the PSO, ABC, and
firefly algorithm to search for the optimal adjustable process parameters and then com-

Appl. Sci. 2021, 11, 4857 3 of 15

pare their performance. In our experiments, 9000 samples (meeting the quality require-
ments) were used to train the five different methods for establishing the surrogate model,
and 299 samples (not meeting the quality requirements) were used to evaluate three bio-
inspired process optimization search algorithms. The FA ultimately produced the most
optimal selection of adjustable process parameters. Our experimental results further
showed that all the adjustable process parameters used in our test samples were suc-
cessful in determining whether the corresponding product attributes met the mechanical
requirements of the product.

The main contributions of this paper are as follows:

1. We addressed the interesting problem of steelmaking process parameter optimization
by proposing a simplified VGG model to build a surrogate model and then compared
it with four other machine-learning methods.

2. We applied three different algorithms—PSO, the ABC, and the FA—to search for
optimal process parameters and then evaluated their performance. Our experimental
results demonstrated that the FA can achieve high performance and outperforms the
other methods.

The remainder of this paper is organized as follows. Section 2 reviews the machine-
learning methods and bio-inspired algorithms. Section 3 describes our proposed method
called the simplified VGG model + Firefly algorithm to search for optimal process parame-
ters. Section 4 presents our experimental results and discussions. Finally, conclusions and
remarks are given in Section 5.

2. Related Works
2.1. Surrogate Model

A production process can be represented as a function π : X → Y , in which X denotes
the process parameters, and Y denotes the product attributes. This function maps process
parameter configurations x ∈ X to product attributes y ∈ Y., and the map can be regarded
as a surrogate model ϕ : X → Y based on all observations (Xi, Yi). The construction of
a surrogate model needs a fitness function to evaluate how well the model predictions
match the observations. In general, we need an optimizer to obtain the optimal linear or
nonlinear maps. In this study, we use linear regression, random forests, support vector
regression, neural networks, and convolutional neural networks to build surrogate models,
with process parameter optimization being dependent on the accuracy of these models.
These five methods are described in the following subsections.

2.2. Survey of Machine Learning Method
2.2.1. Linear Regression

Linear regression (LR) is a simple and attractive method for building a surrogate
model, as based on Equation (1):

Yj = α1,j f1 + α2,j f2 + α3,j f3 + . . . + α30,j f30 + β j (1)

where Yj and fi are the j-th product attribute and the i-th dimension of the process parame-
ters, respectively. Particularly, the gradient descent method is used to decide the regression
parameters αi,j and β j.

2.2.2. Random Forests

Random forests (RFs) is an ensemble learning method used for classification or regres-
sion that constructs a multitude of decision trees at training time and outputs the mode or
mean predictions of those individual trees. In general, RFs outperform traditional decision
tree methods because they can overcome the problem of overfitting. In the implementation
of an RF algorithm, new training sample sets are randomly selected by replacing the origi-
nal training set. Each training set is separated into two in-of-bag sets, including one-third
of the samples and one out-of-bag set from the remaining two-thirds of the samples. All

Appl. Sci. 2021, 11, 4857 4 of 15

samples in the out-of-bag set are collected into test samples, while samples from each of the
in-of-bag sets are dependently built by decision tree induction into their own decision tree.
This way, the regression results R(xi) of each test sample xi are calculated by Equation (2):

R(xi)=
1
M

M

∑
m=1

ym (2)

where M is the number of decision trees, and ym is the decision value of the m-th decision
tree of test sample xi.

2.2.3. Support Vector Regression

Support vector machines are intelligent statistical learning algorithms used for clas-
sification and regression. They solve regression problems through a nonlinear mapping
function µ(xi), which maps the original samples xi to a feature space of a higher dimension,
and then uses the linear regression method to compute the corresponding targets. Given
a set of n training data { (x1, y1), (x2, y2), (x3, y3),, (xn, yn)} ∈ Rn × R, where xi is the
input vector and yi is its target, the following decision function can be defined:

f (x) = ω·µ(xi) + b (3)

where · is the inner product, ω is the weight vector, and b is the bias parameter.
SVR applies the structured risk minimization principle to generate the above decision

function [see Equation (3)] by minimizing a regularized risk function as presented in
Equations (4) and (5):

Regularized risk =
C
n

n

∑
i=1

L(yi, f (xi)) +
1
2
||ω ||2 (4)

where:

L(yi, f (xi)) =

{
|yi − f (xi)|

0
,

i f |yi − f (xi)| ≥ ε
otherwise

(5)

In SVR, Vapnik’s ε-insensitive loss function is used to measure empirical risk, where ε
is the tube size, 1

2 ||ω ||2 is a regularization term used as a measure of flatness or complexity
of the function, and C is a regularized constant that describes the trade-off between the
empirical risk and the regularization term.

According to Wolfe duality and the saddle-point condition, the dual optimization
problem of the aforementioned primal one is described by the following term:

max
α, α∗

(−1
2

n

∑
i,j=1

(αi − α∗i)
(

αj − α∗j

)
), s.t.

n

∑
i,j=1

(αi − α∗i) = 0, αi, α∗i ∈ [0, C] (6)

The weight parameters are then described by w = ∑n
i=1
(
αi − α∗i

)
µ(xi), where αiandα∗i

are nonnegative Lagrange multipliers, which can be obtained to solve the convex quadratic
programming. Finally, based on Equation (7) and the radial basis function (RBF) kernel
trick, the decision function given by Equation (3) has the following specific form:

f (x) =
n

∑
i
(αi − α∗i)e

−|xi−xj |
2

2σ2 + b (7)

where,

b = yj −
n

∑
i=1

yiα
∗
i e
−|xi−xj |

2

2σ2 (8)

with σ representing the kernel parameters and j ∈ {j < C}. Note, there are three penalty
parameters: C, the RBF kernel parameter, and the width of the ε loss function.

Appl. Sci. 2021, 11, 4857 5 of 15

2.2.4. Multilayer Perception

Multilayer perception (MLP) is a powerful class of data-driven function approximation
algorithms that represent information through a hierarchy of features. They follow a simple
ANN model, beginning with the input layer and ending with the final output layer, with
intermediate layers known as hidden layers. By manipulating the number of hidden layers
and the size of each, one can learn functions of arbitrary complexity. The input and output
layer sizes are fixed, being determined by the dimensionality of the input feature and the
output target. Except for the input nodes, each node is a neuron that uses a nonlinear
activation function. MLP algorithms also utilize a supervised learning technique, i.e.,
backpropagation for training. We used an MLP algorithm with two hidden layers; each
one has 100 nodes, the dimension of the input layer is 30 (the dimension of our process
parameters) and involves three targets (the product attributes).

2.3. Bio-Inspired Search Algorithms

Over the last decade, modeling the behavior of social insects such as ants and bees
has been used as a way of solving search problems. There are many different bio-inspired
search algorithms, including particle swarm optimization, artificial bee colony, and the
firefly algorithm, which have been widely used in numerical optimization [28], motion
estimation [29], image thresholding [30,31], neural network parameter training [32], en-
hanced near field characteristic [33], simulation-driven spatial phase shifters [34], and
electromagnetic band-gap resonator antenna [35].

2.3.1. Particle Swarm Optimization

Particle swarm optimization (PSO) is a metaheuristic, stochastic, and population-
based evolutionary optimization algorithm, and its standard form was initially developed
by Kennedy Eberhart [36]. It searches for an optimal solution in its search space through
the modeling of a swarm, where each particle in the swarm survives with a velocity and
a position in the solution search space. The lower and upper bounds of each dimension
of a particle are denoted in the algorithm by lb and ub. It improves on the best solution
traversed so far by iteratively updating its velocity and position in the search space, as
described by Equations (9) and (10):

vi(t + 1) = ωvi(t)+c1r1(pi(t)− xi(t) + c2r2
(

pg(t)− xi(t)
)

(9)

xi(t + 1) = xi(t) + vi(t + 1) (10)

where ω indicates the inertia weight, c1 and c2 are the learning rates, r1 and r2 are random
numbers ranging from 0 to 1, and pi(t) and pg(t) represent the personal local best and the
global best, respectively.

2.3.2. Artificial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm, as proposed by Karaboga and Basturk [37],
has recently become available and is a promising technique for solving real-world opti-
mization problems. It models a colony of artificial bees, containing three different groups:
employed bees, onlookers, and scouts. The employed bees carry information about food
sources and share it in the dancing area of the hive. The onlookers wait in the dancing area
to receive this probability information from the employed bees, and they use it to make
decisions regarding the selection of a food source. The computation of this probability is
based on the amount of food located at each source. The other kind of bee—scouts carries
out random searches for new food sources. An employed bee becomes a scout when its
food source is abandoned and becomes an employed bee again as soon as it finds a new
food source. Therefore, each cycle of the ABC algorithm contains three steps. First, em-
ployed bees are sent to the known food sources, and the amounts of nectar are calculated.
After receiving that information, onlooker bees visit the food sources and provide updates.
When the nectar at a food source is depleted, a scout is sent out to find a new food source.

Appl. Sci. 2021, 11, 4857 6 of 15

Within the algorithm, the position of a food source xi represents a candidate solution
to the optimization problem, and the amount of nectar at this food source is denoted
as its fitness (fit). In general, the number of employed bees or onlookers is equal to the
number of food sources. Initially, the ABC algorithm randomly generates a distributed
initial population of K solutions, denoted by P = {x1,x2, . . . , xK}, where K denotes the
number of employed bees or onlookers, and each solution xi (for i = 1, 2, . . . , K) is a
D-dimensional vector. During each execution cycle C (where C = 1, 2, . . . , MCN, the
maximum cycle number), the population of solutions is subjected to the search processes of
the employed bees, onlookers, and scouts. An employed bee modifies the possible solution
as a function of the fitness value (amount of nectar) of the new solution (food source) by
using Equation (11):

vij = xij + ϕ
(

xij − xkj

)
(11)

where k ∈ {1, 2, . . . , K }, but k 6= I and j ∈ {1, 2, . . . , D} are randomly selected indexes, and
ϕ is a random number between −1 and 1.

If the fitness value of the new solution vi is greater than that of the previous solution
xi, then the employed bee simultaneously remembers the new solution and abandons the
old one; otherwise, it will retain the location of the old one in its memory.

When all employed bees have finished their search process, they bring back the
information they have on the positions and nectar amounts of all food sources to the
onlookers. Each of the onlookers then decides on a particular food source to further
call upon, according to a probability proportional to the amount of nectar at that food
source. This probability pi of selecting a food source zi is determined using the following
Equation (12):

pi =
f it(zi)

∑K
n=1 f it(zn)

(12)

In practice, each food source zi sequentially generates a random number between 0
and 1. If this random number is less than the probability pi, an onlooker is sent to the food
source and produces a new solution based on Equation (13):

vij = zij + ϕ
(

zij − zkj

)
(13)

where k ∈ {1, 2, . . . , K }, but k 6= i and j ∈ {1, 2, . . . , D} are randomly selected indexes, and
ϕ is a random number between −1 and 1.

If the fitness value of the new solution is greater than the old one, the onlooker memo-
rizes the new solution and shares this information with the other onlookers. Otherwise, the
new solution is discarded. This process is repeated until all onlookers have been distributed
to food sources. If the food source could be improved upon (as predetermined by a limiting
value), then it is abandoned, and the corresponding employed bee becomes a scout. This
scout then goes on to discover a new food source to replace theabandonedsolutionzj, as
described by Equation (14):

zij = zj
min + σ

(
zj

max − zj
min

)
(14)

where zj
min and zj

max are the lower and upper bounds of the j-th component of the solution,
and σ is a random number ranging from −1 to 1. If the new solution is better than the
abandonedsolutionzj, the scout becomes an employed bee, and the new solution is retained.

The search processes of the employed, onlooker, and scout bees are repeated until the
execution cycle equals MCN. Of all the methods described so far, the best solutions with
the largest fitness are outputted by this ABC algorithm.

2.3.3. Firefly Algorithm

The firefly algorithm (FA) was developed by Xin-She Yang at Cambridge University
in 2008 [38–41]. It has three idealized rules: first, all fireflies are unisex, so each firefly is

Appl. Sci. 2021, 11, 4857 7 of 15

attracted to all other fireflies, regardless of their sex. Second, attractiveness is proportional
to brightness—thus, for any two flashing fireflies, the least bright one will move toward
the brighter one. If there is no brighter one, then that particular firefly will move randomly.
To model firefly attractiveness, one should select any monotonically decreasing function of
the distance ri,j = d

(
xj, xi

)
from the chosen (j-th) firefly xj to the target (i-th) firefly xi. This

is described by Equations (15) and (16):

ri,j = ||xi − xj || (15)

β← β0e−γri,j (16)

where β0 is the attractiveness at ri,j = 0, and γ is the light absorption coefficient at the
source. The movement of firefly i when it is attracted to another, more attractive firefly j is
determined by:

xi,k ← (1− β)xi,k + βxj,k + ui,k (17)

ui,k = α

(
rand1− 1

2

)
(18)

If a particular firefly xi is already the brightest (i.e., it is the one with the maximum
fitness), then it will move randomly according to the following equations:

ximax,k ← ximax,k + uimax,k, k = 1, 2, . . . , D (19)

uimax,k = α

(
rand2− 1

2

)
(20)

where rand1 ≈ U(0, 1) and rand2 ≈ U(0, 1) are random numbers obtained from a uniform
distribution.

The third rule is that the brightness of a firefly is affected or determined by the
landscape of the fitness function ϕ(•). For maximization problems, the brightness I of a
firefly at a particular location x can be chosen as a function I(x) that is proportional to the
value of the fitness function ϕ(x).

3. Material and Methods
3.1. Materials and Experimental Setup

All experiments were performed on a PC with an Intel Core i5 3.30 GHz CPU, 8 GB
of RAM, and an NVIDIA GeForce GTX 1060 GPU. All used machine-learning methods
were implemented in simultaneously multitask learning and coded the programs by using
Python language, and then individually were used to verify the performance of process
parameters optimization using the four-fold cross-validation method.

The 9299 HSLA samples were collected from the China Steel Corporation (Kaohsiung,
Taiwan) from 2016 to 2010. Each sample has a 30-dimensional process parameter and three
corresponding product quality attributes., respectively. The 9299 samples included the 9000
training data samples (two of 10 samples as validation samples), which meets the quality
requirement and 299 false samples (as test samples) of no meeting requirements. In general,
the false samples are difficult to collect since the CSC is a high-quality steel manufacturer.
Each process parameter x includes temperature, steeling time, iron composition, and so on.
The product attribute Y includes three quality attributes, i.e., yield stress, tensile stress, and
plastic strain ratio. The products of HSLA must meet reasonable quality ranges for these
three attributes yield stress [0,185], tensile stress [270, ∞], and plastic strain ratio [39, ∞].
For easy identification, the process parameters are represented by xi = (fi1, fi2, . . . , fi30) for
i = 1, 2, . . . , 9000, and the product attributes are represented by Yi = (yi1, yi2, yi3) for training
samples. However, the additional 299 test samples have only 25 fixed process parameters,
with the other five being adjustable parameters denoted by fi2, fi4, fi6, fi8, and fi9 for the i-th
test sample.

Appl. Sci. 2021, 11, 4857 8 of 15

Table 1 shows the data for the five original training samples, where each includes
the 30 dimensions of the process parameters, named f1, f2, . . . , f30, and the three product
attributes of Y1, Y2, and Y3. The five adjustable process parameters are restricted to positive
integers. In total, 9000 training samples were used to train the simplified VGG surro-
gate model, each including a complete set of process parameters and product attributes.
However, five of the process parameters in each of the 299 test samples were adjustable.

3.2. Simplified VGG-16 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks that
have been widely applied in image and video recognition, recommender systems, image
classification, image segmentation, medical image analysis, natural language processing,
brain-computer interfaces, and financial time series. A CNN consists of an input layer,
hidden layers, and an output layer. In any feed-forward neural network, middle layers are
called “hidden” because their inputs and outputs are masked by the activation function
and by the final convolution. In a CNN, these hidden layers include layers that perform
convolutions. Typically, this includes a layer that does multiplication or finds a dot product,
and its activation function is commonly referred to as a rectified linear unit (ReLU). This
layer is followed by others, pooling layers, fully connected layers, and normalization layers.

VGG is a popular CNN model containing 13 convolutional layers and three fully con-
nected layers, commonly applied to image classification and pattern recognition. However,
it is not directly suitable for building our surrogate model. In this paper, we instead use
a simplified VGG model for this task. As the traditional VGG-16 model has a 2D layer
structure consisting of many convolution layers, max-pooling layers, and fully connected
layers, it is difficult to directly apply it to our steelmaking process-optimization problem
with its 1D mapping. Therefore, we modified this VGG-16 model into a 1D structure with
10 layers (seven for 1D convolutional layers and three for fully connected layers). The
seven convolutional layers generate powerful features, and three fully connected layers
use the extracted features for regression.

More precisely, the differences between the traditional VGG-16 model and our sim-
plified VGG model are shown in Figure 2. The simplified VGG model deletes the final
soft-max procedure and maps the process parameters to a single product attribute. It is
a one-dimensional CNN model composed of seven convolutional layers and three fully
connected layers. The convolutional layers extract the powerful features, and the fully
connected layers match the product attributes used when establishing the surrogate model.
Our trained simplified VGG first uses three blocks in which two or three convolutional
procedures are followed by max-pooling to obtain feature maps with sizes of 3 × 32; they
are then straightened into one-dimensional form. The sequential fully connected layers are
applied in order to regress the product attribute of Y1, Y2, or Y3.

In this method, the Adam algorithm [42] is used as an optimizer with a loss function
equal to the mean square error (MSE) of the true outputs ϕ(xl) of the surrogate model and
the desired outputs yl , as defined in Equation (21):

LossFunction =
1
M

M

∑
l=1

(yl − ϕ(xl))
2 (21)

3.3. Process Parameter Optimization Using the Firefly Algorithm

The process parameters of our test samples are divided into 25 fixed parameters and
five adjustable ones, with the latter modified such that the product attributes meet the
requirements. Therefore, we first assigned each adjustable process parameter to the i-th
firefly solution xi, with the structure depicted in Figure 3. Next, we used the FA to search
for the optimal solution xbest.; first, we initialized N firefly solutions, xi, i = 1, 2, . . . , N,
where each solution was updated using the FA.

Appl. Sci. 2021, 11, 4857 9 of 15

Table 1. The X and Y is the sets of process parameters and product quality attributes. The X contains the parameters of temperature, steeling time, iron composition, and so on. The
product attribute Y includes three quality attributes, i.e., yield stress, tensile stress, and plastic strain ratio.

Y1 Y2 Y3 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

148 294 49 758 752 582 411 363 318 282 134 83 923 640 4.002723 0.0021 0.15 0.013 0.006 0.01 0.004 0.01 0.02 0 0.001 0.0027 0.003 0.039 0.033 0.032 0.0001 0.001 0.0001
146 294 50 748 747 574 403 361 318 288 150 124 915 643 3.99594 0.0014 0.12 0.017 0.005 0.01 0.005 0.01 0.01 0 0.001 0.0018 0.002 0.04 0.03 0.029 0.0001 0.001 0.0001
176 309 47 751 757 575 397 351 318 285 195 80 924 640 3.19883 0.0024 0.15 0.015 0.003 0 0.005 0.01 0.02 0 0.001 0.0027 0.003 0.044 0.036 0.035 0.0001 0 0.0001
139 288 51 754 754 575 397 351 313 291 195 80 928 647 3.198287 0.0012 0.14 0.014 0.003 0 0.006 0.01 0.02 0 0 0.0014 0 0.046 0.037 0.034 0.0001 0 0.0001
145 299 48 777 772 564 404 367 324 296 216 80 920 641 3.198613 0.0017 0.15 0.015 0.003 0 0.006 0.01 0.02 0 0.001 0.0016 0.003 0.042 0.041 0.04 0.0001 0.001 0.0001
150 302 49 768 757 580 411 358 320 292 194 107 922 648 3.500751 0.0014 0.16 0.015 0.005 0.01 0.005 0.01 0.02 0 0.001 0.0015 0.003 0.042 0.035 0.034 0.0001 0.001 0.0001
166 310 47 749 752 572 405 364 326 293 200 100 925 645 3.198607 0.0017 0.15 0.015 0.003 0 0.006 0.01 0.02 0 0.001 0.0016 0.003 0.042 0.041 0.04 0.0001 0.001 0.0001
153 303 47 748 752 572 402 360 325 294 206 80 923 647 3.198935 0.0017 0.15 0.015 0.003 0 0.006 0.01 0.02 0 0.001 0.0016 0.003 0.042 0.041 0.04 0.0001 0.001 0.0001
144 291 51 745 758 571 406 364 316 290 220 98 928 648 3.199251 0.0014 0.13 0.013 0.003 0 0.004 0.01 0.02 0 0.001 0.0016 0.003 0.045 0.037 0.036 0.0001 0.001 0.0001
148 295 49 758 752 575 401 361 315 288 220 88 927 641 2.600165 0.0014 0.13 0.012 0.004 0 0.005 0.01 0.01 0 0.001 0.0019 0.001 0.047 0.049 0.047 0.0002 0.001 0.0001
150 295 49 755 750 574 403 363 324 288 220 94 919 638 2.596573 0.0015 0.13 0.009 0.006 0 0.005 0.01 0.01 0 0.001 0.0026 0.001 0.047 0.04 0.039 0.0001 0.001 0.0001
154 304 47 762 764 575 406 365 320 293 204 82 921 645 3.000278 0.0014 0.17 0.018 0.004 0.01 0.004 0.01 0.02 0 0.001 0.0032 0.002 0.039 0.033 0.032 0.0001 0.001 0.0001
159 305 47 751 746 574 407 366 325 293 170 100 917 638 3.497113 0.0021 0.15 0.013 0.006 0.01 0.004 0.01 0.02 0 0.001 0.0027 0.003 0.039 0.033 0.032 0.0001 0.001 0.0001
162 308 47 756 749 574 407 365 323 289 170 96 914 648 3.50113 0.0014 0.16 0.014 0.005 0.01 0.005 0.01 0.02 0 0.001 0.0027 0.004 0.044 0.036 0.036 0.0002 0.001 0.0001
154 307 46 774 764 575 406 358 321 285 200 90 923 646 3.000014 0.0018 0.12 0.015 0.005 0 0.004 0.01 0.02 0 0 0.0016 0.001 0.043 0.038 0.035 0.0001 0.001 0.0001
150 297 49 762 756 575 406 365 315 290 200 90 921 641 3.199693 0.0017 0.13 0.012 0.006 0 0.004 0.01 0.02 0 0.001 0.0019 0 0.04 0.026 0.025 0.0002 0.001 0.0001
155 298 48 757 756 574 405 360 323 292 200 90 920 637 3.198027 0.0018 0.16 0.006 0.007 0 0.006 0.01 0.01 0 0.001 0.0043 0.002 0.048 0.051 0.05 0.0001 0.001 0.0001
149 300 49 764 762 575 405 357 314 290 200 90 922 645 3.200491 0.0017 0.14 0.014 0.005 0.01 0.005 0.01 0.02 0 0.001 0.0028 0.003 0.046 0.049 0.047 0.0002 0.001 0.0001
159 308 47 759 755 574 406 365 318 293 200 90 921 644 2.999876 0.0016 0.15 0.013 0.003 0 0.005 0.01 0.02 0 0.001 0.0039 0.002 0.044 0.031 0.03 0.0001 0 0.0001
152 302 49 764 762 575 407 364 323 291 175 80 915 647 3.498092 0.0021 0.15 0.013 0.006 0.01 0.004 0.01 0.02 0 0.001 0.0027 0.003 0.039 0.033 0.032 0.0001 0.001 0.0001

Appl. Sci. 2021, 11, 4857 10 of 15

Figure 2. Traditional VGG and simplified VGG models.

Figure 3. Structure of firefly solution.

The fixed process parameters were integrated into each firefly solution xi into the
Xi. Using the built surrogate model ϕ(X), the corresponding product quality attributes,
Yk = ϕ(Xi) for k = 1, 2, and 3, could be calculated. We then defined a fitness function
as the brightness of the FA for the purposes of searching for the optimum, as shown in
Equation (23).

u(Xi) =

∣∣Yi1 −mY1

∣∣
σY1

+

∣∣Yi2 −mY2

∣∣
σY2

+

∣∣Yi3 −mY3

∣∣
σY3

(22)

Fitness(µ(Xi)) = 1/(1 + u(Xi)) (23)

where the product attributes Yi1, Yi2, and Yi3 are the outputs of the surrogate model ϕ(x)
with x as its input, and mYi and σYi are the mean and the standard derivation of the i-th
product attributes of the training data samples.

The steps of the proposed algorithm are described in detail as follows:
Step 1. Generate the initial solutions and the given hyper-parameters:
In this step, the initial population of N solutions is generated, as denoted by

D = [x1, x2,, xN], where xi = [fi2, fi4, fi6, fi8, fi9] for the i-th firefly solution, and the
values of xi are assigned from between −1 and 1. This step assigns the parameters of the
FA, which are σ, β0, the MCN, and γ. The number of cycles l is also set to 0.

Step 2. Firefly movement:
Here, each complete process is combined into Xi, and its fitness value Fitness(µ(Xi))

is computed as the corresponding brightness of the firefly. For each firefly solution xi, this

Appl. Sci. 2021, 11, 4857 11 of 15

step randomly chooses another brighter solution xj and then moves toward it, according to
the following equations:

rij = ||xi − xj|| =

√√√√ 5

∑
k=1

(xik − xjk)
2 (24)

xik = (1− β)xik + βxjk + ujk, β = β0e−γri,j (25)

where ujk ∼ U(0, 1) is a random number ranged from 0 to 1, and xik is the k-th element of
solution xi.

Step 3. Select the current best solution:
This step will pick the best solution from the solution set and represent it as xbest, as

described by the following:

xbest = Argmaxxi{Fitness(µ(xi))} (26)

Step 4. Check the termination criterion:
If the cycle number l is equal to the MCN, the algorithm is finished and will output the

best solution xbest. Otherwise, l increases by one and the best solution xbest will randomly
walk its position according to Equation (13). It will then return to Step 2 and repeat the
process, as described by:

xbest,k = xbest,k + uk, k = 1, 2, . . . , 5 (27)

where uk is a random number ranged from 0 to 1.
Without a loss of generality, the PSO and ABC algorithms are also used to search for

optimal parameters in a similar manner as the FA.

4. Results and Discussion
4.1. Training Mechanism by Using ML Methods

In experiments, the training parameters and strategy of the simplified VGG model are
listed in Table 2, where each entry is optimal for the model. An initial learning rate of 0.001
and 250 training epochs were chosen in order to achieve adequate convergence. The Adam
algorithm [25] was used as the optimizer and the mean square error as the loss function. A
batch size of 50 was selected, and the average training time was 232.47 s.

Table 2. Parameters assigned in the simplified VGG model.

Method Batch Size Training
Epochs

Trainable
Variables

Initial
Learning

Rate

Loss
Function Optimizer

Average
Training
Time (s)

Simplified
VGG Model 50 250 360,661 0.001 MSE Adam 232.47

In order to evaluate the performance of a trained simplified VGG model, we computed
the mean absolute error (MAE) (see Equation (28)) of the predicted and actual product
attributes. The MAEs of Y1, Y2, and Y3 are shown in Table 3, which reveals that the
simplified VGG is the best, i.e., it is capable of producing strong correlations between the
process parameters and the product attributes.

MAEi =
1

299

299

∑
l=1
|Yil − ϕ(Xl)|i = 1, 2, 3 (28)

where Yil is i-th product attributes of l-th test sample.

Appl. Sci. 2021, 11, 4857 12 of 15

Table 3. Mean absolute errors of the five surrogate model building methods.

Linear Regression Random Forests Support Vector
Regression

Multilayer
Perception

Simplified VGG
Network

Yield Stress, Y1. 5.052 ± 0.09 3.890 ± 0.11 4.057 ± 0.09 4.156 ± 0.09 3.781 ± 0.08

Tensile Stress, Y2 4.094 ± 0.10 3.647 ± 0.09 3.761 ± 0.10 3.798 ± 0.10 3.621 ± 0.08

Plastic Strain Ratio, Y3 1.032 ± 0.02 0.954 ± 0.02 0.993 ± 0.02 0.948 ± 0.02 0.946 ± 0.02

(mean ± standard deviation).

4.2. Experimental Results of the Process Parameter Optimizations

The FA was applied in order to search for the optimal adjustable process parameters of
each of the test 299 samples, with the parameter settings of the algorithm given in Table 4.
The FA is an iterative method, and a preassigned end condition is therefore needed. In
this paper, we set the maximum number of iterations to 50 and the number of initial firefly
solutions to 10. The average time spent searching for the optimal process parameters of
each test sample was about 0.62 s. Additional details concerning the FA are shown in
Figure 4.

Table 4. Parameter settings of the FA.

Parameter Value

Attractiveness, β0 1.0

Light Absorption Coefficient, γ 1.0

Number of Initial Firefly Solutions 10

MCL 50

σ 0.1

Figure 4. Flowchart of the FA used for optimizing the process parameters.

In our experiments, the 299 test samples were used to evaluate the performance of
each method when searching for the optimal process parameters. The basis of evaluation

Appl. Sci. 2021, 11, 4857 13 of 15

is the success rate: how often the final product attributes fall in their reasonable quality
ranges. Our experiments used the following combinations of methods: RF+PSO, RF+ABC,
RF+Firefly, SVGG+PSO, SVGG+ABC, and SVGG+Firefly, the results of which are shown in
Table 5. There we see that all the resulting test sample product attributes met their product
quality requirements when the SVGG+Firefly combination was used, with its success rate
of 100% clearly outperforming the other combinations.

Table 5. Success Rates of Different Combinations When Evaluating the 299 TestSsamples.

RF + PSO RF + ABC RF + Firefly SVGG + PSO SVGG + ABC SVGG + Firefly

96.89% 97.99% 98.99% 97.32% 97.99% 100%

5. Conclusions

The optimization of process parameters is an important problem in steelmaking. In
general, surrogate models can be applied to simulate the manufacturing process, although
there are many different methods available to build such models. In this paper, we propose
a simplified VGG model for this purpose and then compare it with other machine-learning
methods. Within the model, different algorithms (PSO, ABC, and FA) were applied to obtain
the optimal process parameters. In our experiments, we evaluated different combinations
of trained surrogate models and searching methods. Our proposed simplified VGG model
demonstrated to be the best method compared with the linear regression, random forests,
support vector regression and multi-layer perceptron. The firefly algorithm is an effective
search mechanism to optimize the process optimization in the simplified VGG surrogate
model. It achieved a success rate of 100% in the 299 test samples, and these perfect
results revealed that it has the potential to be effectively applied in different areas of
process parameters optimization of product manufacture. Furthermore, it will be also an
interesting thing how to develop a more complex and effective CNN model to build the
surrogate model for other applications of process parameter optimization.

Author Contributions: Conceptualization: M.-H.H., Y.-N.S. and Y.-C.L.; methodology: M.-H.H.;
software: Y.-C.L., M.-H.H., Y.-H.T. and Y.-C.H.; validation: Y.-N.S.; formal analysis: Y.-N.S. and
J.-H.H.; investigation: Y.-N.S.; resources: Y.-Y.Y.; data curation: Y.-T.C.; writing—original draft
preparation: M.-H.H.; writing—review and editing: Y.-N.S.; visualization: M.-H.H.; supervision:
Y.-N.S. All authors have read and agreed to the published version of the manuscript.

Funding: The authors thank the Ministry of Science and Technology, ROC (Project numbers MOST
109-2634-F-006-012 and MOST-108-2622-8-006-014) for their support of this work.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eric, M.; Stefanovic, M.; Djordjevic, A.; Stefanovic, N.; Misic, M.; Abadic, N.; Popović, P. Production process parameter

optimization with a new model based on a genetic algorithm and ABC classification method. Adv. Mech. Eng. 2016, 8,
1–18. [CrossRef]

2. Patil, V.D.; Sali, S.P. Process parameter optimization for computer numerical control turning on En36 alloy steel. In Proceedings
of the 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, 27–28 January 2017;
pp. 1–5.

3. Hoole, J.; Sartor, P.; Booker, J.D.; Cooper, J.E.; Gogouvitis, X.; Schmidt, R.K. Comparison of Surrogate Modeling Methods for
Finite Element Analysis of Landing Gear Loads; Session: Surrogate Modeling for Uncertainty Quantification. In Proceedings of
the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020.

4. Salah, U.H.; Raman, P.S. Taguchi-based design of experiments in training POD-RBF surrogate model for in-verse material
modelling using nanoindentation. Inverse Probl. Sci. Eng. 2017, 5, 363–381.

5. Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J. Optimisation of manufacturing process parameters using
deep neural networks as surrogate models. Procedia Cirp 2018, 72, 426–431. [CrossRef]

http://doi.org/10.1177/1687814016663477
http://doi.org/10.1016/j.procir.2018.03.046

Appl. Sci. 2021, 11, 4857 14 of 15

6. Zhao, P.; Zhou, H.; Li, Y.; Li, D. Process parameters optimization of injection molding using a fast strip analysis as a surrogate
model. Int. J. Adv. Manuf. Technol. 2010, 49, 949–959. [CrossRef]

7. Forrester, A.I.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [CrossRef]
8. Han, Z.-H.; Zhang, K.-S. Surrogate-Based Optimization. In Real-World Applications of Genetic Algorithms; IntechOpen: London,

UK, 2012; pp. 343–362.
9. Koziel, S.; Ciaurri, D.E.; Leifsson, L. Surrogate-Based Methods. In Computational Optimization, Methods and Algorithms; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 33–59.
10. Simpson, T.; Poplinski, J.; Koch, P.N.; Allen, J. Metamodels for Computer-based Engineering Design: Survey and recommenda-

tions. Eng. Comput. 2001, 17, 129–150. [CrossRef]
11. Cook, D.; Ragsdale, C.; Major, R. Combining a neural network with a genetic algorithm for process parameter optimization. Eng.

Appl. Artif. Intell. 2000, 13, 391–396. [CrossRef]
12. Thombansen, U.; Schuttler, J.; Auerbach, T.; Beckers, M.; Buchholz, G.; Eppelt, U.; Molitor, T. Model-based self-optimization for

manufacturing systems. In Proceedings of the 2011 17th International Conference on Concurrent Enterprising, Aachen, Germany,
20–22 June 2011; pp. 1–9.

13. Lovrić, M.; Meister, R.; Steck, T.; Fadljević, L.; Gerdenitsch, J.; Schuster, S.; Schiefermüller, L.; Lindstaedt, S.; Kern, R. Parasitic
resistance as a predictor of faulty anodes in electro galvanizing: A comparison of machine learning, physical and hybrid models.
Adv. Model. Simul. Eng. Sci. 2020, 7, 1–16. [CrossRef]

14. Cemernek, D.; Cemernek, S.; Gursch, H.; Pandeshwar, A.; Leitner, T.; Berger, M.; Klösch, G.; Kern, R. Machine learning in
continuous casting of steel: A state-of-the-art survey. J. Intell. Manuf. 2021. [CrossRef]

15. Guo, S.; Yu, J.; Liu, X.; Wang, C.; Jiang, Q. A predicting model for properties of steel using the industrial big data based on
machine learning. Comput. Mater. Sci. 2019, 160, 95–104. [CrossRef]

16. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
17. Yan, C.; Yin, Z.; Shen, X.; Mi, D.; Guo, F.; Long, D. Surrogate-based optimization with improved support vector regression for

non-circular vent hole on aero-engine turbine disk. Aerosp. Sci. Technol. 2020, 96, 105332. [CrossRef]
18. Nauyen, T.H.; Nang, D.; Paustian, K. Surrogate-based multi-objective optimization of management options for agricultural

landscapes using artificial neural networks. Ecol. Modeling 2019, 4, 1–13. [CrossRef]
19. Jamshidi, M.B.; Lalbakhsh, A.; Alibeigi, N.; Soheyli, M.R.; Oryani, B.; Rabbani, N. Socialization of Industrial Robots: An

Innovative Solution to improve Productivity. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 832–837.

20. Jamshidi, M.B.; Alibeigi, N.; Rabbani, N.; Oryani, B.; Lalbakhsh, A. Artificial Neural Networks: A Powerful Tool for Cognitive
Science. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 674–679.

21. Jamshidi, M.B.; Lalbakhsh, A.; Talla, J.; Peroutka, Z.; Roshani, S.; Matousek, V.; Roshani, S.; Mirmozafari, M.; Malek, Z.;
La Spada, L.; et al. Deep Learning Techniques and COVID-19 Drug Discovery: Fundamentals, State-of-the-Art and Future
Directions. In Emerging Technologies during the Era of COVID-19 Pandemic; Springer: Berlin/Heidelberg, Germany, 2021; pp. 9–31.

22. Xue, J.; Xiang, Z.; Ou, G. Predicting single freestanding transmission tower time history response during complex wind input
through a convolutional neural network based surrogate model. Eng. Struct. 2021, 233, 111859. [CrossRef]

23. Jia, X.J.; Liang, L.; Yang, Z.L.; Yu, M.Y. Muti-parameters optimization for electromagnetic acoustic transduces using surrogated-
assisted particle swarm optimizer. Mech. Syst. Signal Process. 2021, 152, 107337. [CrossRef]

24. Sun, L.; Sun, W.; Liang, X.; He, M.; Chen, H. A modified surrogate-assisted multi-swarm artificial bee colony for complex
numerical optimization problems. Microprocess. Microsyst. 2020, 76, 103050. [CrossRef]

25. Ewees, A.A.; Al-qaness, M.A.A.; Elaziz, M.A. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel
machine scheduling with set times. Appl. Math. Model. 2021, 94, 285–305. [CrossRef]

26. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
28. Zhang, M.; Long, D.; Qin, T.; Yang, J. A Chaotic Hybrid Butterfly Optimization Algorithm with Particle Swarm Optimization for

High-Dimensional Optimization Problems. Symmetry 2020, 12, 1800. [CrossRef]
29. Chao, C.-F.; Horng, M.-H.; Chen, Y.-C. Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft

Tissue. Comput. Math. Methods Med. 2015, 343217. [CrossRef] [PubMed]
30. Liu, W.; Huang, Y.; Ye, Z.; Cai, W.; Yang, S.; Cheng, X.; Frank, I. Renyi’s Entropy Based Mutlilevel Thresholding Using a Novel

Meta-Heuristic Algorithm. Appl. Sci. 2020, 10(9), 3225. [CrossRef]
31. Horng, M.H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst.

Appl. 2011, 38, 13785–13791. [CrossRef]
32. Kaminski, M. Neural Network Training Using Particle Swarm Optimization—A Case Study. In Proceedings of the 2019 24th

International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 26–29 August
2019; pp. 115–120.

33. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P. Multi-objective Particle Swarm Optimization to Design a Time-Delay Equalizer
Metasurface for an Electromagnetic Band-Gap Resonator Antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 912–915. [CrossRef]

http://doi.org/10.1007/s00170-009-2435-7
http://doi.org/10.1016/j.paerosci.2008.11.001
http://doi.org/10.1007/PL00007198
http://doi.org/10.1016/S0952-1976(00)00021-X
http://doi.org/10.1186/s40323-020-00184-z
http://doi.org/10.1007/s10845-021-01754-7
http://doi.org/10.1016/j.commatsci.2018.12.056
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.ast.2019.105332
http://doi.org/10.1016/j.ecolmodel.2019.02.018
http://doi.org/10.1016/j.engstruct.2021.111859
http://doi.org/10.1016/j.ymssp.2020.107337
http://doi.org/10.1016/j.micpro.2020.103050
http://doi.org/10.1016/j.apm.2021.01.017
http://doi.org/10.1016/j.ymssp.2020.107398
http://doi.org/10.3390/sym12111800
http://doi.org/10.1155/2015/343217
http://www.ncbi.nlm.nih.gov/pubmed/25873987
http://doi.org/10.3390/app10093225
http://doi.org/10.1016/j.eswa.2011.04.180
http://doi.org/10.1109/LAWP.2016.2614498

Appl. Sci. 2021, 11, 4857 15 of 15

34. Lalbkhsh, A.; Esselle, K.P. Directivity Improvement of a Fabry-Perot Cavity Antenna by enhancing Near Field Characteristic.
In Proceedings of the 17th International Symposium on Antenna Technology and Applied Electromagnetics, Montreal, QC,
Canada, 10–13 July 2016.

35. Lalbakhsh, A.; Afzal, M.U.; Esselle, K. Simulation-driven particle swarm optimization of spatial phase shifters. In Proceedings
of the 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cairns, QLD, Australia, 19–23
September 2016; pp. 428–430.

36. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 6, pp. 1942–1948.

37. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8,
687–697. [CrossRef]

38. Łukasik, S.; Żak, S. Firefly Algorithm for Continuous Constrained Optimization Tasks. In International Conference on Computational
Collective Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; pp. 97–106.

39. Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In International Symposium on Stochastic Algorithms; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 169–178.

40. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2008.
41. Lalbakhsh, P.; Zaeri, B.; Lalbakhsh, A. An Improved Model of Ant Colony Optimization Using a Novel Pheromone Update

Strategy. IEICE Trans. Inform. Syst. 2013, E96-D, 2309–2318. [CrossRef]
42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1016/j.asoc.2007.05.007
http://doi.org/10.1587/transinf.E96.D.2309

	Introduction
	Related Works
	Surrogate Model
	Survey of Machine Learning Method
	Linear Regression
	Random Forests
	Support Vector Regression
	Multilayer Perception

	Bio-Inspired Search Algorithms
	Particle Swarm Optimization
	Artificial Bee Colony Algorithm
	Firefly Algorithm

	Material and Methods
	Materials and Experimental Setup
	Simplified VGG-16 Convolutional Neural Networks
	Process Parameter Optimization Using the Firefly Algorithm

	Results and Discussion
	Training Mechanism by Using ML Methods
	Experimental Results of the Process Parameter Optimizations

	Conclusions
	References

