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Abstract: Anthocyanins are an important micro-component that contributes to the quality factors
and health benefits of black rice. Anthocyanins concentration and compositions differ among rice
seeds depending on the varieties, growth conditions, and maturity level at harvesting. Chemical
composition-based seeds inspection on a real-time, non-destructive, and accurate basis is essential to
establish industries to optimize the cost and quality of the product. Therefore, this research aimed to
evaluate the feasibility of near-infrared hyperspectral imaging (NIR-HSI) to predict the content of
anthocyanins in black rice seeds, which will open up the possibility to develop a sorting machine
based on rice micro-components. Images of thirty-two samples of black rice seeds, harvested in
2019 and 2020, were captured using the NIR-HSI system with a wavelength of 895–2504 nm. The
spectral data extracted from the image were then synchronized with the rice anthocyanins reference
value analyzed using high-performance liquid chromatography (HPLC). For comparison, the seed
samples were ground into powder, which was also captured using the same NIR-HSI system to
obtain the data and was then analyzed using the same method. The model performance of partial
least square regression (PLSR) of the seed sample developed based on harvesting time, and mixed
data revealed the model consistency with R2 over 0.85 for calibration datasets. The best prediction
models for 2019, 2020, and mixed data were obtained by applying standard normal variate (SNV)
pre-processing, indicated by the highest coefficient of determination (R2) of 0.85, 0.95, 0.90, and the
lowest standard error of prediction (SEP) of 0.11, 0.17, and 0.16 mg/g, respectively. The obtained
R2 and SEP values of the seed model were comparable to the result of powder of 0.92–0.95 and
0.09–0.15 mg/g, respectively. Additionally, the obtained beta coefficients from the developed model
were used to generate seed chemical images for predicting anthocyanins in rice seed. The root mean
square error (RMSE) value for seed prediction evaluation showed an acceptable result of 0.21 mg/g.
This result exhibits the potential of NIR-HSI to be applied in a seed sorting machine based on the
anthocyanins content.
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1. Introduction

Rice (Oryza sativa L.) is a vital cereal food in Asia and is consumed by almost half
of the world’s population [1]. The chemical composition of rice is characterized by a
high content of carbohydrates, mainly starch (56–74%), a moderate content of protein
(8–11%), and a minor content of lipids (2–4%) and minerals (1–3%) [2]. There are many
different kinds of rice, including white rice, which is widely consumed, and pigmented rice.
Pigmented rice, such as purple and black rice, contains important bioactive compounds
beneficial for human health. The bran of black rice is rich in fiber and many kinds of
phytochemicals, such as tocopherols, tocotrienols, oryzanols, vitamin B complex, and other
phenolic compounds [3,4]. The protein content of black rice was also reported to be higher
than white rice. In addition, black rice contains anthocyanins and proanthocyanidin in its
aleurone layer, meaning that black rice is considered an essential health product.

Anthocyanins are a water-soluble flavonoid compound that is responsible for the
appearance of certain colors in nature and may appear as red, purple, or blue, depending
on the pH. This color change is due to the reversible structural transformation of antho-
cyanins in a certain range of pH values [5,6]. Anthocyanins were reported to be an essential
component of traditional herbal medicine [7], and have a wide range of pharmacological
applications against various stress conditions and chronic diseases, e.g., inflammation,
cognitive decline, neural dysfunction, capillary fragility and permeability, platelet aggre-
gation, cardiovascular complication, liver damage, lipid peroxidation, and cancer tumor
growth [8]. Moreover, in vivo tests reported that supplementation of black rice containing
anthocyanins in the diet reduces atherosclerotic lesions in hypercholesterolemic rabbits and
apolipoprotein-E-deficient mice. These biological activities were related to anthocyanins’
potencies as antiradical scavenging and antioxidant activities [9].

The anthocyanins content in black rice is greatly affected by genotype and the envi-
ronmental growth condition [10] and reported ranging from 0.52 to 3.47 mg/g. Cyanidin-
3-glucoside (C3G) and peonidin-3-glucoside (Pn3G) are the most common forms of an-
thocyanins found in black rice [11]. Other forms of anthocyanins observed in black rice
are cyanidin-3,5-diglucoside, cyanidin-3-rutinoside, cyanidin-3-gentiobioside, malvidin-3-
glucoside, and peonidin-3-rutinoside [12,13]. Anthocyanins are distributed in all parts of
black rice seeds but are mostly accumulated in the bran. The anthocyanins level in bran is
more than fifteen times higher than that in the embryo. Furthermore, the C3G and Pn3G
content in bran were reported as being 98% and 93% of their total content in whole black
rice, whereas only 2% and 7% were available in embryos, respectively [14–16].

Chromatography techniques, including paper chromatography and high-performance
liquid chromatography (HPLC), have extensively studied the qualitative and quantitative
chemical components, including anthocyanins, in agricultural products [17]. These tech-
niques are a destructive method in sample preparation and require chemicals solvent for
the pre-analysis of extraction, which is time-consuming, costly, and labor-intensive. In
addition, these methods also generate chemical waste, which is harmful to the environment.
Moreover, the large-scale detection of anthocyanins attributed to a single seed is quite
difficult with these techniques. Thus, chemical-based seed selection for the quality control
in factories remains a challenging process. Hence, the development of non-destructive
methods related to spectroscopy and image processing analysis allows for overcoming the
drawbacks mentioned above.

Near-infrared and mid-infrared spectroscopy methods have been widely used to detect
anthocyanins in agricultural products such as soybeans [18], flowering tea [19], and sweet
cherries [20]. Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-
IR) can also be applied to predict anthocyanins content in black soybean based on the seed’s
spectra [21]. Many researchers have favored the hyperspectral imaging (HSI) system, which
integrates the spectroscopic and imaging techniques due to the capability in acquiring
spectral and spatial information simultaneously. In recent years, HSI has been adopted
to assess chlorogenic acid content in Flos lonicereae [22], to determine deoxynivalenol in
bulk wheat kernel [23], and to monitor the quality of strawberries during storage [24].
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The potential capability of HSI to predict macro-components in grain, such as starch in
corn and protein in wheat, based on single kernel data, has also been proven [25,26]. For
micro-component, particularly in anthocyanins detection, visible hyperspectral imaging
(Vis-HSI) has been applied to slices of purple potato [27,28] and Lychee pericarp [29]. PLSR
models based on the full wavelength in the lychee pericarp sample resulted in performance
over 0.9 for both calibration and prediction models, while the pre-processing method
(SNV, MSC, and SG) slightly improves the performance model to predict anthocyanins
in purple-fleshed sweet potato slices from 0.876 to 0.889. Furthermore, this hyperspectral
method also successfully visualizes the anthocyanins distribution throughout the sample.

HSI in the NIR region also has been used to predict micro-component, including
total anthocyanins, flavonoids, and phenolics of dry black goji berries (Lycium ruthenicum
Murr.) [30]. The PLS regression model using a full range of spectra (975–1646 nm) resulted
in the performance of the calibration model of total anthocyanins and phenolics over
0.90 and 0.85 for total flavonoids. This technique also resulted in high performance of
the prediction model of 0.89, 0.84, and 0.85 for anthocyanins, flavonoids, and phenolics,
respectively. In addition, the result of the PLS regression method was comparable to the
other techniques, including LS-SVM and CNN, that were applied in the study. However,
in this sample, anthocyanins were uniformly distributed throughout the sample, and the
content was higher than those in black rice.

Anthocyanins are a micro-component in rice, mainly available in its aleurone, and are
not distributed uniformly throughout the rice seed. Anthocyanins produce a dark color
(purple to black) in the seed surface that may absorb the light emitted from the instrument.
However, most of these chemicals are present on the rice seed’s surface, which might
indicate one of the advantages of measurement using a non-destructive system, which
works based on the interaction between light and matter. At present, no research has been
done on the application of near-infrared hyperspectral imaging (NIR-HSI) for evaluating
anthocyanins content in a single seed of rice. Perhaps, the lack of such studies is due to
the low concentration of anthocyanins in pigmented rice, and the market demand for this
rice is not high. However, with the gradual increase in functional food demand in the last
decade, the research interest related to anthocyanins in rice has risen. Thus, this study aims
to evaluate the potential of near-infrared hyperspectral imaging (NIR-HSI) for predicting
anthocyanins in individual rice seeds. For comparison, this study also developed a model
for the prediction of anthocyanins based on the powder sample of the same rice variety.

2. Materials and Methods
2.1. Rice Sample

Thirty-two samples of black rice (listed in Table 1) were obtained from Rural Devel-
opment Administration (RDA), Jeollabuk-do, South Korea, harvested in 2019 and 2020.
Fourteen varieties were grown in both 2019 and 2020, two rice types (Heugjinju Byeo and
Cheongpungheugchal) were only cultivated in 2019, and two varieties (Gancheok Byeo
and Cheonghaejinmi) only harvested in 2020. The weight of 100 seeds of rice ranged from
1.46 to 2.44 g, indicating rice size variability based on the variety. The rice seed’s color and
size within a single variety were also varied, which resulted in the possibility of different
anthocyanins contents among different seeds. Therefore, the variability of seeds in the
biochemical composition will result in the variation of spectral data extracted from the
image of HSI data. On the other hand, investigating anthocyanins based on a single seed
is constrained by the minimum weight requirement of the HPLC procedure. Hence, in
this research, twenty grams of rice seeds were collected from each rice variety of each year,
and among them, 36 seeds were selected randomly for the image data acquisition using
the NIR-HSI system. After acquiring the image, all of the seeds were ground to obtain a
uniform particle size under 250 µm. The powder sample was then placed on the sample
plate and scanned using the same NIR-HSI system for data acquisition. After both seed
and powder image acquisition, the powder samples were then sent for chemical analysis
using the HPLC method.
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Table 1. List of examined black rice varieties of two years harvesting time.

No
Harvesting Time

2019 2020

1 Jejubukjeju-2002-561 Jejubukjeju-2002-561
2 Heugjinju Byeo Gancheok Byeo
3 Heugnam Byeo Heugnam Byeo
4 Heugkwang Byeo Heugkwang Byeo
5 Sinmyungheugchal Sinmyungheugchal
6 Heugseol Heugseol
7 Seonhyangheukmi Seonhyangheukmi
8 Boseogheugchal Boseogheugchal
9 Sinnongheugchal Sinnongheugchal

10 Josaengheugchal Josaengheugchal
11 Cheongpungheugchal Chungnam 2 ho
12 Chungnam 2 ho Heugsujeong
13 Heugsujeong Jeughyangchal 1 ho
14 Heughyangchal 1 ho Jahyangna 861
15 Jahyangna 861 Seonhyangheugmi
16 Seonhyangheugmi Cheonghaejinmi

2.2. NIR Hyperspectral Imaging System

A laboratory-based line scan NIR-HSI system (Figure 1) was used to scan and col-
lect the sample data in reflectance mode. The system consists of six 100 W tungsten-
halogen line-light sources (Light Bank, Ushio Inc., Tokyo, Japan) connected to the op-
tical fiber used to illuminate the sample during measurement. The sensing module
was composed of a line-scan spectrograph (NIR, Headwall Photonics, Fitchburg, MA,
USA) that covered a spectral range of 895–2504 nm, a mercury cadmium telluride (MCT)
detector (Model: Xeva-2.5–320; Xenics, Heverlee, Belgium) to detect light reflected by
the sample, as well as a high-performance camera (Headwall Photonics, Fitchburg, MA,
USA) with 320 (spatial) × 256 (spectral) pixel resolution and an objective lens (focal length
25 mm f/1.4). During data acquisition, the sample plate was placed on the motorized table
to move the sample through the camera’s capture view at a particular speed controlled by
a DC motor. The software for data acquisition was developed using Microsoft Visual Basic
(version 6.0) on a Windows platform.
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2.3. NIR-HSI Data Acquisition and Extraction

The images of the samples (Iraw) were captured using the NIR-HSI system based on
the arrangement as follows. Two rice varieties (36 seeds of each) were arranged on the
10 × 10 grid black square plate, transferred to the moving table controlled by a stepping
motor, and scanned line by line using the HSI system. In total, there were 16 scanned
plates for 32 rice varieties. The powder was placed into a sample holder plate containing
9 samples of each and adjusted to 5 mm thickness for HSI scanning. The sample arrange-
ment process of powder was carried out by flattering the sample surface using a rod stick
without compression. The distance between the sample and the camera was set as 25 cm in
order to cover the spatial range of the sample. The spatial and spectral data were obtained
when the sample passed the camera field of view (FOV) and were saved in a 3D hypercube
containing two spatial dimensions and one spectral dimension. The dark (Idark) and white
(Iwhite) reference images were acquired to calculate the reflectance value and to correct noise
which may come from the environment. The dark reference image (0% reflectance) was
collected by covering the camera lens using an opaque cap and turning off the light. In
comparison, the white reference (99% reflectance) was acquired by using a white Teflon
sheet. The HSI corrected image (Ic) was calculated based on the HSI raw data image (Iraw)
using Equation (1), as follows:

Ic =
Iraw − Idark

Iwhite − Idark
(1)

The sample spectral information was extracted from the corrected image (Ic) after
removing the background by applying the region of interest (ROI) selection step. Both
processes, image correction and background removal, were conducted using MATLAB
software (The Math Works, Natick, MA, USA, R2019a). To simplify the image correction
and spectral extraction process and to explain the data analysis strategy, the flow chart of
this process is presented in Figure 2.
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2.4. Data Pre-Processing

The spectral data mostly contained a considerable level of noise, possibly generated
from the camera and environmental effect. The acquired spectral data were subjected to
several pre-processing methods, including mean normalization, multiplication scatters
correction (MSC), standard normal variate (SNV), and Savitzky–Golay first derivative
(Figure 2). Normalization was used to fit spectral data within a comparable range (0–1) to
compensate for inconsistencies due to the thickness of the sample and optical source length.
Standard normal variate (SNV) pre-processing was used to correct spectral information
changes caused by scattering and particle size variability [31]. MSC was used to correct the
spectra scattering intensity [31], while Savitzky–Golay’s first derivatives were applied to
correct the baseline effect and eliminate overlapping peaks [32].

2.5. High-Performance Liquid Chromatography (HPLC) Test for Reference Analysis

The anthocyanins content in black rice was measured using high-performance liquid
chromatography (HPLC) by injected 20 µL sample extract into the system. The extraction
process was carried out by dissolving the powder of black rice (1 g) into 30 mL of 1%
HCL/40% CH3OH at 4 ◦C for 24 h. Before analysis, all of the samples were filtered through
a 0.45 µm membrane filter. The HPLC system for quantification of anthocyanins was
operated using an Agilent 1200 series HPLC (Boeblingen, Germany) system comprising
of a quaternary pump, an Agilent 1200 series diode-array detector (DAD) operating at
530 nm, ChemStation software, a 1200-well-plate autosampler, and a Tosoh ODS-120T
column (250 mm × 4.6 mm i.d., Tokyo, Japan) protected with a Nova-Pak C18 guard insert
column (Water, Milford, MA, USA). During the measurement, the column temperature
was maintained at 30 ◦C.

The mobile phase included solvent A (5% formic acid/H2O v/v) and solvent B
(5% formic acid/acetonitrile v/v), entering the system at a flow rate of 0.7 mL/min. The
applied gradient program was: 0–20 min, 10–30% B; 20–25 min, 30–60% B; 25–26 min,
60–10% B; and 26–35 min, 10% B. The anthocyanins concentration was obtained by compar-
ing the HPLC peak area to external standard calibration curves. The standard calibration
curve (R2 ≥ 0.999) was provided by injecting 0.5–1 µg of anthocyanins into 20 µL of
1% HCl/40% CH3OH. The total anthocyanins content and individual type of anthocyanins
were analyzed, and the result was presented in mg/g.

2.6. Model Development

The partial least squares regression (PLSR) technique was applied to predict total
anthocyanins content in black rice. This multivariate method combines multiple regression
and feature-based extraction on the principal component analysis method, which may
predict the behavior of dependent variables based on the large datasets of independent
variables. The model of PLSR relies on the linear relationship between X and Y variables,
which creates a possibility to predict the component in the X variable [33]. The equations
to express the PLS model are as follows:

X = TPT + E (2)

Y = UQT + F (3)

U = TB + G (B = (TTT)
−1

TTU) (4)

where X is the independent variable matrix representing the spectral data, while Y rep-
resents the dependent variable related to the anthocyanins content of black rice. T and
U are score matrices, and P and Q are the X and Y loading matrices, respectively. The
E matrices denote the error matrices for the X and Y data. Finally, the inner relation be-
tween the spectral data and the anthocyanins content was constructed using least squares
(Equation (4). This technique was previously used in our study to predict anthocyanins in
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intact soybean using FT-NIR and FT-IR methods; thus, it is recommended because of the
excellent performance.

In this research, 1152 spectral data of seeds (36 seeds × 32 rice samples) and every seed
sample were randomly grouped into 9. The spectral data of each group were then averaging,
which resulted in 288 spectral data (9 spectra × 32 rice sample). The averaging process was
carried out to accommodate the probability of rice seed physical characteristics difference
within a single rice sample. The weight of 100 seeds of rice ranged from 1.46 to 2.44 g,
indicating rice size variability based on the variety. Average seed weight, which is closely
related to seed size, has been proven to affect the phytochemical content in soybean [34],
and is thought to have a similar effect on rice seed. The 288 spectral data for powder
samples were obtained from 32 varieties, with 9 data from each. The entire dataset was
divided into a calibration and validation dataset. The calibration dataset consisted of 70%
of the data, while the validation dataset consisted of 30% of the data.

The wavelength area used to develop the model ranged from 900 to 1800 nm. This
waveband selection was carried out based on the consideration that the illumination of a
tungsten-halogen light source equipped in the NIR-HSI only effective in that region even
though the sensing module of the instrument has a spectral range coverage of 895–2504 nm.
The reflectance intensity of the white image using the Teflon sheet (99% reflection) over
1800 nm was low and flat, meaning that the data obtained from this area is unreliable or noisy.

2.7. Image Processing

The capability of creating chemical images is one of the benefits of using hyperspectral
imaging in the prediction of chemical components in food and agricultural product. These
advantages provide a possibility to visualize the distribution of the evaluated chemical in
the examined sample. The chemical image was developed based on the beta coefficient of
the created model. The process of creating the chemical image was done by transferring the
3D hyperspectral image to a two-dimensional matrix and multiplying the matrix using the
PLS regression coefficient. The resulted matrix was then converted into a 3D image. The
visualization of the different anthocyanins concentrations in the samples was carried out
by summing the corresponding pixels of all band images. The following equation explains
the process to obtain a chemical image (Ichem):

Ichem =
n

∑
i=1

IiBi + C (5)

According to the equation, the hypercube image at the particular band (i) is denoted by Ii.
The PLS regression coefficient is represented by Bi, and the constant value is indicated by C.

3. Results and Discussion
3.1. The Spectral Characteristic of Black Rice

The rice spectral data based on the seed and powder sample in the 900–1800 nm
wavelength showed a similar pattern (Figure 3), characterized by several broad peaks in
the same region. The band ranged from 1000 to 1200 were assigned to CH second overtone,
which may come from aromatic or aliphatic compounds. The range of wavelengths between
1200 and 1600 nm is the region for the vibration of OH first overtone, NH first overtone, and
CH combinations [35]. The next area (1600–1800 nm) is assigned to the OH combination
band of water and CH first overtone [36].

Figure 3 also shows a distinct intensity based on the different concentrations of
anthocyanins in black rice. In the first range (1140–1350 nm), the CH second overtone band
arises. In the band range between 1400 and 1500, the CH combination from the aromatic
compound and OH first overtone stretching exist. Despite containing many CH groups,
cyanidin-3-glucoside, which is the most abundant anthocyanins in rice, is also rich in OH
groups in the structure [37].
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3.2. High-Performance Liquid Chromatography (HPLC) Result

The reference values for anthocyanins in this study were evaluated from thirty-two rice
samples planted in different years (2019 and 2020), and the result is presented in Table 2.

Table 2. The reference value of anthocyanins (mg/g) obtained through HPLC analysis.

Year Component Number of Rice Varieties Mean ± SD Max Min Range

2019
Total anthocyanins 16 0.41 ± 0.32 1.18 0.07 1.11

Cyanidin-3-glucoside 16 0.38 ± 0.29 1.07 0.07 1.00
Peonidin-3-glucoside 9 0.07 ± 0.02 0.11 0.05 0.06

2020
Total anthocyanins 16 0.91 ± 0.59 2.07 0.32 1.75

Cyanidin-3-glucoside 16 0.81 ± 0.56 1.89 0.26 1.63
Peonidin-3-glucoside 16 0.10 ± 0.03 0.18 0.06 0.12

2019–2020
Total anthocyanins 32 0.66 ± 0.53 2.07 0.07 0.12

Cyanidin-3-glucoside 32 0.59 ± 0.49 1.89 0.07 1.82
Peonidin-3-glucoside 25 0.09 ± 0.03 0.18 0.05 0.13

SD: Standard deviation.

Sixteen rice varieties harvested in 2019 contain anthocyanins at levels between
0.07 and 1.18 mg/g, while 2020 samples contain anthocyanins at levels ranging from
0.32 to 2.07 mg/g. Cyanidin-3-glucoside (C3G) is the most abundant anthocyanins in the
examined samples and can be evaluated in all rice varieties. Among 32 samples of black
rice, twenty-five samples contain peonidin-3-glucoside (Pn3G) in a shallow concentration,
ranging from 0.05 to 0.18 mg/g. A previous study by Park et al. (2008) [38] reported that
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C3G and Pn3G were the major anthocyanins identified in the Korean black rice, while Lee
(2010) [11] showed C3G as the highest anthocyanins type in black rice. C3G and Pn3G were
also reported as the most common anthocyanin types in Chinese black rice [12]. In this
research, the C3G concentration was similar to the total anthocyanins content. Thus, the
prediction model for anthocyanins in this study was only based on the total anthocyanins
content in rice.

3.3. Partial Least Square Regression (PLSR)

The multilinear regression model in this study was constructed using 288 spectra
ranging from 900 to 1800 nm for both seed and powder samples. The regression results of
the PLSR model for each pre-processing method developed using all samples comprising
all varieties and harvesting time are presented in Table 3. The obtained model of seed
samples showed an acceptable performance indicated by a high correlation coefficient (R2),
more than 0.85 and 0.75 for the calibration and validation dataset, respectively. The model
performances of the powder sample were better than those of seed samples, denoted by
higher R2, which were more than 0.9 for both the calibration and validation dataset for
all pre-processed and raw data, except for Savitzky–Golay’s (SG) first derivative on the
validation dataset. Anthocyanins in rice are not distributed uniformly throughout the seed,
which affects sample homogeneity. In addition, the standard error of the models developed
based on the seed sample was slightly higher than powder, indicating more scattered data.

Table 3. The partial least square regression (PLSR) model developed for predicting anthocyanins
content in rice using short wave infrared hyperspectral technique by applying the different pre-
processing methods.

Year Pre-Processing
Seed Sample Powder Sample

Rc2 SEC Rv2 SEP Rc2 SEC Rv2 SEP

2019

Raw 0.85 0.12 0.81 0.13 0.95 0.07 0.93 0.09
Mean Normalization 0.88 0.11 0.77 0.14 0.95 0.07 0.92 0.09
MSC 0.92 0.09 0.80 0.13 0.96 0.06 0.92 0.10
SNV 0.87 0.12 0.85 0.11 0.95 0.07 0.92 0.09
SG first derivative 0.94 0.07 0.79 0.13 0.95 0.06 0.88 0.11

2020

Raw 0.95 0.13 0.88 0.21 0.95 0.13 0.93 0.16
Mean Normalization 0.93 0.15 0.89 0.19 0.96 0.12 0.93 0.16
MSC 0.95 0.13 0.92 0.17 0.96 0.12 0.93 0.17
SNV 0.95 0.12 0.92 0.17 0.96 0.12 0.95 0.14
SG first derivative 0.91 0.17 0.80 0.26 0.95 0.13 0.81 0.28

Mixed
data

Raw 0.87 0.19 0.79 0.24 0.94 0.13 0.91 0.17
Mean Normalization 0.91 0.15 0.79 0.23 0.94 0.13 0.90 0.17
MSC 0.89 0.17 0.85 0.20 0.94 0.13 0.92 0.16
SNV 0.93 0.14 0.90 0.16 0.94 0.13 0.92 0.15
SG first derivative 0.85 0.20 0.75 0.26 0.93 0.14 0.84 0.22

MSC: Multiplication scatter correction; SNV: Standard normal variate; SG: Savitzky–Golay; SEC: Standard error
of calibration; SEP: Standard error of prediction in validation.

Furthermore, the model performance developed using a mixed sample of 2019 and
2020 samples was similar to the model constructed based on the separated harvesting time.
This phenomenon indicated the consistency of the model and proved the robustness of
the PLSR method to predict anthocyanins in rice using NIR-HSI data. Overall, the SNV
pre-processing method exhibited the highest performance (R2) of 0.93 in the calibration
dataset and 0.90 on the validation dataset for predicting rice anthocyanins based on seed
spectra of mixed samples. This performance is comparable to the previous study conducted
by Zhang et al. (2020) that predicted anthocyanins of dry goji berries and provided R2 of
0.91–0.95 [30]. The NIR-HSI technique coupled with LS-SVM also was efficiently employed
with R2

p 0.96 and RMSE 0.146 mg/g to quantify total anthocyanins in mulberry fruit
(Morus sp.) [39]. Another study conducted by Chen et al. (2015), which also proves
the feasibility of NIR-HSI to measure anthocyanins in wine grapes, obtained the highest
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accuracy (R2
p = 0.94, RMSE = 0.0046 mg/g) by PLS with smoothed spectra [40]. Our result

also revealed that model performance based on the powder was slightly better, denoted
by a higher correlation coefficient of calibration (Rc2) and validation (Rv2) (0.94 and 0.93,
respectively), and lower standard error on both calibration and validation datasets. This
result was understandable due to powder samples being more homogenous than seed
samples. Hence, the result will open up the door for using the NIR-HSI system to separate
rice seeds based on the anthocyanins content.

The bands which contributed to the model development can be identified using the
beta coefficient curve (Figure 3C,D). The specified bands of the seed and powder sample
were similar, around 1140 to 1350 nm, which can be associated with the CH second overtone,
and around 1450 nm representing the CH combination from the aromatic structure. Both
bands were in the range of influential bands used for predicting anthocyanins in Jaboticaba
fruit (Myrciaria jaboticaba (Vell.) O. Berg) [41]. The previous study by [40] also reported three
important wavebands similar to our finding (1050, 1250, and 1400 nm), which contributed
significantly to the development model predicting anthocyanins in wine grapes using
NIR hyperspectral imaging. This range of wavebands between 1415 and 1512 nm is also
reported as essential wavebands for flavonoid constituents [42].

3.4. Visualization Image Based on Anthocyanins Content in Rice

The effectiveness of the HSI image to visualize the chemical content in powder sam-
ples has been proven by several researchers. HSI has been successfully used to detect and
quantify apricot in almond powder [43] and detect peanuts and walnuts in wheat pow-
der [44]. In this study, PLS images were generated to visualize the content of anthocyanins
in black rice powder and seeds. The chemical image provided the spatial distribution and
the anthocyanins concentration of the sample, which are essential to assist in anthocyanins
determination. Anthocyanins content in the powder sample was clearly confirmed at a
range from 0.08 to 2.07 mg/g by the corresponding color bar shown in Figure 4A, in which
the color changes from blue to red following the increase in anthocyanins concentration.
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Meanwhile, the color of seeds within a single variety varied, indicating the antho-
cyanins content variability (Figure 4B). The color gradation based on the concentration
could not distinguish the group of seeds based on the anthocyanins content due to the
variability of the anthocyanins content within a single variety. In this experiment, the
anthocyanins content was examined based on the rice variety. The evaluation of the micro-
components of rice could not be done for every single seed due to the minimum weight
requirement in the extraction process. Hence, to justify the prediction on a single seed, the
average anthocyanins content within each variety was calculated (Figure 5). The average
value was compared to the reference value from HPLC and was followed by calculating
the root mean square error (RMSE) to evaluate the prediction accuracy.
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The average and the broadest error between mean prediction and reference values
were 0.16 and 0.49 mg/g, respectively. The RSME value was 0.21 mg/g, slightly higher
than the SEP value of the model of 0.16 mg/g. Among thirty-two varieties, only seven
varieties revealed an error higher than the RMSE value, and four of them were varieties with
high anthocyanin concentration (more than 1 mg/g). In this experiment, only six varieties
contained anthocyanins concentrations of more than 1 mg/g, which possibly affected the
model’s development. The prediction plot for all varieties is presented in Figure 6.
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4. Conclusions

A novel technology to predict anthocyanins, a micro-component in rice for single
seed, was reported in our research in a rapid and non-destructive technique. The model’s
performance to predict anthocyanins in seeds was evaluated by comparing the model’s
performance based on the powder sample. NIR hyperspectral imaging combined with
PLSR resulted in a prediction performance (R2) of 0.75–0.90, with SEP ranging from
0.26 to 0.16 mg/g. The SNV pre-processing method significantly improves the model per-
formances, denoted by the highest R2 of 0.85–0.95 and lowest SEP of 0.11–0.16 mg/g. This
performance was comparable to the model developed based on the powder sample with R2

and SEP of 0.92–0.95 and 0.09–0.15 mg/g, respectively. A chemical image clearly confirmed
the anthocyanins content in the powder sample. The anthocyanins prediction based on
seed samples showed the potential of NIR hyperspectral imaging to predict anthocyanins
in a single seed of rice.

The HSI approach provides the potential for rapid analysis of a large numbers of
seeds. Even though the single seed evaluation is not a substitute for the bulk analysis of
anthocyanins, particularly in black rice, it can open up the possibility to develop an online
chemical-based sorting machine for seeds. This machine has a potential application in the
quality control of seed in the manufacturing industry as well as in the breeding program.
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