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Abstract: Palladium-based carbon catalysts (Pd/C) can be potentially applied as an efficient catalyst
for Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Herein, a variety of catalysts of pal-
ladium on activated carbon were prepared by varying the content of ‘Pd’ via an in situ reduction
method, using hydrogen as a reducing agent. The as-prepared catalysts (0.5 wt % Pd/C, 1 wt % Pd/C,
2 wt % Pd/C and 3 wt % Pd/C) were characterized using X-ray diffraction (XRD), scanning electron
microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET)
analyses. The catalysts were tested as a coupling catalyst for Suzuki–Miyaura coupling reactions
involving aryl halides and phenyl boronic acid. The optimization of the catalyst by varying the
palladium content on the activated carbon yielded Pd/C catalysts with very high catalytic activity for
Suzuki reactions of aryl halides and a Mizoroki–Heck cross-coupling reaction of 4-bromoanisol and
acrylic acid in an aqueous medium. A high ‘Pd’ content and uniform ‘Pd’ impregnation significantly
affected the activity of the catalysts. The catalytic activity of 3% Pd/C was found to make it a more ef-
ficient catalyst when compared with the other synthesized Pd/C catalysts. Furthermore, the catalyst
reusability was also tested for Suzuki reactions by repeatedly performing the same reaction using the
recovered catalyst. The 3% Pd/C catalyst displayed better reusability even after several reactions.

Keywords: palladium; carbon; catalyst; Suzuki–Miyaura coupling; Mizoroki–Heck

1. Introduction

Transition metal-facilitated cross-couplings, specifically Suzuki–Miyaura, Sonogashira,
Heck, Hiyama, Stille, Negishi and Kumada reactions, are significant tools for C–C bond
formation [1–7]. The significance of carbon–carbon bonds in establishing reactions is
heavily acknowledged in various fields such as natural and biological products, polymers
and particularly in catalysis [8,9]. The industrial significance of Suzuki and Heck couplings,
along with several others, has particularly generated considerable advancement in the
progress of C–C bond reactions. Suzuki–Miyaura couplings have been especially widely
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exploited in recent years [10,11], which potentially offer quick entry to biaryl frameworks
via the sp2–sp2 connection [12]. Suzuki–Miyaura and Mizoroki–Heck cross-coupling
reactions are extensively applied, owing to their excellent properties such as mild reaction
conditions, easy availability of precursors, good stability under aerobic conditions and
the use of nonhazardous boronic acids as precursors. So far, reports on the use of several
palladium-, nickel- and gold-based compounds as catalysts for cross-coupling reactions
have been published [13,14].

Among the various transition metals, Suzuki–Miyaura reactions are usually catalyzed
by palladium-based homogenous catalysts that have shown high catalytic activity. How-
ever, under homogeneous conditions, catalysts require hazardous ligands like phosphine
or other N-heterocyclic compounds [15], and moreover, separating the catalysts after the
reaction is cumbersome process. This not only causes contamination of the product but also
severely affects the recovery of the catalysts [16–18]. The separation of leached catalysts
from the product solution requires the application of costly filtration membranes or other
chromatographic techniques. Therefore, tremendous efforts have been made over the
years to develop heterogeneous processes with the aim of replacing homogenous sys-
tems. Recently, the advancement of nanotechnology has led to the development of highly
efficient palladium nanoparticle (Pd NP)-based heterogeneous catalysts [19,20]. These
catalysts possess excellent catalytic activity due to their remarkable physicochemical prop-
erties (high surface area) and are successfully used as replacements for the conventional
organometallic-based compounds for Suzuki–Miyaura coupling reactions [10,21–24].

Currently, ‘Pd’ is considered the most exciting heterogeneous catalyst in coupling reac-
tions due to its size, shape and other catalytic activities [25–27]. Among various reactions,
the palladium-catalyzed coupling reactions involving aryl halides and phenyl/aryl boronic
acids are considered the most beneficial approaches for the development of biaryl units,
which are highly useful as intermediates in numerous pharmaceuticals and polymers like
electroluminescence materials [28]. However, in many cases, the application of Pd NPs has
been seriously restricted due to the inefficiency of separation methods like centrifugation
and filtration for the recovery of whole nanoparticle-based catalysts [25]. Additionally, NPs
are also susceptible to agglomeration under reaction conditions. Therefore, to overcome
these issues, supported Pd NPs are preferred for C–C cross coupling reactions. Thus
far, significant efforts have been made toward improving a variety of novel and effective
palladium-based supported catalysts for Suzuki–Miyaura coupling reactions [29]. Re-
cently, the synthesis of Pd-based graphene nanocomposites for Suzuki–Miyaura coupling
reactions have successfully reported [10,28,30–32].

Besides that, carbon nanotubes have also been developed as competent supports for
palladium and applied extensively as catalysts for C–C cross-coupling reactions [33–35].
The carbon nanotubes can be uniformly dispersed in a solution, owing to their small
size, thus enhancing the interactions among the reactants and the catalyst [33]. However,
the sophisticated synthesis of CNTs and the difficulty in dispersing the nanoparticles on
their surfaces seriously hinders their practical applications. Thus, the improvement of
simple and efficient approaches for the synthesis of highly active, supported Pd–based
nanocatalysts still remains challenging [36].

In this regard, palladium-based carbon support nanocomposite materials have been
extensively useful in cross-coupling reactions [37,38]. Nevertheless, Pd/C or other hetero-
geneous, Pd-catalyzed C−C couplings are commonly established for the preparation of a
variety of organic molecules. Moreover, carbon as a solid support certifies a greater surface
area associated with the analogous silica and alumina-supported catalysts [38]. Palladium-
based carbon catalysts are stated to be more stable in air and water, as well as acids and
bases, and often do not require reactions to be performed under an inert atmosphere [38].
Indeed, Pd/C-catalyzed Suzuki reactions can be effectively accomplished under diverse
reaction conditions, including in aqueous media [39,40], in organic media [41–43] and
under microwave circumstances [44–46].
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Here, we report on palladium on activated carbon catalysts, which were prepared by
varying the content of ‘Pd’ via an in situ reduction method using hydrogen as a reducing
agent. The as-prepared various concentrations of the Pd/C catalysts were character-
ized by a number of methods, comprising XRD, SEM, EDX and BET. The as-synthesized
Pd/C catalysts were applied to Suzuki–Miyaura and Mizoroki–Heck cross-coupling re-
actions. The synthesized 3% Pd/C catalyst showed exceptional catalytic efficiency to-
ward the Suzuki–Miyaura and Mizoroki–Heck reactions under facile environments in
aqueous conditions.

2. Materials and Methods
2.1. Materials

Palladium (II) chloride (99.99%), chlorobenzene (99.5%), iodobenzene (99%), bro-
mobenzene (99.5%), 4-bromoanisol (99.5%), acrylic acid (99%), sodium dodecyl sulfate
(98%), phenyl boronic acid (95%), tripotassium phosphate (98%) and all organic solvents
were procured from Sigma-Aldrich, St. Louis, MO, USA.

2.2. Methods
2.2.1. Catalyst Preparation

Pd loaded on activated carbon, designated Pd/C, was made by stirring activated
carbon powder with a stoichiometric amount (wt %) of palladium (II) chloride (Sigma
Aldrich) together in water at 80 ◦C for 24 h, followed by filtration and washing using
distilled water. Then, the sample was dried at 100 ◦C, and the sample was reduced by a
hydrogen flow at 250 ◦C for 2 h.

2.2.2. Suzuki–Miyaura Reaction Catalyzed by a Pd/C Nanocatalyst

The Suzuki–Miyaura coupling reaction procedure is provided in the Supplemen-
tary Materials.

2.3. Mizoroki–Heck Cross-Coupling Reaction

In an air-tied screw-capped vial (10 mL), a 3%Pd/C (10 mg) catalyst, K3PO4 (424 mg,
2.0 mmol), SDS (288 mg, 1.0 mmol) and water (4 mL) were charged with a small magnetic
stir bar. Then, aryl halides (1.1 mmol) were added to it, followed by acrylic acid (72 mg,
1.0 mmol). The reaction was left stirring at 100 ◦C for 10 h. Then, the vial was cooled
to room temperature. The reaction mass was basified with aqueous K2CO3 (4 M, 4 mL),
followed by being washed with ethyl acetate (2 × 2 mL). Then, the aqueous layer was
again acidified with HCl (4 M, PH = 1–2), and the product was extracted in ethyl acetate
(3 × 5 mL). The combined ethyl acetate was dried over anhydrous Mg2SO4. The organic
layer was concentrated under reduced pressure to afford pure compounds 3a–e. All the
products were characterized by 1H-NMR and 13C-NMR spectra (Supplementary Materials,
Figures S1–S10).

2.4. Characterization

The characterization and instrumental details are provided in the Supplemen-
tary Materials.

3. Results and Discussion
3.1. XRD Analysis

In the beginning, XRD was applied to examine the formation and crystallinity of the
Pd/C catalyst. The first peak at the lower Bragg’s angle of 24.8◦ was related with the
graphite (200) plane of the activated carbon support as shown in Figure 1. For the Pd/C
catalyst, the typical diffraction peaked at 40.1◦ (111), 46.5◦ (200), 68.3◦ (220), 81.7◦ (311) or
86.4◦ (222), corresponding to the face-centered cubic crystalline structure. This confirmed
the successful deposition of Pd on the surface of the activated carbon.
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Figure 1. XRD analysis of 3% Pd/C.

3.2. SEM and EDX Analysis

The texture of the as-prepared Pd/C catalyst was scrutinized by SEM analysis
(Figure 2), and it was found that the catalysts prepared were found to possess a rugged,
undefined morphology, and there was no effect when increasing the Pd upon the carbon
support. The images obtained are given in Figure 3. The percentage of composition of Pd
in the catalytic system was confirmed by EDX studies, which revealed that the Pd % in the
3% Pd/C catalyst contained 2.88% Pd, which was close to the theoretical percentage.
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Figure 2. SEM images of the 0.5%, 1%, 2% and 3% Pd/C catalysts.
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Figure 3. EDX analysis of 3% Pd/C.

3.3. BET Analysis

The as-prepared Pd/C catalysts were studied to evaluate their adsorption profiles,
and it was found that all the prepared materials exhibited that, with the increase in the
percentage of Pd, the amount of N2 adsorbed increased, indicating enhanced interacting
sites with the increase in the Pd percentage (Figure 4). The pore size distribution obtained
from the studies revealed that the pore sizes of the 0.5–2% catalysts were found to be in
the range of 200–600 nm, and the pore volume obtained indicated that the pores were
deep channels in the range of 0.07–0.08 cm3/g. The catalyst with 3% Pd/C was found to
possess a pore size distribution of 25–150 nm, and the pore volume indicated the formation
of shallow pores. Moreover, the BET surface areas of the samples increased with the
increasing of Pd content; the 0.5%, 1%, 2% and 3% Pd demonstrated surface areas of 837,
838, 841 and 933 m2/g, respectively.
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3.4. Suzuki Reaction Catalyzed by the Pd/C Catalyst

In this study, the Pd/C catalyst was assessed in the Suzuki–Miyaura coupling of
halobenzene with phenylboronic acid (Figure 5). S comparison between the catalytic
performances of the prepared catalysts (i.e., 0.5% Pd/C, 1% Pd/C, 2% Pd/C and 3% Pd/C)
was carried out for the substrate iodobenzene and phenyl boronic acid, and it was found
that the amount of Pd in the catalytic system had a significant effect on the catalytic activity
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of the resultant catalyst. Among various catalysts, the 3% Pd/C yielded a 100% coupled
product within 10 min, while the 1% Pd/C and 2% Pd/C catalysts yielded 100% coupled
products within 20 min and 15 min, respectively. However, the 0.5% Pd/C catalyst yielded
a ~80% coupled product in 60 min. The outcomes exposed that the iodo-substituted aryl
compound yielded a 100% coupled product at the fastest reaction rate within 10 min when
the 3% Pd/C catalyst was employed. However, when the same catalyst was used for
the coupling of bromo- and chloro-substituted aryl substrates, it yielded a 100% coupled
product within 40 min and ~85% within 150 min, respectively. The difference in the
rate of the reaction can be ascribed to the increasing anionic nature among the halogens
down the group. The reaction kinetics was done using the GC, which was scrutinized by
accumulating the reaction mixture at equivalent time intervals and quenched straightaway.
The data graphical representation is shown in Figure 6.
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Figure 6. Chemical kinetics plot of the Suzuki reaction using a Pd/C catalyst for various substrates: (A) chlorobenzene,
(B) bromobenzene and (C) iodobenzene. (D) Recyclability studies for the Pd/C 3% catalyst, using iodobenzene as the
main reactant.

The as-synthesized Pd/C catalysts were evaluated for their reusability to investigate
the reduction in the catalytic activity with repeated reuse. The reactions were performed in
a similar approach to the aforementioned process. Using iodobenzene as the main reactant,
the residual catalyst was collected by centrifugation after the reaction’s completion. The
catalyst was washed away many times with water to exterminate any residual impurities.
It was witnessed that there was a reduction in the product percentage formed upon reuse.
The product percentage depreciated up to 76% when used up to 5 times.
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3.5. Mizoroki–Heck Cross-Coupling Reaction by the Pd/C Catalyst

The Pd/C catalyst for the Mizoroki–Heck cross-coupling reaction of 4-bromoanisol
and acrylic acid in an aqueous medium was optimized as follows (Figure 7).
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Figure 7. Pd/C-catalyzed MH-C reaction of p-bromoanisol (1a) and acrylic acid.

In an air-tied screw-capped vial (10 mL), an x% Pd/C catalyst (5–15 mg), K3PO4
(1.0–2.5 mmol), SDS (0.5–1.5 mmol) and water (4 mL) were charged with a small magnetic
stir bar. Then, p-bromoanisol 1a (1.0 mmol) was added, followed by acrylic acid (1.0 mmol).
The reaction was left stirring at 70–100 ◦C for 2–20 h. The reaction was monitored by
TLC chromatography and purified by acid–base purification techniques. The findings are
reported in Table 1.

Table 1. Mizoroki–Heck reaction optimization of the Pd/C catalyst.

Sl.
No. Catalyst Wt. of

Catalyst K3PO4 SDS Temp.
(◦C)

Time
(h)

Isolated
Yield

1 3.0% Pd/C 10 mg 1.0 eq. - 100 10 h No reaction
2 3.0% Pd/C 10 mg 1.0 eq. 0.5 eq. 100 10 h 27%
3 3.0% Pd/C 10 mg 1.0 eq. 1.0 eq. 100 10 h 46%
4 3.0% Pd/C 10 mg 1.0 eq. 1.5 eq. 100 10 h 47%
5 3.0% Pd/C 10 mg 1.5 eq. 1.0 eq. 100 10 h 63%
6 3.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 10 h 89%
7 3.0% Pd/C 15 mg 2.5 eq. 1.0 eq. 100 10 h 87%
8 0.5% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 10 h 45%
9 1.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 10 h 57%

10 2.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 10 h 76%
11 3.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 2 h 17%
12 3.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 5 h 34%
13 3.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 100 16 h 86%
14 3.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 90 20 h 11%
15 3.0% Pd/C 10 mg 2.0 eq. 1.0 eq. 110 20 h 83%

The catalytic activity of a newly synthesized Pd/C nanocatalyst for a Mizoroki–Heck
cross-coupling reaction in an aqueous medium was tested. The 4-bromoanisol and acrylic
acid were taken as the standard substrates for the reaction optimization process (Figure 8).
Our initial results are summarized in Table 1. Initially, the MH-C coupling reactions were
tried with 10 mg of the 3%Pd/C catalyst and 1 eq. of K3PO4 in water (4 mL) at 100 ◦C for
10 h. Without the use of sodium dodecyl sulfate, no reaction took place (Table 1, entry 1).
However, with the use of 0.5 eq. of sodium dodecyl sulfate (SDS), a 27% yield was observed
(Table 1, entry 2). Then, the reaction was carried out using the same 3%Pd/C catalyst in the
presence of 1.0 eq. and 1.5 eq. of SDS while keeping the other parameters unchanged, but
the yields remained almost the same (46% and 47%, respectively) (Table 1, entries 3 and 4).
In order to increase the conversion, 1.5 eq. and 2.0 eq. of K3PO4 were used in the reaction
under the same reaction conditions, and 63% and 89% yields were found, respectively
(Table 1, entries 5 and 6), which shows a sharp improvement in conversion. We then further
tried to improve the yields using 15 mg of the catalyst and 2.5 eq. of K3PO4 under similar
conditions, but no further improvement was observed (87%, Table 1, entry 7). Similar
reactions were tried using the 0.5%, 1.0% and 2% Pd/C catalysts, and the respective yields
were found to be 45%, 57% and 76% (Table 1, entries 8–10). We further tried to optimize
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the reaction time and temperature, and it was observed that a reaction at 100 ◦C for 10 h
gave the best results (Table 1, entries 11–15). It is evident from the above findings that the
3% Pd/C catalyst (10 mg) in the presence of 2 eq. of K3PO4 and 1 eq. of SDS at 100 ◦C in
10 h produced the best conversion.
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Therefore, in order to investigate the substrate scope, an MH cross-coupling reaction
was performed under the optimized reaction conditions with several aryl halides and
acrylic acid. The results are summarized in Table 2.

Table 2. 3%Pd/C catalyst Mizoroki–Heck reaction of aryl halides with acrylic acid.

Sl. No. Aryl Halides 1a–f 2a–e Isolated Yield

1 4-bromoanisol 1a 2a 89%
2 3-bromoanisol 1b 2b 85%
3 2-bromoanisol 1c 2c 72%
4 4-Iodotoluene 1d 2d 87%
5 4-Iodobenzene 1e 2e 91%
6 4-bromobenzene 1f 2e 88%

Reaction Conditions: 3% Pd/C (10 mg), K3PO4 (424 mg, 2 mmol), SDS (72 mg, 1 mmol), H2O (4 mL), aryl halide
(1.0 mmol) and acrylic acid (1.0 mmol) at 100 ◦C for 10 h (isolated yields).

The turnover frequency (TOF) and turnover number (TON) values for the 3% Pd/C
catalyst were calculated and are graphically illustrated in Figure 9. It was found that the
TOF and TON values for the Suzuki coupling reaction were 118 and 20 h−1. For the Heck
coupling, the TOF and TON values were 1.2 and 12 h−1.
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Under the optimized reaction conditions, all the aryl halides (1a–f) reacted with the
acrylic acid very well, with moderate to good yields (Table 2). The lower yield in the case
of 2-bromoanisol could be due to the steric hindrance of the ortho-substitution (2c, 72%) of
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bromoanisol. The highest yields were observed for iodobenzene (2e, 91%) and iodotoluene
(2d, 87%). The reusability of the 3% Pd/C catalysts was tested for Mizoroki–Heck reaction
efficiency. The reactions were done in a similar approach to the above-mentioned process.
Using a standard p-bromoanisol substrate and acrylic acid, the residual catalyst was
collected by filtration after the completion of the reaction. The catalyst was washed with
copious amounts of water to eliminate any residual impurities. It was found that there was
a decrease in the percentage of product formed upon repeated use. The product percentage
depreciated up to 78% when used up to 3 times (Figure 10).
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4. Conclusions

A Pd/C catalyst was synthesized via an in situ synthesis method, using hydrogen gas
as a reducing agent. The incorporation of ‘Pd’ nanoparticles on the surface of active carbon
led to strong catalytic activity of the resultant catalyst. To examine the effect of the amount
of ‘Pd’ on the catalytic activity of the catalyst, various catalysts were prepared by varying
the palladium content. The as-prepared catalysts were identified by XRD, SEM, EDX and
BET. The Pd/C catalyst containing 3% Pd demonstrated excellent catalytic activity toward
the Suzuki–Miyaura and Mizoroki–Heck reactions. Moreover, the catalyst’s reusability
was also verified by repeated execution of the same reaction using the reused catalyst. The
3% Pd/C catalyst showed exceptional reusability even after numerous reactions.
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