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Abstract: In the present work, a multiscale post-seismic relaxation mechanism, based on the existence
of a distribution in relaxation time, is presented. Assuming an Arrhenius dependence of the relaxation
time with uniform distributed activation energy in a mesoscopic scale, a generic logarithmic-type
relaxation in a macroscopic scale results. The model was applied in the case of the strong 2015 Lefkas
Mw6.5 (W. Greece) earthquake, where continuous GNSS (cGNSS) time series were recorded in a
station located in the near vicinity of the epicentral area. The application of the present approach to
the Lefkas event fits the observed displacements implied by a distribution of relaxation times in the
range τmin ≈ 3.5 days to τmax ≈ 350 days.

Keywords: post seismic relaxation; cGNSS; hierarchically constrained dynamics; Lefkas earthquake

1. Introduction

Earthquake rupture creates static stress changes within the lithosphere that are large
enough to produce transient deformation that can be observed on the Earth’s surface.
Satellite geodesy using GNSS techniques for observing Earth’s surface displacements have
advanced in such a level that the post-seismic deformation can be monitored with high
accuracy [1].

To study post-seismic relaxation, various mechanisms have been proposed, such as
those of poroelasticity of the rock medium [2,3], shallow after-slip on the main faulting
plane or nearby faults [4,5], and viscoelastic relaxation [6]. The after-slip mechanisms are
localized and follow logarithmic decay [4,7], while the viscoelastic one is supported by a
bulk deformation process and exhibits exponential decay [8–10].

In [11], it was demonstrated that, during the first 6 months following the 1999 Chi-Chi
earthquake (M = 7.6, Taiwan), both the post-seismic relaxation and the cumulative number
of aftershocks followed the same temporal dependence, which reduced to a logarithmic
one after a long time from the main event. In addition, logarithmic deformation could be
explained by an exhaustion process, which is based on the assumption that the number of
sources of strain-producing events evolve according to a thermally activated process, in
which the activation energy is stress dependent [12].

The recent strong earthquakes present examples where the macroscopic post-seismic
deformation is interpreted in view of the above relaxation mechanisms, which are based
on the assumption of a single relaxation time estimated for each post seismic relaxation
observed [13–18].

Experimental results and theoretical models suggest that post seismic relaxation is
thermally activated and enhanced by the presence of fluids [19]. Deformation is controlled
by a variety of temperature-dependent healing processes that are related to the crack
size [20,21]. Since different crack sizes have different activation energy, the associated

Appl. Sci. 2021, 11, 4817. https://doi.org/10.3390/app11114817 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2466-7446
https://www.mdpi.com/article/10.3390/app11114817?type=check_update&version=1
https://doi.org/10.3390/app11114817
https://doi.org/10.3390/app11114817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114817
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4817 2 of 16

relaxation processes operate at different timescales [22], indicating an intrinsic organiza-
tion [23] with a distribution of relaxation times, instead of the use of a single one. The
latter implies that post-seismic relaxation could be viewed as the superposition of several
different relaxation times, each one activated in different mesoscopic domains of the macro-
scopic relaxed seismic volume. Thus, the macroscopic relaxation observed results from the
superposition of different relaxation times on the microscopic–mesoscopic scale, which
obviously operates on different spatiotemporal scales. The recovery process that returns
the deformed volume to equilibrium after a strong earthquake could be characterized as
a slow dynamics process [24], because an instantaneous perturbation causes a transient
response, which moves the system to a state of equilibrium [25–30]. It is, thus, possible that
relaxation, which varies with the logarithm of time, can be interpreted as the result of the
superposition of relaxation mechanisms with a spectrum of relaxation times.

The purpose of this work is to give a description of the post seismic deformation
relaxation. It is based on the thermodynamic Arrhenius model for the distribution of the
relaxation times [31] and describes the post-seismic recovery as a slow thermodynamic
process taking place in a mesoscopic scale. The model predicts a physically accepted finite
value just after the co-seismic perturbation, a logarithmic time dependence for the time
period between the minimum and maximum relaxation time, and an exponential decay
while approaching an equilibrium state a long time after the main event. Based on that, the
explanation that relaxation occurs as a logarithm of time does not depend on the details of
Earth’s physical and chemical properties, but is based on a generic, or even a universal,
multiscale property of the relaxation mechanism, as resulted from the Arrhenius expression,
which connects relaxation time with the activation energy of the relaxation process.

To test the proposed approach for the post-seismic relaxation, positioning data from
the continuous GNSS station PONT [32] and www.geodesy.gein.noa.gr (accessed on 30
December 2020) located in the southern part of Lefkas Island were used. This cGNSS
station is located in the close vicinity of the earthquake epicenter of the 17 November 2015
Mw6.5, shallow event (~10 km depth), that occurred on the island, causing severe damages
and human losses.

2. A Thermodynamic Model of Post Seismic Relaxation

A post-seismic transient deformation stage, where strain varies with time at a decreas-
ing rate, occurs following the instantaneous deformation during an earthquake. Transient
deformation is followed by the return to steady-state deformation, where the strain rate is
a constant after some time following the main event.

Following [33], we define a relaxation function R(t), where t is the time after the main
seismic event, as a perturbation of the displacement given by the generic expression:

u(t) = u∞ + S R(t) (1)

where u∞ is the equilibrium value of displacement after a long time and S is a scaling
factor. Notice that R(t→ ∞) ≈ 0, while u∞ = u(t→ ∞) is the remaining distortion
at the end of the relaxation process. The initial value uo of the post-seismic deforma-
tion immediately after the co-seismic perturbation δuc is given from Equation (1) as
uo = u(t = 0+) = u∞ + S RO, where R0 = R(t = 0). The scaling factor S of the relax-
ation constrains the rheological properties of the medium [34,35] and depends on the
rheology of the crust and upper mantle, as well as on the local conditions around the site
(i.e., crustal heterogeneities). In addition, S depends on the stress released in the medium
and reflects the response of the medium (i.e., of the magnitude of the earthquake event)
after the co-seismic displacement due to earthquake.

In most of the cases a simple relaxation mechanism with a single relaxation time τ
that corresponds to a relaxation function exp (−t/τ) (i.e., not varying logarithmically with
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time) is the simplest rheological model introduced to explain post-seismic deformation,
known as the linear Maxwell model [6]. In this case:

Ro = 1, uo = u∞ + S and u(t) = u∞ + S e
−t
τ (2)

while the normalized displacement is D(t) = u(t)
uo

=
1+ S

u∞ e
−t
τ

1+ S
u∞

. In Figure 1, we plot the

displacement as a function of normalized time t
τ . In the very early stage, expanding the

exponential in Equation (2) leads us to u(t) = u∞ + S
(
1− t

τ

)
orD(t) = 1−

S
u∞

1+ S
u∞

t
τ , a linear

expression of normalized displacement with time, which for S
u∞
� 1, leads to D = 1 − (t/τ)

with the slope equal to 1/τ, and independent of S.
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Figure 1. Example of exponential relaxation (see Equation (1)) with S = 5 mm, u∞ = −25 mm and
τ = 300 days.

We proceeded to study a post-seismic relaxation process with a spectrum of relax-
ation times within the range defined by the minimum and maximum values τmin, τmax of
relaxation time, respectively. If f (τ) is the distribution function of the relaxation time, then:

R(t) =
∫ τmax

τmin

f (τ)e
−t
τ dτ (3)

The expression (3) is based on the assumption that the total macroscopic relaxation
observed is a result of the superposition of relaxation processes operating with different
relaxation times τ. This approach could be viewed as a generalization of the Burgers body
rheological model [8,36,37], expanding the two discrete relaxation times to a continuum
spectrum in the range values τmin, τmax.

Assuming a relaxation process with activation energy E, then following Arrhenius’
law [31], the relaxation time is given by:

τ = τ0e
E

kBT (4)

with τ0 a constant proexponential factor, T the temperature, and kB the Boltzmann constant.
If the activation energy is distributed following a distribution function N(E), then the
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distribution function f (τ) for the relaxation times satisfies the expression f (τ) =N(E)(dE/dτ).
Using Expression (4), dτ/dE= (τ0/kBT)exp (E/kBT) = τ/kBT, hence:

f (τ) =
kBTN(E)

τ
(5)

In the case of a uniform distribution of the activation energy, bounded by a mini-
mum Emin and maximum Emax activation energy, N(E) has a constant value No, which,
according to Equation (5) for a temperature T, leads to a distribution of relaxation times
f (τ) = (kBTN0)/τ, which is proportional to 1/τ. It is evident that the minimum τmin
and maximum τmax relaxation times are related to the corresponding minimum and maxi-

mum activation energies by the expressions τmin = τ0e
Emin
kBT and τmax = τ0e

Emax
kBT and, thus,

∆E = Emax − Emin = kT ln( τmax
τmin

).
The macroscopically observed relaxation is given by the superposition of relaxation

processes, expressed as:

R(t) = C
∫ τmax

τmin

1
τ

e−t/τdτ (6)

where C = T No is a constant for a given T and No, which is omitted in the calculation
merging it with the scaling parameter S. We note that No is a constant value for a uniform
distribution of energy N(E) between its minimum Emin and maximum Emax value. The
weight factor 1/τ in Equation (6) is a result of the application of Arrhenius’ law due to
mesoscale relaxation processes operating on different timescales. In Figure 2, we present
examples of the relaxation function with time on a logarithmic scale along the horizontal
axis with a constant τmin and various values of τmax. In a logarithmic scale, the curve in
Figure 2 decreases almost linearly, up to a time t ≈ τmax, and at the end, it flattens out.
Thus, the relaxation function R(t) is proportional to ln (t) for t << τmax. Based on that, the
maximum relaxation time τmax could be estimated as the time where the relaxation curve
flattens out.
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Figure 2. The relaxation function R(t) (see Equation (6) in the text) for τmin = 5 days and τmax = 200,
400, 600 days.

The integral in Equation (6) is the exponential integral E1(x) [38], which can not be
solved analytically but behaves like a negative exponential for very large values of the
argument and decays on a logarithmic mode in the intermediate range of the relaxation



Appl. Sci. 2021, 11, 4817 5 of 16

curve R(t) while deviating from a logarithmic time dependence for t < τmin. Furthermore,
as results from Equation (6) when t = 0, R(t) can be calculated analytically:

R0 = R(t = 0) = ln
(

τmax

τmin

)
(7)

supporting the physical condition to have a finite relaxation function for t = 0. Since
∆E = Emax − Emin = kT ln

(
τmax
τmin

)
= kTR0, the finite value of the relaxation function

for t = 0 is required in order for the energy range ∆E to be a finite quantity. Taking the
derivative of R(t) with respect to t, we form the following equation:

dR
dt

=
1
t

(
e
−t

τmin − e
−t

τmax

)
(8)

which, for τmin ≈ t�τmax, expands exponentially and leads to
[

dR(t)
dt

]
t=0

= −
(

1
τmin
− 1

τmax

)
and

R(t) ≈ ln
(

τmax

τmin

)
−
(

1
τmin

− 1
τmax

)
t = R0 −

(
1

τmin
− 1

τmax

)
t (9)

In the observed cases where τmax � τmin, the slope of R(t) vs. t at t = 0 is well
approximated as

[
dR(t)

dt

]
t=0

= − 1
τmin

, while the ratio of the slope to R(0) follows the

expression: 1
R(t=0)

[
dR(t)

dt

]
t=0

= 1
τmin

ln
(

τmax
τmin

)
= Ro

τmin
.

Introducing expression (9) in (1), the very early stage displacement immediately
following the co-seismic one is given by the expression:

u(t) = u∞ + SR0 − S
(

1
τmin

− 1
τmax

)
t = uo − F1t (10)

where the slope of Equation (10) is F1 = S
(

1
τmin
− 1

τmax

)
≈ S/τmin for τmin � τmax and

uo = u∞ + SR0.
In the case when τmin � τmax and the time t is such that τmin � t� τmax, we could

approximate exponentials such as e
−t

τmin ≈ 0 and e
−t

τmax ≈ 1 and Equation (8) results to:

dR/dt ≈ −1/t

which, after integration, gives:

R(t) ≈ R1 − ln(t) for τmin�τ�τmax (11)

with R1 an integration constant. Equation (12) reveals that the relaxation function R(t)
exhibits a logarithmic behavior in an intermediate time interval bounded by the relaxation
times τmin and τmax with a slope −1 in a graph of R(t) versus ln (t). It becomes evident that
when multiplying R(t) with a scale factor S in Equation (1), there is a modification of the
slope of the postseismic relaxation versus ln (t) related to the particular characteristics of
earthquake event and the seismotectonic settings and the rheology of the deformed zone
as well. Substituting Equation (11) into (1), displacement obtains logarithmic behavior:

u(t) = u∞ + SR1 − S ln t (12)

for τmin � τ� τmax with a slope F2 = S.
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Defining τ* as the point where the transition from the linear to logarithmic behav-
ior starts, there is a continuation of displacement (as given by Equations (10) and (12),
respectively), that permits the estimation of R1 as:

R1 = ln
(

τmax

τmin

)
+ ln τ ∗ −

(
1

τmin
− 1

τmax

)
τ ∗ (13)

In order to estimate the order of magnitude of R1, we calculate its value for two
reasonable values of τ*, as that of τ∗ = τmin and τ∗ = 2τmin. For τ∗ = τmin, (i.e., the
transition in the logarithmic range starts in the very early stage of deformation), we have
R1 = ln τmax − 1 + τmin

τmax
, which for τmin

τmax
� 1, leads to:

R1 = ln τmax − 1

giving R = − ln
(

t
τmax

)
− 1. Since R(t) is positively defined, the above expression is valid

for t < τmax/e ≈ 0.37τmax. For a more reasonable estimation, we set τ∗ = 2τmin, leading to
R1 = ln τmax + ln 2− 2(1− τmin

τmax
), which for τmin

τmax
� 1, leads to:

R1 = ln τmax + ln 2− 2,

with R = − ln
(

t
τmax

)
+ ln 2− 2. From the positive definition of R(t), we conclude that the

above expression is valid for t < τmax
2−ln 2 ≈ 0.76τmax. A comparison between Equations (10)

and (13) indicates that the slope of the logarithmic part F2 = S is scaled with that of early
stage deformation behavior F1 = S

(
1

τmin
− 1

τmax

)
. For τmin� τmax, this scaling can provide

an estimation of τmin, since F2
F1

= τmin.
Analyzing the relaxation function (3) for the case τmin � τmax � t, the long time

behavior of R(t) can be estimated, replacing the upper limit τmax with infinity so that [33]

R(t) ≈ τmax

t
e−

t
τmax (14)

indicating that, for t � τmin, the relaxation function is controlled only by τmax and not

τmin. In that case, the relaxation time τmax is predominant, and R(t) leads to R(t) = e
(−t

τmax ),
implying that the term τmax/t is associated to the relaxation processes with relaxation time

τmin < τ < τmax. We note that, since the time dependence of 1/t is slow compared to e
(−t

τmax ),
the relaxation function could be well approximated as an exponential a long time after
the main event. Furthermore, the exponential relaxation, as presented in Equation (2), is a
special case of the general expression of the relaxation function (3) and results when τmin
and τmax have similar values, i.e., when τmin = τ0 − ∆ and τmax= τ0 + ∆, which leads to

R(t) ≈ 2∆
τ e−

t
τ0 presenting an exponential decay over time.

3. Seismotectonic Setting, Data Selection, and Analysis

Intense seismic activity in the Central Ionian Islands of Cephalonia and Lefkas during
the last few years, along with several large events (M > 6) over the last century [39,40],
clearly highlight the key role of this area in the kinematic process in the Eastern Mediter-
ranean. The area is dominated by a major regional seismogenic zone known as the Cephalo-
nia Transform Fault (CTF) (Figure 3), as well as several other faulting features, resulting
in generation of the highest seismic energy release in Europe [41,42]. The broader area is
characterized by a complex kinematic and geodynamic regime. The area links the oceanic
subduction boundary in the south to the collision between the Apulian microplate and
Eurasia in the north [43–45]. This complicated tectonic regime creates a stress field that gen-
erates intense seismic activity and ground deformation on both a local and regional scale.
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Figure 3. Map of the central Ionian islands of Lefkas, Cephalonia, and Ithaca, showing the main
faulting zones and marking the continuous GNSS stations (triangles) PONT and SPAN in Lefkas
and VLSM in Cephalonia islands. Circles represent the earthquake epicenters (M > 3) after the
17 November 2015 main event. Red and blue vectors represent the cGNSS horizontal velocities before
and after the 2015 earthquake, respectively. Black arrows show the co-seismic deformation. CTF:
Cephalonia Transform Fault.

Based on seismological data and geodetic measurements, the CTF zone is described
as a dextral strike-slip faulting type system. This system is composed of two separate
segments that run along the western shores of the Cephalonia and Lefkas Islands. The
southern segment, offshore of Cephalonia, extends for approximately 90 km on a SW–NE
direction and ends on the northern part of the island. The northern segment, offshore of
western Lefkas Island, strikes a NE–SW direction for ~50 km, ending close to north-western
Cephalonia. This segment dips to the ESE and exhibits dextral strike-slip motion combined
with a small thrust component [45].

Over the last twenty years, several strong earthquakes have devastated the islands
of Lefkas and Cephalonia. In August 2003, a strong event (Mw6.3) occurred off-shore
of the north-western coast of Lefkas Island [46–50]. In late January–early February 2014,
two large-magnitude earthquakes (Mw5.9 and Mw6.1) were located in the western part of
Cephalonia [51,52]. However, these events were not linked directly with the CTF zone.

This study focuses on a strong seismic event that took place in near proximity to
the PONT continuous GNSS station. On 17 November 2015, a strong earthquake (Mw6.4)
occurred in the southern part of Lefkas Island [53,54] just north of Cephalonia. The main
event was followed by a significant post-seismic activity that extended southwards towards
Cephalonia. The hypocenter of this earthquake was located at a depth of ~10 km, and
the fault plane solutions demonstrated a NNE–SSW striking dextral strike-slip seismic
fault with a reverse component that dipped east at a high angle of about 70◦ ± 5◦. The
after-shock seismic activity extended along three distinctive clusters north and south of the
main event [54]. The northern cluster seemed to extends towards the epicentral area of the
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2003 strong earthquake, the central one was located in the vicinity of the main event, while
the southern one extended towards Cephalonia Island and about 15 km southwest of the
epicenter. The spatial coverage of the aftershocks indicated less dense distribution close to
the epicentral area, while away from the main shock, there was higher concentration of
post-seismic activity. The latter may indicate that, during the main event, higher energy
was released in the main ruptured fault, which comprised part of the major CTF zone,
while the post-seismic activity was triggered in nearby secondary and adjacent local faults,
away from the main rupture plain [54]. The post seismic events extended in a NE–SW
direction for approximately 50 km, extending north towards the 2003 earthquake and
south towards the northern Cephalonia. The southern seismic cluster occurred in the same
area that was also activated during all the previous intense seismic periods in 2003 and in
2014 [48,49].

3.1. GNSS Data Analysis

The epicentral area of the 2015 Lefkas earthquake, located to the southern part of the
island, is remarkably close to the local continuous GNSS station PONT [32]. This station
has been operating in the area since 2007. The GNSS data are processed daily, using 30 s
RINEX files, in order to calculate the daily coordinates of the station (Figure 4). From
the time series of PONT station coordinates, the station velocity was estimated for the
period 2009–2015. Prior to the 2015 strong event, the station exhibited the anticipated re-
gional motion of the area, and the velocity was calculated as VEast = (20.45 ± 0.03) mm/yr,
VNorth = (6.81 ± 0.02) mm/yr, and VUp = (−0.71 ± 0.08) mm/yr with respect to IGb08
reference frame (http://igscb.jpl.nasa.gov/network/refframe.html) (accessed on 30 De-
cember 2020). The earthquake of 17 November 2015 caused a co-seismic displacement of
the PONT station of 360 mm to south, 201 mm to the west, and a subsidence of 73 mm
(Figure 4).
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The files from PONT station were processed using the Bernese Software version
5.2 [55]. The software allows the estimation of epoch wise receiver coordinates in precise
point positioning mode (PPP), as well as in the double difference mode. For the present
research, coordinates were calculated after the earthquake of 2015 on a static mode. To get
the best results, the PPP technique was used as a first step to get a priori coordinate values,
which were, consequently, introduced in the more precise double difference method. In the
processing procedure, GNSS data from 25 IGS and EUREF cGNSS stations from Europe,
Greece, Cyprus, and Turkey were used to define the local reference frame. Ambiguities
were solved using several resolution strategies depending on the baseline length between
the stations: the wide-lane and narrow-lane for the medium baseline (<10–200 km) and
the quasi-ionosphere-free (QIF) strategy for long baselines (<1000–2000 km). For the tropo-
sphere modelling, the dry and wet Vienna mapping function (VMF) of Bohm et al. (2006),
the dry and wet Niell model [56], as well as the Saastamoinen model [57] were the models
used to analyze the GNSS microwave data in different stages of the processing. Effects
of the solid earth tides were taken into account and corrections of the ocean tide loading
were applied based on the FESS2004 model. In analogy to site displacements caused by
ocean tide loading, the loading effect of the atmospheric tides were taken into account
in the processing of the GNSS data. The latter was done by introducing a specific file in
the processing containing atmospheric tidal loading coefficients from a global grid-based
model [58]. Moreover, the absolute antenna phase center corrections were used in the
processing and to better improve the final solutions files containing the precise orbital
parameters; the Earth orientation parameters and the satellite clock corrections were taken
from the Center for Orbit Determination in Europe (CODE) (DOI:10.7892/boris.75876.4).
On a weekly basis, the calculated coordinates were evaluated for the repeatability error,
and in case of large deviations from the weekly solution, the values were excluded. The
latter resulted in an unweighted RMS error, in mm, for each component that varied from
0.5 to 1.01 in the east component, 0.8 to 2.1 in the north one, and 1.8 to 4.6 for the up
component. However, that was not applied for the first ten days after the main event. The
daily coordinates were estimated with respect to IGb08 reference frame.

3.2. Post Seismic Time Series Analysis

The post seismic displacement evolution is made up of two contributions: the dis-
placement u(t) due to the relaxation one on the fault zone and the long term Vpst t, where
Vpst is the long term loading velocity a long time after the earthquake when the sys-
tem has reached a new equilibrium state. In our case, VpstEast = (17.48 ± 0.07) mm/yr,
VpstNorth = (3.72 ± 0.07) mm/yr, and VpstUp = (−0.44 ± 0.18) mm/yr, which was removed
from the observed postseismic data. To apply our approach, we analyzed the post seismic
relaxation observed after the 17 November 2015 Mw6.5, Lefkas island earthquake. In
Figure 5, the North–South displacement, which was the event’s predominant post seismic
displacement, presented as a function of time for a period 1000 days after the event. For
energy reasons, the minimum relaxation time τmin cannot be equal to zero in order to have
a converged relaxation function. From Figure 5, the transition from the linear to logarithmic
part is observed, permitting the estimation of τmin ≈ 3–5 days. Since the longest relaxation
time τmax is the time where the relaxation stops, from Figure 5, we estimate τmax ≈ 350
days. The aforementioned estimations of τmin and τmax result in a value Ro ≈ 4.2 to 4.7.
Using the observed values of u(t), we estimate that an average value of displacement in
the range from 300 to 600 days is about−26 mm, a value that could be used to approximate
u∞. In Figure 5, the observed displacement, along with the theoretical one, calculated using
Equation (1), with S = 4.8 mm, u∞ = −26 mm, τmin ≈ 3.5 days, and τmax ≈ 350 days
(i.e., Ro ≈ 4.6), is presented as a very good agreement. Furthermore, the time evolution
of displacement suggests a slope F2 ≈ −4.21 for the logarithmic part and an approximate
value F1 ≈ −1.09 for the short linear early part of deformation. Comparing the above
estimation with Equations (10) and (13), we conclude that, since τmin << τmax, the scaling
of the slopes leads to τmin ≈ 3.8 days, in agreement with our estimation from Figure 5.
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Figure 5. The observed displacement, along with the theoretical calculated using Equation (1) (see
text), with S = 4.8 mm, u∞ = −26 mm, τmin ≈ 3.5 days, and τmax ≈ 350 days (i.e., Ro ≈ 4.6) is
presented as a very good agreement.

A function to present the slow dynamics of postseismic relaxation could be defined in
terms of the asymptotic long-term value u∞ as [59]:

Ω(t) =
u(t)− u∞

uo − u∞
(15)

Substituting Equation (10) in (15) leads us to:

Ω(t) =
R(t)
Ro

(16)

In Figure 6, the experimentally estimated Ω(t) function for the first 400 days of the
post-seismic relaxation after the Lefkas main event is given, along with the calculated one
using Equation (16) for τmin ≈ 3.5 days and τmax ≈ 350 days, respectively. A comparison
of the observed and calculated values is given in Figure 7, along with a dichotomous line.

Furthermore, we note that
∫ ∞

0 Ω(t)dt = τmax−τmin
Ro

, which, after using the experimental
values of Ω, leads to τmax ≈ 360 days in quite good agreement with the value used
in Figures 5 and 6. We note that the law values of R(t)

Ro
in Figure 7 correspond to the

logarithmic part of relaxation, while the high values are related with the part just after the
rupture where the uncertainty in the estimated displacement is higher.
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Figure 6. The experimentally estimated Ω(t) function for the first 400 days of the post-seismic
relaxation after the Lefkas main event, along with the calculated one using Equation (16) for
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Figure 7. A comparison of the experimentally estimated Ω(t) function with the calculated values
R(t)/Ro for the post-seismic relaxation period after the Lefkas main event for τmin ≈ 3.5 days and
τmax ≈ 350 days, respectively (see text).

4. Discussion

Most of the models used to describe post-seismic relaxation are based on the assumption
of a single relaxation time estimated for each relaxation mechanism proposed [4,11,14,60,61].
A co-seismic deformation leaves the system in a metastable state taking place in the broad
earthquake zone. In the present work, the post-seismic relaxation is viewed as a super-
position of several different relaxation times, each one activated in different mesoscopic
domains of the macroscopic relaxed seismic volume. The macroscopic relaxation observed
is a result of the superposition of different relaxation times on the microscopic–mesoscopic
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scale. This slow thermodynamic recovery could be explained by a physical model based
on the Arrhenius Equation [62].

The lithosphere as a dynamical system under a post-seismic relaxation is a complex
systems with strong interactions between its mesoscopic “subvolumes” [63] and, thus,
could be viewed as a macroscopic system driven by hierarchically constrained dynam-
ics [28] involved in the macroscopically observed relaxation process as a sequential series
of correlated mesoscopic processes.

The view of hierarchical constrained dynamics could be a physical pathway to describe
many of the complex systems that present logarithmic relaxation [64–66]. In the case of post-
seismic phase, the applied tectonic load drives the system to fracture, and its relaxation
creates a reorganization of the stress field in some selected mesoscopic regions of the
system. The deformed subvolumes nearest to the fractured region are rearranged and
the system reorganized. These new stress changes will affect the deformed subvolumes
outside the area nearest to the fracture, permitting their relaxation, and so on. The above
picture suggests that the relaxation in the fractured fault system is slow because it consists
of a large number of correlated and strongly interacting reorganization steps with an
increasing relaxation time. It seems to be appropriate to describe macroscopical post-
seismic relaxation in terms of a lithosphere that presents a hierarchical pattern, with the
faster relaxation to be associated with the subvolume close to earthquake focus regions
and, due to strong correlations and long-range interactions, the slower relaxation time to be
related with the “outer” deformed, but in the broad vicinity of epicenter, regions. The latter
is in agreement with that proposed for complex relaxed systems with cluster interactions,
where the relaxation time τ scales with the relaxation volume as τ~Vα, where α is an
exponent related macroscopically with the fractal geometry of the subvolume distribution
and the dynamical nature of relaxation [67–69]. This type of hierarchically constrained
dynamics is able to derive the logarithmic relaxation frequently observed and associate it
with thermally activated processes. We note that this behavior can result either from the
parallel relaxation of subvolumes or by a sequential relaxation series of strongly correlated
complex events [28].

Our results are in agreement with that presented in [70], where a Burridge-Knopoff
(BK) model is used to describe the time dependence of the mean stress, assuming that a
uniform statistical distribution of stress values is acting on each block (i.e., deformation in
subvolumes) in the relaxing lithospheric system.

In [70], the post-seismic normalized stress relaxation of the strongly interacted ele-
ments of the BK model presents a stress relaxation that could be viewed as hierarchically
constrained since blocks increase the stress on their nearby elements when they slip, and
as a consequence, the probability that their neighbors will slip increases as well. They
conclude that the normalized mean stress <σ> during the post-seismic relaxation in a BK
model with a uniform distribution of stresses [71] is:

< σ > =
∫ 1

0
σe−νt exp (−βεm(1−σ2))dσ (17)

where εm is the maximum size of energy barrier, ν is an attempt frequency to jump over the
energy barrier, and β = 1/kBT. Approximation of (17) leads to the following behavior in
short, intermediate, and long time periods, respectively:

lim
t→0

< σ > =
1
2
− 1

2βεm
(1− exp(−βεm))νt (18)

< σ >int ≈
1
2
− 1

2βεm
(γ + ln(νt) (19)

where γ is the Euler–Mascheroni constant (γ ≈ 0.577).

lim
t→∞

< σ > =
exp(βεm)

2βεm

exp(−νt exp(−βεm)

νt
(20)
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which, for very long time periods, t is proportional to exp(−t/τ) with τ = exp(βεm)/ν.
A comparison of Equations (18)–(20) with Equation (10), (12), and (14), respectively,

implies that S ∼ 1
2βεm

, supporting the hypothesis that the scaling factor depends on
temperature and the energy barrier that must be overcome before the relaxed subvol-
ume moves to a new stress stage. In addition, τmax ∼ 1

ν exp(βεm) and τmin ∼ 1
ν with

ln
(

τmax
τmin

)
∼ βεm being an expression similar to that defined in the present approach using

the Arrhenius expression, if εm = Emax − Emin is the maximum size of energy barrier.
The relaxation function, as presented in Equation (6), explains the logarithmic relax-

ation observed. In addition, it results in finite values, both just after the perturbation (i.e.,
t = 0) and for a long time after the earthquake event (t → ∞). The relaxation function
R(t) can be explained by Arrhenius’ law, presenting a universal behavior of the relaxation
process. Following Equation (6) and the ideas of hierarchically constrained dynamics, the
faster relaxation mechanisms, related to small relaxed volumes (small τ), offer a more
significant contribution to the relaxation process than the slower relaxation mechanisms
(large τ related with the broader relaxed area), as indicated by the presence of term 1/τ
in the expression of R(t), which permits greater weight to fast relaxation processes. We
note that the superposition of relaxation mechanisms, as expressed in Equation (6), implies
that, for early time periods, the fast relaxation mechanism associated with small relaxed
volumes that have a relaxation time close to τmin dominates, while for late time periods, the
slow relaxation mechanism, related to the relaxation of volumes farther from the epicenter
and present relaxation time close to τmax, contributes most. It is reasonable to assume that
the maximum relaxation time depends on the perturbation that triggers the relaxation and,
thus, on the deformed volume related with the main event, along with the geotectonic
conditions in the deformed region, such as stress, temperature, and fluids.

In addition, measurements of τmin could give information on the fastest relaxation
mechanism, which is scaled with the smallest deformed subvolume, even if it is sometimes
not clearly observed due to the immediate transition of the deformation process into the
logarithmic range, resulting in an unreliable estimation of τmin.

Applying the generic hierarchically constrained dynamics view to the North–South
displacement of the post-seismic relaxation of Lefkas 17 November 2015, Mw6.5 earth-
quake, we conclude that this approach describes with good agreement the displacement as
estimated using cGNSS recordings during the post-seismic relaxation period, leading to
the estimation of τmin ≈ 3.5 days and τmax ≈ 350 days, respectively.

This is a rather new approach that is used to describe post-seismic relaxation based
on the assumption of a spectrum of relaxation times that are superposed, each of them
activated in different mesoscopic domains of the macroscopic relaxed seismic volume. This
slow thermodynamic recovery (i.e., a logarithmic time dependence) could be explained by
a physical model based on the Arrhenius equation. With such an approach, we are led to
finite values for t = 0, without assuming any empirical constitutional equation.

5. Concluding Remarks

In the present work the post-seismic relaxation is viewed as a superposition of several
different relaxation times, each one activated in different mesoscopic domains of the
macroscopic relaxed seismic volume. The macroscopic relaxation that is observed is a
result of the superposition of different relaxation times on the microscopic–mesoscopic
scale. This approach is a new one since most of the models used to describe post-seismic
relaxation are based on the assumption of a single relaxation time estimated for each
relaxation mechanism proposed. The slow thermodynamic recovery of the post-seismic
relaxation could be explained by a physical model based on the Arrhenius equation and an
appropriate distribution of relaxation times.

In summary, we can state that, in the present work:

a. A multiscale post-seismic relaxation mechanism based on the existence of a distribu-
tion in relaxation time is presented.
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b. Assuming an Arrhenius dependence of the relaxation time with the uniform dis-
tributed activation energy in a mesoscopic scale, we conclude there is a generic
logarithmic type relaxation on a macroscopic scale.

c. The hierarchically constrained dynamics model could be used to understand the
evolution of post seismic relaxation.

d. The model was applied in the case of 2015 Lefkas (Greece) Mw6.5 earthquake, where
cGNSS time series were recorded in a station located in the vicinity of the epicentral
area. The application of the present approach to the Lefkas event fits the observed
displacements, implying a distribution of relaxation times in the range τmin ≈ 3.5
days to τmax ≈ 350 days.

These results offer a stimulating finding for further studies that will investigate post-
seismic deformation timeseries for other strong earthquakes, which may provide new
insights into the underlying dynamics of earthquake relaxation processes, along with the
possible parameters that influence this behaviour (i.e., fault type, local conditions, regional
stress field, etc.).
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