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Abstract: In the present work, a multiscale post-seismic relaxation mechanism, based on the ex-
istence of a distribution in relaxation time, is presented. Assuming an Arrhenius dependence of the 
relaxation time with uniform distributed activation energy in a mesoscopic scale, a generic loga-
rithmic-type relaxation in a macroscopic scale results. The model was applied in the case of the 
strong 2015 Lefkas Mw6.5 (W. Greece) earthquake, where continuous GNSS (cGNSS) time series 
were recorded in a station located in the near vicinity of the epicentral area. The application of the 
present approach to the Lefkas event fits the observed displacements implied by a distribution of 
relaxation times in the range τmin ≈3.5 days to τmax ≈350 days. 

Keywords: post seismic relaxation; cGNSS; hierarchically constrained dynamics; Lefkas earth-
quake 
 

1. Introduction 
Earthquake rupture creates static stress changes within the lithosphere that are large 

enough to produce transient deformation that can be observed on the Earth’s surface. 
Satellite geodesy using GNSS techniques for observing Earth’s surface displacements 
have advanced in such a level that the post-seismic deformation can be monitored with 
high accuracy [1]. 

To study post-seismic relaxation, various mechanisms have been proposed, such as 
those of poroelasticity of the rock medium [2,3], shallow after-slip on the main faulting 
plane or nearby faults [4,5], and viscoelastic relaxation [6]. The after-slip mechanisms are 
localized and follow logarithmic decay [4,7], while the viscoelastic one is supported by a 
bulk deformation process and exhibits exponential decay [8–10]. 

In [11], it was demonstrated that, during the first 6 months following the 1999 
Chi-Chi earthquake (M = 7.6, Taiwan), both the post-seismic relaxation and the cumula-
tive number of aftershocks followed the same temporal dependence, which reduced to a 
logarithmic one after a long time from the main event. In addition, logarithmic defor-
mation could be explained by an exhaustion process, which is based on the assumption 
that the number of sources of strain-producing events evolve according to a thermally 
activated process, in which the activation energy is stress dependent [12]. 

The recent strong earthquakes present examples where the macroscopic 
post-seismic deformation is interpreted in view of the above relaxation mechanisms, 
which are based on the assumption of a single relaxation time estimated for each post 
seismic relaxation observed [13–18]. 
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Experimental results and theoretical models suggest that post seismic relaxation is 
thermally activated and enhanced by the presence of fluids [19]. Deformation is con-
trolled by a variety of temperature-dependent healing processes that are related to the 
crack size [20,21]. Since different crack sizes have different activation energy, the associ-
ated relaxation processes operate at different timescales [22], indicating an intrinsic or-
ganization [23] with a distribution of relaxation times, instead of the use of a single one. 
The latter implies that post-seismic relaxation could be viewed as the superposition of 
several different relaxation times, each one activated in different mesoscopic domains of 
the macroscopic relaxed seismic volume. Thus, the macroscopic relaxation observed re-
sults from the superposition of different relaxation times on the microscopic–mesoscopic 
scale, which obviously operates on different spatiotemporal scales. The recovery process 
that returns the deformed volume to equilibrium after a strong earthquake could be 
characterized as a slow dynamics process [24], because an instantaneous perturbation 
causes a transient response, which moves the system to a state of equilibrium [25–30]. It 
is, thus, possible that relaxation, which varies with the logarithm of time, can be inter-
preted as the result of the superposition of relaxation mechanisms with a spectrum of 
relaxation times. 

The purpose of this work is to give a description of the post seismic deformation 
relaxation. It is based on the thermodynamic Arrhenius model for the distribution of the 
relaxation times [31] and describes the post-seismic recovery as a slow thermodynamic 
process taking place in a mesoscopic scale. The model predicts a physically accepted fi-
nite value just after the co-seismic perturbation, a logarithmic time dependence for the 
time period between the minimum and maximum relaxation time, and an exponential 
decay while approaching an equilibrium state a long time after the main event. Based on 
that, the explanation that relaxation occurs as a logarithm of time does not depend on the 
details of Earth’s physical and chemical properties, but is based on a generic, or even a 
universal, multiscale property of the relaxation mechanism, as resulted from the Arrhe-
nius expression, which connects relaxation time with the activation energy of the relaxa-
tion process. 

To test the proposed approach for the post-seismic relaxation, positioning data from 
the continuous GNSS station PONT ([32] and www.geodesy.gein.noa.gr (accessed on 30 
December 2020) located in the southern part of Lefkas Island were used. This cGNSS 
station is located in the close vicinity of the earthquake epicenter of the 17 November 
2015 Mw6.5, shallow event (~10 km depth), that occurred on the island, causing severe 
damages and human losses. 

2. A Thermodynamic Model of Post Seismic Relaxation 
A post-seismic transient deformation stage, where strain varies with time at a de-

creasing rate, occurs following the instantaneous deformation during an earthquake. 
Transient deformation is followed by the return to steady-state deformation, where the 
strain rate is a constant after some time following the main event. 

Following [33], we define a relaxation function R(t), where t is the time after the main 
seismic event, as a perturbation of the displacement given by the generic expression: 𝑢ሺ𝑡ሻ = 𝑢ஶ + 𝑆 𝑅ሺ𝑡ሻ  (1)

where 𝑢ஶ is the equilibrium value of displacement after a long time and S is a scaling 
factor. Notice that 𝑅ሺ𝑡 → ∞ሻ ≈ 0, while 𝑢ஶ = 𝑢ሺ𝑡 → ∞ሻ is the remaining distortion at the 
end of the relaxation process. The initial value 𝑢௢ of the post-seismic deformation im-
mediately after the co-seismic perturbation δuc is given from Equation (1) as 𝑢௢ =𝑢ሺ𝑡 = 0ାሻ = 𝑢ஶ + 𝑆 𝑅ை, where 𝑅଴ = 𝑅(𝑡 = 0). The scaling factor S of the relaxation con-
strains the rheological properties of the medium [34,35] and depends on the rheology of 
the crust and upper mantle, as well as on the local conditions around the site (i.e., crustal 
heterogeneities). In addition, S depends on the stress released in the medium and reflects 



Appl. Sci. 2021, 11, 4817 3 of 17 
 

the response of the medium (i.e., of the magnitude of the earthquake event) after the 
co-seismic displacement due to earthquake. 

In most of the cases a simple relaxation mechanism with a single relaxation time τ 
that corresponds to a relaxation function exp (−t/τ) (i.e., not varying logarithmically with 
time) is the simplest rheological model introduced to explain post-seismic deformation, 
known as the linear Maxwell model [6]. In this case: 

Ro=1,          𝑢௢ = 𝑢ஶ +  𝑆 and 𝑢(𝑡) = 𝑢ஶ +  𝑆 𝑒ି௧ ఛൗ      (2)

while the normalized displacement is D(t) = ୳(୲)௨೚ = ଵା ೄೠಮ௘ష೟ ഓൗ  ଵା ೄೠಮ . In Figure 1, we plot the 

displacement as a function of normalized time 𝑡 𝜏ൗ . In the very early stage, expanding the 

exponential in Equation (2) leads us to 𝑢(𝑡) = 𝑢ஶ + 𝑆 ቀ1 −  ௧ఛቁ  or D(t) = 1 − ೄೠಮ ଵା ೄೠಮ  ௧ఛ , a 

linear expression of normalized displacement with time, which for ௌ௨ಮ ≫ 1, leads to D = 
1-(t/τ) with the slope equal to 1/τ, and independent of S. 

 
Figure 1. Example of exponential relaxation (see Equation (1)) with S = 5 mm, u∞ = −25 mm and τ = 
300 days. 

We proceeded to study a post-seismic relaxation process with a spectrum of relaxa-
tion times within the range defined by the minimum and maximum values 𝜏௠௜௡, 𝜏௠௔௫ of 
relaxation time, respectively. If f(τ) is the distribution function of the relaxation time, 
then: 𝑅(𝑡) = න 𝑓(𝜏)𝑒ି௧ ఛൗ 𝑑𝜏  ఛ೘ೌೣఛ೘೔೙  (3)

The expression (3) is based on the assumption that the total macroscopic relaxation 
observed is a result of the superposition of relaxation processes operating with different 
relaxation times τ. This approach could be viewed as a generalization of the Burgers 
body rheological model [8,36,37], expanding the two discrete relaxation times to a con-
tinuum spectrum in the range values 𝜏௠௜௡, 𝜏௠௔௫. 

Assuming a relaxation process with activation energy E, then following Arrhenius’ 
law [31], the relaxation time is given by: 𝜏 = 𝜏଴𝑒ா ௞ಳ்ൗ    (4)
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with 𝜏଴ a constant proexponential factor, T the temperature, and kB the Boltzmann con-
stant. If the activation energy is distributed following a distribution function N(E), then 
the distribution function f(τ) for the relaxation times satisfies the expression f(τ) 
=N(E)(dE/dτ). Using Expression (4), dτ/dE= (𝜏଴/kBT)exp (E/kBT) = τ/kBT, hence: 𝑓(𝜏) = 𝑘஻𝑇𝑁(𝐸)𝜏     (5)

In the case of a uniform distribution of the activation energy, bounded by a mini-
mum Emin and maximum Emax activation energy, N(E) has a constant value No, which, 
according to Equation (5) for a temperature T, leads to a distribution of relaxation times 𝑓(𝜏) = (𝑘஻𝑇𝛮଴)/𝜏, which is proportional to 1/τ. It is evident that the minimum 𝜏௠௜௡ and 
maximum 𝜏௠௔௫ relaxation times are related to the corresponding minimum and maxi-

mum activation energies by the expressions 𝜏௠௜௡ = 𝜏଴𝑒ா೘೔೙ ௞ಳ்ൗ  and 𝜏௠௔௫ = 𝜏଴𝑒ா೘ೌೣ ௞ಳ்ൗ  
and, thus, 𝛥𝛦 = 𝐸௠௔௫ − 𝐸௠௜௡ = 𝑘𝑇 ln (ఛ೘ೌೣఛ೘೔೙). 

The macroscopically observed relaxation is given by the superposition of relaxation 
processes, expressed as: 𝑅(𝑡) = 𝐶 න 1𝜏ఛ೘ೌೣఛ೘೔೙ 𝑒ି௧/ఛ𝑑𝜏  (6)

where C = 𝑇 𝑁௢ is a constant for a given T and No, which is omitted in the calculation 
merging it with the scaling parameter S. We note that No is a constant value for a uniform 
distribution of energy N(E) between its minimum Emin and maximum Emax value. The 
weight factor 1/τ in Equation (6) is a result of the application of Arrhenius’ law due to 
mesoscale relaxation processes operating on different timescales. In Figure 2, we present 
examples of the relaxation function with time on a logarithmic scale along the horizontal 
axis with a constant 𝜏௠௜௡and various values of 𝜏௠௔௫. In a logarithmic scale, the curve in 
Figure 2 decreases almost linearly, up to a time t ≈ τmax, and at the end, it flattens out. 
Thus, the relaxation function R(t) is proportional to ln (t) for t << τmax. Based on that, the 
maximum relaxation time τmax could be estimated as the time where the relaxation curve 
flattens out. 

 
Figure 2. The relaxation function R(t) (see Equation (6) in the text) for τmin = 5 days and τmax = 200, 
400, 600 days. 

The integral in Equation (6) is the exponential integral E1(x) [38], which can not be 
solved analytically but behaves like a negative exponential for very large values of the 
argument and decays on a logarithmic mode in the intermediate range of the relaxation 
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curve R(t) while deviating from a logarithmic time dependence for t < τmin. Furthermore, 
as results from Equation (6) when t = 0, R(t) can be calculated analytically: 𝑅଴ = 𝑅(𝑡 = 0) = ln ൬𝜏௠௔௫𝜏௠௜௡൰   (7)

supporting the physical condition to have a finite relaxation function for t = 0. Since Δ𝛦 = 𝐸௠௔௫ − 𝐸௠௜௡ = 𝑘𝑇 ln ቀఛ೘ೌೣఛ೘೔೙ቁ = 𝑘𝑇𝑅଴, the finite value of the relaxation function for t = 
0 is required in order for the energy range Δ𝛦 to be a finite quantity. Taking the deriva-
tive of R(t) with respect to t, we form the following equation: 𝑑𝑅𝑑𝑡 =  1𝑡 ቀ𝑒ି௧ ఛ೘೔೙ൗ −  𝑒ି௧ ఛ೘ೌೣൗ ቁ (8)

which, for τmin  ≈ t≪τmax, expands exponentially and leads to ቂௗோ(௧)ௗ௧ ቃ௧ୀ଴ = −ቀ ଵఛ೘೔೙ −ଵఛ೘ೌೣ ቁ  and 

𝑅(𝑡) ≈ ln ൬𝜏௠௔௫𝜏௠௜௡൰ − ൬ 1𝜏௠௜௡ − 1𝜏௠௔௫ ൰ 𝑡 =  𝑅଴ −  ൬ 1𝜏௠௜௡ − 1𝜏௠௔௫ ൰ 𝑡 (9)

In the observed cases where τmax ≫ τmin, the slope of R(t) vs. t at t = 0 is well ap-
proximated as ቂௗோ(௧)ௗ௧ ቃ௧ୀ଴ = − ଵఛ೘೔೙, while the ratio of the slope to R(0) follows the expres-

sion: ଵோ(௧ୀ଴) ቂௗோ(௧)ௗ௧ ቃ௧ୀ଴ = ଵఛ೘೔೙  ln ቀఛ೘ೌೣఛ೘೔೙ቁ = ோ೚ఛ೘೔೙. 
Introducing expression (9) in (1), the very early stage displacement immediately 

following the co-seismic one is given by the expression: 𝑢(𝑡) = 𝑢ஶ + 𝑆𝑅଴ − 𝑆 ൬ 1𝜏௠௜௡ − 1𝜏௠௔௫  ൰ 𝑡 = 𝑢௢ − 𝐹ଵ𝑡 (10)

where the slope of Equation (10) is 𝐹ଵ = 𝑆 ቀ ଵఛ೘೔೙ − ଵఛ೘ೌೣ ቁ ≈ 𝑆/𝜏௠௜௡ for 𝜏௠௜௡ ≪ 𝜏௠௔௫ and 𝑢௢ = 𝑢ஶ + 𝑆𝑅଴. 
In the case when τmin ≪ τmax and the time t is such that τmin≪t≪τmax, we could ap-

proximate exponentials such as 𝑒ି௧ ఛ೘೔೙ൗ ≈ 0 and 𝑒ି௧ ఛ೘ೌೣൗ ≈ 1 and Equation (8) results to: 

dR/dt≈ −1/t 

which, after integration, gives: 

R(t)≈R1−ln(t) for τmin≪τ≪τmax (11)

with R1 an integration constant. Equation (12) reveals that the relaxation function R(t) 
exhibits a logarithmic behavior in an intermediate time interval bounded by the relaxa-
tion times 𝜏௠௜௡ and 𝜏௠௔௫ with a slope −1 in a graph of R(t) versus ln (t). It becomes evi-
dent that when multiplying R(t) with a scale factor S in Equation (1), there is a modifica-
tion of the slope of the postseismic relaxation versus ln (t) related to the particular char-
acteristics of earthquake event and the seismotectonic settings and the rheology of the 
deformed zone as well. Substituting Equation (11) into (1), displacement obtains loga-
rithmic behavior: 𝑢(𝑡) = 𝑢ஶ + 𝑆𝑅ଵ − 𝑆𝑙𝑛𝑡 (12)

for τmin ≪ τ ≪ τmax with a slope F2 = S. 
Defining τ* as the point where the transition from the linear to logarithmic behavior 

starts, there is a continuation of displacement (as given by Equations (10) and (12), re-
spectively), that permits the estimation of R1 as:  𝑅ଵ = ln ൬𝜏௠௔௫𝜏௠௜௡൰ + ln 𝜏  ∗ − ൬ 1𝜏௠௜௡ − 1𝜏௠௔௫ ൰ 𝜏  ∗ (13)

In order to estimate the order of magnitude of R1, we calculate its value for two 
reasonable values of τ*, as that of 𝜏∗ = 𝜏௠௜௡  and 𝜏∗ = 2𝜏௠௜௡ . For 𝜏∗ = 𝜏௠௜௡, (i.e., the 
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transition in the logarithmic range starts in the very early stage of deformation), we have 𝑅ଵ = ln 𝜏௠௔௫ − 1 + ఛ೘೔೙ఛ೘ೌೣ, which for ఛ೘೔೙ఛ೘ೌೣ  ≪  1, leads to: 𝑅ଵ = ln 𝜏௠௔௫ − 1  

giving 𝑅 = −ln ቀ ௧ఛ೘ೌೣቁ − 1. Since R(t) is positively defined, the above expression is valid 
for t<τmax/e≈0.37𝜏௠௔௫. For a more reasonable estimation, we set 𝜏∗ = 2𝜏௠௜௡, leading to 𝑅ଵ = ln 𝜏௠௔௫ + 𝑙𝑛2 − 2(1 − ఛ೘೔೙ఛ೘ೌೣ), which for ఛ೘೔೙ఛ೘ೌೣ ≪ 1, leads to: 𝑅ଵ = ln 𝜏௠௔௫ + 𝑙𝑛2− 2,  
with 𝑅 = −ln ቀ ௧ఛ೘ೌೣቁ + 𝑙𝑛2 − 2. From the positive definition of R(t), we conclude that the 
above expression is valid for 𝑡 < ఛ೘ೌೣଶି௟௡ଶ  ≈ 0.76𝜏௠௔௫. A comparison between Equations (10) 
and (13) indicates that the slope of the logarithmic part 𝐹ଶ = 𝑆 is scaled with that of early 
stage deformation behavior 𝐹ଵ = 𝑆 ቀ ଵఛ೘೔೙ − ଵఛ೘ೌೣ ቁ. For τmin ≪ τmax, this scaling can provide 

an estimation of τmin, since ிమிభ = 𝜏௠௜௡. 
Analyzing the relaxation function (3) for the case τmin ≪ τmax ≪ t, the long time be-

havior of R(t) can be estimated, replacing the upper limit τmax with infinity so that [33]  𝑅(𝑡) ≈ 𝜏௠௔௫𝑡 𝑒ି௧ ఛ೘ೌೣൗ  (14)

indicating that, for t ≫ τmin, the relaxation function is controlled only by τmax and not τmin. 
In that case, the relaxation time τmax is predominant, and R(t) leads to 𝑅(𝑡) =𝑒(ି௧ ఛ೘ೌೣൗ ), implying that the term τmax/t is associated to the relaxation processes with re-
laxation time τmin < τ < τmax. We note that, since the time dependence of 1/t is slow com-

pared to 𝑒(ି௧ ఛ೘ೌೣൗ ), the relaxation function could be well approximated as an exponential 
a long time after the main event. Furthermore, the exponential relaxation, as presented in 
Equation (2), is a special case of the general expression of the relaxation function (3) and 
results when τmin and τmax have similar values, i.e., when τmin = τ0−Δ and τmax= τ0 + Δ, 
which leads to 𝑅(𝑡) ≈ ଶ௱ఛഎ 𝑒ି௧ ఛబൗ  presenting an exponential decay over time. 

3. Seismotectonic Setting, Data Selection, and Analysis 
Intense seismic activity in the Central Ionian Islands of Cephalonia and Lefkas 

during the last few years, along with several large events (M > 6) over the last century 
[39,40], clearly highlight the key role of this area in the kinematic process in the Eastern 
Mediterranean. The area is dominated by a major regional seismogenic zone known as 
the Cephalonia Transform Fault (CTF) (Figure 3), as well as several other faulting fea-
tures, resulting in generation of the highest seismic energy release in Europe [41,42]. The 
broader area is characterized by a complex kinematic and geodynamic regime. The area 
links the oceanic subduction boundary in the south to the collision between the Apulian 
microplate and Eurasia in the north [43–45]. This complicated tectonic regime creates a 
stress field that generates intense seismic activity and ground deformation on both a local 
and regional scale. 
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Figure 3. Map of the central Ionian islands of Lefkas, Cephalonia, and Ithaca, showing the main 
faulting zones and marking the continuous GNSS stations (triangles) PONT and SPAN in Lefkas 
and VLSM in Cephalonia islands. Circles represent the earthquake epicenters (M > 3) after the 17 
November 2015 main event. Red and blue vectors represent the cGNSS horizontal velocities before 
and after the 2015 earthquake, respectively. Black arrows show the co-seismic deformation. CTF: 
Cephalonia Transform Fault. 

Based on seismological data and geodetic measurements, the CTF zone is described 
as a dextral strike-slip faulting type system. This system is composed of two separate 
segments that run along the western shores of the Cephalonia and Lefkas Islands. The 
southern segment, offshore of Cephalonia, extends for approximately 90 km on a SW–NE 
direction and ends on the northern part of the island. The northern segment, offshore of 
western Lefkas Island, strikes a NE–SW direction for ~50 km, ending close to 
north-western Cephalonia. This segment dips to the ESE and exhibits dextral strike-slip 
motion combined with a small thrust component [45].  

Over the last twenty years, several strong earthquakes have devastated the islands 
of Lefkas and Cephalonia. In August 2003, a strong event (Mw6.3) occurred off-shore of 
the north-western coast of Lefkas Island [46–50]. In late January–early February 2014, two 
large-magnitude earthquakes (Mw5.9 and Mw6.1) were located in the western part of 
Cephalonia [51,52]. However, these events were not linked directly with the CTF zone. 

This study focuses on a strong seismic event that took place in near proximity to the 
PONT continuous GNSS station. On 17 November 2015, a strong earthquake (Mw6.4) 
occurred in the southern part of Lefkas Island [53,54] just north of Cephalonia. The main 
event was followed by a significant post-seismic activity that extended southwards to-
wards Cephalonia. The hypocenter of this earthquake was located at a depth of ~10 km, 
and the fault plane solutions demonstrated a NNE–SSW striking dextral strike-slip 
seismic fault with a reverse component that dipped east at a high angle of about 70° ± 5°. 
The after-shock seismic activity extended along three distinctive clusters north and south 
of the main event [54]. The northern cluster seemed to extends towards the epicentral 
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area of the 2003 strong earthquake, the central one was located in the vicinity of the main 
event, while the southern one extended towards Cephalonia Island and about 15 km 
southwest of the epicenter. The spatial coverage of the aftershocks indicated less dense 
distribution close to the epicentral area, while away from the main shock, there was 
higher concentration of post-seismic activity. The latter may indicate that, during the 
main event, higher energy was released in the main ruptured fault, which comprised part 
of the major CTF zone, while the post-seismic activity was triggered in nearby secondary 
and adjacent local faults, away from the main rupture plain [54]. The post seismic events 
extended in a NE–SW direction for approximately 50 km, extending north towards the 
2003 earthquake and south towards the northern Cephalonia. The southern seismic 
cluster occurred in the same area that was also activated during all the previous intense 
seismic periods in 2003 and in 2014 [48,49]. 

3.1. GNSS Data Analysis 
The epicentral area of the 2015 Lefkas earthquake, located to the southern part of the 

island, is remarkably close to the local continuous GNSS station PONT [32]. This station 
has been operating in the area since 2007. The GNSS data are processed daily, using 30 sec 
RINEX files, in order to calculate the daily coordinates of the station (Figure 4). From the 
time series of PONT station coordinates, the station velocity was estimated for the period 
2009–2015. Prior to the 2015 strong event, the station exhibited the anticipated regional 
motion of the area, and the velocity was calculated as VEast = (20.45 ± 0.03) mm/yr, VNorth = 
(6.81 ± 0.02) mm/yr, and VUp = ( −0.71 ± 0.08) mm/yr with respect to IGb08 reference frame 
(http://igscb.jpl.nasa.gov/network/refframe.html) (accessed on 30 December 2020). The 
earthquake of 17 November 2015 caused a co-seismic displacement of the PONT station of 
360 mm to south, 201 mm to the west, and a subsidence of 73 mm (Figure 4). 

 
Figure 4. Time series of PONT continuous GNSS stations located in Lefkas island. Red line indicates the date of the 2015 
seismic event. 
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The files from PONT station were processed using the Bernese Software version 5.2 
[55]. The software allows the estimation of epoch wise receiver coordinates in precise 
point positioning mode (PPP), as well as in the double difference mode. For the present 
research, coordinates were calculated after the earthquake of 2015 on a static mode. To 
get the best results, the PPP technique was used as a first step to get a priori coordinate 
values, which were, consequently, introduced in the more precise double difference 
method. In the processing procedure, GNSS data from 25 IGS and EUREF cGNSS stations 
from Europe, Greece, Cyprus, and Turkey were used to define the local reference frame. 
Ambiguities were solved using several resolution strategies depending on the baseline 
length between the stations: the wide-lane and narrow-lane for the medium baseline 
(<10–200 km) and the quasi-ionosphere-free (QIF) strategy for long baselines (<1000–2000 
km). For the troposphere modelling, the dry and wet Vienna mapping function (VMF) of 
Bohm et al. (2006), the dry and wet Niell model [56], as well as the Saastamoinen model 
[57] were the models used to analyze the GNSS microwave data in different stages of the 
processing. Effects of the solid earth tides were taken into account and corrections of the 
ocean tide loading were applied based on the FESS2004 model. In analogy to site dis-
placements caused by ocean tide loading, the loading effect of the atmospheric tides were 
taken into account in the processing of the GNSS data. The latter was done by introduc-
ing a specific file in the processing containing atmospheric tidal loading coefficients from 
a global grid-based model [58]. Moreover, the absolute antenna phase center corrections 
were used in the processing and to better improve the final solutions files containing the 
precise orbital parameters; the Earth orientation parameters and the satellite clock cor-
rections were taken from the Center for Orbit Determination in Europe (CODE) (DOI: 
10.7892/boris.75876.4). On a weekly basis, the calculated coordinates were evaluated for 
the repeatability error, and in case of large deviations from the weekly solution, the val-
ues were excluded. The latter resulted in an unweighted RMS error, in mm, for each 
component that varied from 0.5 to 1.01 in the east component, 0.8 to 2.1 in the north one, 
and 1.8 to 4.6 for the up component. However, that was not applied for the first ten days 
after the main event. The daily coordinates were estimated with respect to IGb08 refer-
ence frame. 

3.2. Post Seismic Time Series Analysis 
The post seismic displacement evolution is made up of two contributions: the dis-

placement u(t) due to the relaxation one on the fault zone and the long term Vpst t, where 
Vpst is the long term loading velocity a long time after the earthquake when the system 
has reached a new equilibrium state. In our case, VpstEast = (17.48 ± 0.07)mm/yr, VpstNorth = 
(3.72 ± 0.07)mm/yr, and VpstUp = (−0.44 ± 0.18)mm/yr, which was removed from the ob-
served postseismic data. To apply our approach, we analyzed the post seismic relaxation 
observed after the 17 November 2015 Mw6.5, Lefkas island earthquake. In Figure 5, the 
North–South displacement, which was the event’s predominant post seismic displace-
ment, presented as a function of time for a period 1000 days after the event. For energy 
reasons, the minimum relaxation time τmin cannot be equal to zero in order to have a 
converged relaxation function. From Figure 5, the transition from the linear to logarith-
mic part is observed, permitting the estimation of τmin ≈ 3–5 days. Since the longest re-
laxation time τmax is the time where the relaxation stops, from Figure 5, we estimate τmax ≈ 
350 days. The aforementioned estimations of τmin and τmax result in a value Ro ≈ 4.2 to 4.7. 
Using the observed values of 𝑢(𝑡), we estimate that an average value of displacement in 
the range from 300 to 600 days is about −26 mm, a value that could be used to approxi-
mate 𝑢ஶ. In Figure 5, the observed displacement, along with the theoretical one, calcu-
lated using equation (1), with S = 4.8 mm, 𝑢ஶ = −26 𝑚𝑚, τmin ≈ 3.5 days, and τmax ≈ 350 
days (i.e., Ro ≈ 4.6), is presented as a very good agreement. Furthermore, the time evolu-
tion of displacement suggests a slope F2 ≈ −4.21 for the logarithmic part and an approxi-
mate value F1 ≈ −1.09 for the short linear early part of deformation. Comparing the above 
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estimation with Equations (10) and (13), we conclude that, since τmin << τmax, the scaling of 
the slopes leads to τmin ≈ 3.8 days, in agreement with our estimation from Figure 5. 

 
Figure 5. The observed displacement, along with the theoretical calculated using Equation (1) (see 
text), with S = 4.8 mm, 𝑢ஶ = −26 𝑚𝑚, τmin ≈ 3.5 days, and τmax≈350 days (i.e., Ro ≈4.6) is presented as 
a very good agreement. 

A function to present the slow dynamics of postseismic relaxation could be defined 
in terms of the asymptotic long-term value 𝑢ஶ as [59]: 𝛺(𝑡) = 𝑢(𝑡) − 𝑢ஶ𝑢௢ − 𝑢ஶ  (15)

Substituting Equation (10) in (15) leads us to: 𝛺(𝑡) = 𝑅(𝑡)𝑅௢  (16)

In Figure 6, the experimentally estimated Ω(t) function for the first 400 days of the 
post-seismic relaxation after the Lefkas main event is given, along with the calculated one 
using Equation (16) for τmin ≈ 3.5 days and τmax ≈ 350 days, respectively. A comparison of 
the observed and calculated values is given in Figure 7, along with a dichotomous line. 

Furthermore, we note that ׬ 𝛺(ஶ଴ 𝑡)𝑑𝑡 = ఛ೘ೌೣିఛ೘೔೙ோ೚ , which, after using the experi-
mental values of Ω, leads to 𝜏௠௔௫  ≈ 360 days in quite good agreement with the value 
used in Figures 5 and 6. We note that the law values of ோ(௧)ோ೚  in Figure 7 correspond to the 
logarithmic part of relaxation, while the high values are related with the part just after the 
rupture where the uncertainty in the estimated displacement is higher. 
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Figure 6. The experimentally estimated Ω(t) function for the first 400 days of the post-seismic re-
laxation after the Lefkas main event, along with the calculated one using Equation (16) for τmin ≈ 3.5 
days and τmax≈350 days, respectively. 

 
Figure 7. A comparison of the experimentally estimated Ω(t) function with the calculated values 
R(t)/Ro for the post-seismic relaxation period after the Lefkas main event for τmin ≈ 3.5 days and τmax 
≈ 350 days, respectively (see text). 

4. Discussion  
Most of the models used to describe post-seismic relaxation are based on the as-

sumption of a single relaxation time estimated for each relaxation mechanism proposed 
[4,11,14,60,61]. A co-seismic deformation leaves the system in a metastable state taking 
place in the broad earthquake zone. In the present work, the post-seismic relaxation is 
viewed as a superposition of several different relaxation times, each one activated in 
different mesoscopic domains of the macroscopic relaxed seismic volume. The macro-
scopic relaxation observed is a result of the superposition of different relaxation times on 
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the microscopic–mesoscopic scale. This slow thermodynamic recovery could be ex-
plained by a physical model based on the Arrhenius Equation [62]. 

The lithosphere as a dynamical system under a post-seismic relaxation is a complex 
systems with strong interactions between its mesoscopic “subvolumes” [63] and, thus, 
could be viewed as a macroscopic system driven by hierarchically constrained dynamics 
[28] involved in the macroscopically observed relaxation process as a sequential series of 
correlated mesoscopic processes. 

The view of hierarchical constrained dynamics could be a physical pathway to de-
scribe many of the complex systems that present logarithmic relaxation [64–66]. In the 
case of post-seismic phase, the applied tectonic load drives the system to fracture, and its 
relaxation creates a reorganization of the stress field in some selected mesoscopic regions 
of the system. The deformed subvolumes nearest to the fractured region are rearranged 
and the system reorganized. These new stress changes will affect the deformed sub-
volumes outside the area nearest to the fracture, permitting their relaxation, and so on. 
The above picture suggests that the relaxation in the fractured fault system is slow be-
cause it consists of a large number of correlated and strongly interacting reorganization 
steps with an increasing relaxation time. It seems to be appropriate to describe macro-
scopical post-seismic relaxation in terms of a lithosphere that presents a hierarchical 
pattern, with the faster relaxation to be associated with the subvolume close to earth-
quake focus regions and, due to strong correlations and long-range interactions, the 
slower relaxation time to be related with the “outer” deformed, but in the broad vicinity 
of epicenter, regions. The latter is in agreement with that proposed for complex relaxed 
systems with cluster interactions, where the relaxation time τ scales with the relaxation 
volume as τ~Vα, where α is an exponent related macroscopically with the fractal geome-
try of the subvolume distribution and the dynamical nature of relaxation [67–69]. This 
type of hierarchically constrained dynamics is able to derive the logarithmic relaxation 
frequently observed and associate it with thermally activated processes. We note that this 
behavior can result either from the parallel relaxation of subvolumes or by a sequential 
relaxation series of strongly correlated complex events [28]. 

Our results are in agreement with that presented in [70], where a Burridge-Knopoff 
(BK) model is used to describe the time dependence of the mean stress, assuming that a 
uniform statistical distribution of stress values is acting on each block (i.e., deformation in 
subvolumes) in the relaxing lithospheric system. 

In [70], the post-seismic normalized stress relaxation of the strongly interacted ele-
ments of the BK model presents a stress relaxation that could be viewed as hierarchically 
constrained since blocks increase the stress on their nearby elements when they slip, and 
as a consequence, the probability that their neighbors will slip increases as well. They 
conclude that the normalized mean stress <σ> during the post-seismic relaxation in a BK 
model with a uniform distribution of stresses [71] is: 

< 𝜎 >= න 𝜎ଵ଴ 𝑒ିఔ௧௘௫௣(ିఉఌ೘൫ଵିఙమ൯)𝑑𝜎 (17)

where εm is the maximum size of energy barrier, ν is an attempt frequency to jump over 
the energy barrier, and β = 1/kBT. Approximation of (17) leads to the following behavior 
in short, intermediate, and long time periods, respectively: lim௧→଴ < 𝜎 >= 12 − 12𝛽𝜀௠ (1 − exp(−𝛽𝜀௠))𝜈𝑡 (18)< 𝜎 >௜௡௧≈ ଵଶ − ଵଶఉఌ೘ (𝛾 + ln (𝜈𝑡)  (19)

where γ is the Euler–Mascheroni constant (γ ≈ 0.577). lim௧→ஶ < 𝜎 >= exp (𝛽𝜀௠)2𝛽𝜀௠ exp (−𝜈𝑡𝑒𝑥𝑝(−𝛽𝜀௠)𝜈𝑡  (20)
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which, for very long time periods, t is proportional to exp(−t/τ) with τ = exp(β𝜀௠)/ν. 
A comparison of Equations (18)–(20) with Equation (10), (12), and (14), respectively, 

implies that 𝑆 ~ ଵଶఉఌ೘, supporting the hypothesis that the scaling factor depends on tem-
perature and the energy barrier that must be overcome before the relaxed subvolume 
moves to a new stress stage. In addition, 𝜏௠௔௫ ~ ଵఔ exp(𝛽𝜀௠)  and 𝜏௠௜௡ ~ ଵఔ  with ln ቀఛ೘ೌೣఛ೘೔೙ቁ~𝛽𝜀௠ being an expression similar to that defined in the present approach using 
the Arrhenius expression, if 𝜀௠ = 𝐸௠௔௫ − 𝐸௠௜௡ is the maximum size of energy barrier. 

The relaxation function, as presented in Equation (6), explains the logarithmic re-
laxation observed. In addition, it results in finite values, both just after the perturbation 
(i.e., t = 0) and for a long time after the earthquake event (t → ∞). The relaxation function 
R(t) can be explained by Arrhenius’ law, presenting a universal behavior of the relaxation 
process. Following Equation (6) and the ideas of hierarchically constrained dynamics, the 
faster relaxation mechanisms, related to small relaxed volumes (small τ), offer a more 
significant contribution to the relaxation process than the slower relaxation mechanisms 
(large τ related with the broader relaxed area), as indicated by the presence of term 1/τ in 
the expression of R(t), which permits greater weight to fast relaxation processes. We note 
that the superposition of relaxation mechanisms, as expressed in Equation (6), implies 
that, for early time periods, the fast relaxation mechanism associated with small relaxed 
volumes that have a relaxation time close to τmin dominates, while for late time periods, 
the slow relaxation mechanism, related to the relaxation of volumes farther from the ep-
icenter and present relaxation time close to τmax, contributes most. It is reasonable to as-
sume that the maximum relaxation time depends on the perturbation that triggers the 
relaxation and, thus, on the deformed volume related with the main event, along with the 
geotectonic conditions in the deformed region, such as stress, temperature, and fluids. 

In addition, measurements of τmin could give information on the fastest relaxation 
mechanism, which is scaled with the smallest deformed subvolume, even if it is some-
times not clearly observed due to the immediate transition of the deformation process 
into the logarithmic range, resulting in an unreliable estimation of τmin. 

Applying the generic hierarchically constrained dynamics view to the North–South 
displacement of the post-seismic relaxation of Lefkas 17 November 2015, Mw6.5 earth-
quake, we conclude that this approach describes with good agreement the displacement 
as estimated using cGNSS recordings during the post-seismic relaxation period, leading 
to the estimation of τmin ≈ 3.5 days and τmax≈350 days, respectively. 

This is a rather new approach that is used to describe post-seismic relaxation based 
on the assumption of a spectrum of relaxation times that are superposed, each of them 
activated in different mesoscopic domains of the macroscopic relaxed seismic volume. 
This slow thermodynamic recovery (i.e., a logarithmic time dependence) could be ex-
plained by a physical model based on the Arrhenius equation. With such an approach, 
we are led to finite values for t = 0, without assuming any empirical constitutional equa-
tion. 

5. Concluding Remarks  
In the present work the post-seismic relaxation is viewed as a superposition of sev-

eral different relaxation times, each one activated in different mesoscopic domains of the 
macroscopic relaxed seismic volume. The macroscopic relaxation that is observed is a 
result of the superposition of different relaxation times on the microscopic–mesoscopic 
scale. This approach is a new one since most of the models used to describe post-seismic 
relaxation are based on the assumption of a single relaxation time estimated for each re-
laxation mechanism proposed. The slow thermodynamic recovery of the post-seismic 
relaxation could be explained by a physical model based on the Arrhenius equation and 
an appropriate distribution of relaxation times. 

In summary, we can state that, in the present work: 
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a. A multiscale post-seismic relaxation mechanism based on the existence of a distri-
bution in relaxation time is presented. 

b. Assuming an Arrhenius dependence of the relaxation time with the uniform dis-
tributed activation energy in a mesoscopic scale, we conclude there is a generic log-
arithmic type relaxation on a macroscopic scale. 

c. The hierarchically constrained dynamics model could be used to understand the 
evolution of post seismic relaxation. 

d. The model was applied in the case of 2015 Lefkas (Greece) Mw6.5 earthquake, where 
cGNSS time series were recorded in a station located in the vicinity of the epicentral 
area. The application of the present approach to the Lefkas event fits the observed 
displacements, implying a distribution of relaxation times in the range τmin ≈ 3.5 days 
to τmax ≈ 350 days. 
These results offer a stimulating finding for further studies that will investigate 

post-seismic deformation timeseries for other strong earthquakes, which may provide 
new insights into the underlying dynamics of earthquake relaxation processes, along 
with the possible parameters that influence this behaviour (i.e., fault type, local condi-
tions, regional stress field, etc.). 
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