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Abstract: Metaheuristic algorithms are widely used for optimization in both research and the
industrial community for simplicity, flexibility, and robustness. However, multi-modal optimization
is a difficult task, even for metaheuristic algorithms. Two important issues that need to be handled
for solving multi-modal problems are (a) to categorize multiple local/global optima and (b) to
uphold these optima till the ending. Besides, a robust local search ability is also a prerequisite to
reach the exact global optima. Grey Wolf Optimizer (GWO) is a recently developed nature-inspired
metaheuristic algorithm that requires less parameter tuning. However, the GWO suffers from
premature convergence and fails to maintain the balance between exploration and exploitation for
solving multi-modal problems. This study proposes a niching GWO (NGWO) that incorporates
personal best features of PSO and a local search technique to address these issues. The proposed
algorithm has been tested for 23 benchmark functions and three engineering cases. The NGWO
outperformed all other considered algorithms in most of the test functions compared to state-of-the-
art metaheuristics such as PSO, GSA, GWO, Jaya and two improved variants of GWO, and niching
CSA. Statistical analysis and Friedman tests have been conducted to compare the performance of
these algorithms thoroughly.

Keywords: metaheuristic algorithm; swarm intelligence; multi-modal optimization; Grey Wolf
Optimizer; niching technique; local search

1. Introduction

The area of nature-inspired metaheuristic algorithms is continuously evolving with
newly developed algorithms. These algorithms are well known for their widespread lo-
cal and global search ability, local optima avoidance, and quick convergence ability. In
addition, these algorithms do not need any knowledge of a function’s gradient or differ-
entiability [1,2]. Since the metaheuristic algorithms have these superior properties with
easy applicability and fewer parameter requirements, significant variants of these algo-
rithms are developed [3]. The most widely used algorithms are Simulated Annealing
(SA) [4], Genetic Algorithm (GA) [5], Particle Swarm Optimization (PSO) [6], Differential
Evolution (DE) [7], and Ant Colony Optimization (ACO) [8]. A few recent metaheuristics
that seek the attention of researchers is Bee Collecting Pollen Algorithm (BCPA) [9], Black
Hole (BH) [10] Algorithm, Artificial Bee Colony Algorithm (ABC) [11], Central Force Opti-
mization (CFO) [10], Electro-search Algorithm (ESA) [12], Gravitational Search Algorithm
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(GSA) [13], Teaching Learning Based Algorithm (TLBO) [14], Artificial Chemical Reaction
Optimization Algorithm (ACROA) [15], Firefly Algorithm (FA) [16], Big Bang–Big Crunch
(BBBC) [17], Grey Wolf Optimizer (GWO) [18], Dragon Fly Algorithm [19], and Harris
Hawk Optimizer (HHO) [20], Jaya Algorithm [21]. Among these recent metaheuristics,
the GSA, GWO, and Jaya Algorithm is well known for simplicity, effective exploration
and exploitation.

Among the algorithms mentioned above, the GWO is a novel metaheuristic algorithm
that falls under swarm intelligence [18]. This algorithm has been proposed mimicking the
organizational order of wolves and their collective hunting nature. Due to its simplicity,
fast seeking speed, good precision for search, and fewer controlling parameters, this
algorithm is successfully applied to various technical fields such as feature selection [22–24],
wind speed forecasting [25], optimal power flow [26,27], pattern recognition [28], unit
commitment [29,30] parameters estimation [31,32], wellbore trajectory optimization [31]. In
addition to these applications, the GWO and variants also performed well for combinatorial
optimization problems and successfully applied to different fields, such as vehicle routing
problem [32], job scheduling problems [33–35], and economic dispatch [36,37] problems.
Some modifications to the GWO algorithm and its application in various optimization
fields are now described.

Quasi-oppositional based learning (Q-OBL) GWO called QOGWO was proposed by
Guha et al. [38] to control power systems load frequency. The authors designed optimal
PID controller by using QOGWO for two areas and four hydrothermal power plants and
showed that their proposed methods achieved promising performance like fuzzy logic,
ANN, and ANFIS system. In a different research, crossover and mutation-based hybrid
GWO was proposed by Jayabarathi et al. [36] to optimize non-linear, non-convex, con-
strained, and unconstrained economic dispatch problems at different conditions. The
authors claimed that their method showed promising performance. Korayem et al. hy-
bridized the GWO with K-means clustering technique to solve CVRP (capacitated vehicle
routing problems) and named it as K-GWO [32]. The authors further integrated a capacity
constraint to their algorithm and proposed 2 clustering techniques. They follow the cluster-
first route-second method to solve CVRP problems and tested their proposed technique for
20 benchmarks, and the obtained solutions are within a mean deviation of 1.76% from the
known optimum solutions. Singh and Singh [39] proposed a hybridization of GWO with
SCA in 2017. The hybrid GWOSCA shows good performance for unimodal functions but
failed to perform better for multi-modal problems [39]. Jiang and zhang applied a hybrid
Grey Wolf Optimizer algorithm for job shop scheduling and flexible job shop scheduling
problems. Their hybrid algorithm is incorporated with crossover operator to handle dis-
crete variables, whereas mutation operator helps to avoid local optima, and a neighborhood
search is applied to increase exploration. Their proposed algorithm outperforms PAGA,
LSGA, TLBO, EDA, BFO algorithms for both case studies [40]. Long et al. [41] recommnded
exploration-enhanced GWO (EEGWO), in which they introduced a new formula for updat-
ing the position by selecting a random wolf to guide the search and non-linearly controlling
the GWO parameter “a”. Even after making these modifications, their proposed algorithm
still suffers from premature convergence and local optima. Dhargupta et al. [42] designed
the selective opposition-based learning GWO (SOGWO) to improve GWO’s convergence
ability. To govern the omega wolves, they used Spearman’s correlation coefficient and
chose a few dimensions of wolves to apply opposition, which enhanced the exploration
ability of the algorithm. A recent variation of the GWO is developed by Shahraki et al. [43],
where they suggested a new movement technique encouraged by the discrete hunting
nature of wolves called dimension learning-based hunting (DLH) search. According to the
DLH, all wolves create their neighbors, sharing information among themselves.

The literature mentioned above indicates that due to easy implementation and less
parameter tuning, GWO variants are already applied in every optimization field and have
shown good performances empirically. However, premature convergence and the inability
to balance the exploitation with exploration are still the main drawbacks of the GWO and
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its variants for solving complex multi-modal optimization problems [42,43]. To overcome
these limitations, we make a decent attempt to improve the GWO algorithm by adapting the
niching technique. Niching techniques are well known to trace multiple optimal solutions
together. These techniques increase population diversity and reduce the likelihood of being
trapped in local solutions. In one iteration, they are also able to trace numerous local/global
optima. A few standard niching techniques developed in recent years are clustering [44],
fitness sharing [44], crowding [45], and clearing [46]. Nevertheless, niching methods need
more function evaluations to reach the global optima. It has been seen from literature
that various niching methods are applied to different types of metaheuristic algorithms
such as GA [44–46], PSO [2,47–49], CSA [50], and niching technique has significantly
improved the performance of these optimization algorithms. Inspired by these results, we
incorporate a fitness Euclidean distance ratio (FER) based niching technique with modified
velocity update and local search into the GWO algorithm, which has shown to significantly
improve the basic GWO algorithm’s accuracy. Our proposed method also does not need any
tuning parameters, which is a significant advantage. The research’s key contribution is to
(a) integrate FER niching technique into the GWO algorithm, (b) modify the velocity update
equation, and (c) apply a local search technique at the end of the search process. To the
best of our knowledge, this study first incorporates the niching technique to the GWO
algorithm. Since the multi-modal function optimization also needs to allocate the desired
global optima more precisely, we further incorporated the personal best feature of PSO
to hold the good solutions. The remaining part of the article is organized as follows:
Section 2 describes the NGWO algorithm. Section 3 illustrates the results and engineering
applications of NGWO. Finally, Section 4 presents the conclusion.

2. Materials and Methods
2.1. Grey Wolf Optimizer

Mirjalili et al. [18] suggested GWO, a novel population-based algorithm, which falls
under the swarm intelligence category. The key feature of GWO that makes it less prone to
local solutions and better than other algorithms is that it searches for the best solutions by
following three leader wolves: alpha, beta, and delta, while most other algorithms only
follow one best solution. The common wolves are called omega, and they always follow
the three leaders. The major steps of GWO are:

• Tracking, chasing, proceeding towards the target;
• Chasing, encompassing, distressing the target;
• Attacking the target.

The encircling mechanism can be mathematically represented as:

→
X (k+1) =

→
X P(k) −

→
A .
∣∣→C .

→
X P(k) −

→
X (k)

∣∣ (1)

Here, vector
→
X indicates the position of wolves,

→
Xp represents optimal solution’s

position,
→
C and

→
A are acceleration coefficients,

→
C = 2.

→
r2 and

→
A = 2

→
a .
→
r1 −

→
a , where

→
r1, and

→
r2 are randomly generated vectors within [0,1].

→
a is a constant vector that declines linearly

from 2 to 0. All the wolves update their positions by following these equations.

→
X(a) =

→
X α −

→
A .
∣∣ →C1.

→
X α −

→
X
∣∣ (2)

→
X (b) =

→
X β −
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A .
∣∣ →C2.

→
X β −

→
X
∣∣ (3)

→
X (c) =

→
X δ −
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A .
∣∣ →C3.

→
X δ −

→
X
∣∣ (4)

→
X =

(→
X (a) +

→
X (b) +

→
X(c)

)
3

(5)
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At each iteration, the wolves will update their positions according to Equations (1)–(5).
The parameter

→
a controls the movement of the wolves during the first half of the iteration

period where
→
a > 1, and it will intensify the exploration ability of the algorithm. In the last

half of the iteration period where
→
a < 1, it will increase the wolves’ exploitation ability.

2.2. Niching Technique

Niching techniques have the superiority of containing multiple solutions, which help
them to handle the multi-modal functions and effectively reach the global optimal basin. In
the proposed technique, the fitness Euclidean-distance ratio GWO (FER-GWO) is employed
to locate the best closest solutions, and the FER-GWO is developed following the concept
of FDR-PSO [51]. To calculate the FER value between two wolves i and j, the following
equation has been utilized.

FERij = (α).
F(pi)− F

(
pj
)

∣∣ ∣∣∣pi − pj

∣∣∣∣∣ (6)

Here, pi and pj are the positions of the corresponding i and j wolves, and F(pi) and
F(pj) represent their cost function values.

The scaling factor (α) =
||S||

F(pb)− F(pw)
(7)

In the above equation F(pw) and F(pb) are the cost function values of the worst and
best wolves among the current population, and the search space size is calculated based on
decision variables bounds, and numerically represented as:

S =

√√√√ D

∑
n=1

(xu
n − xl

n)ˆ2 (8)

Since, multi-modal optimization needs extensive exploration, niching is an efficient
technique that could meet the requirement. Therefore, in the proposed GWO algorithm, we
incorporated the personal best features to keep track of the best solutions discovered so far
during the search process. The wolves will be guided towards more fittest neighborhood
points at each iteration that can be obtained by calculating the FER values. The FER
value has superiority in that it does not need parameters specification. Moreover, bigger
population size is recommended for niching to locate all the local and global optima.

2.3. Modified Velocity Update Equation

During the iteration period, we determine the nbesti of each wolf based on the FER
value from Equation (6). The nbesti value is further used to modify the velocity update
Equation of beta and delta wolves, which is formulated as:

→
X(b) =

→
nbesti −

→
A.
∣∣→C.

→
nbesti −

→
X
∣∣ (9)

→
X (c) =

→
nbesti −

→
A .
∣∣→C .

→
nbesti −

→
X
∣∣ (10)

We set a niching constant (NC) as 0.5 and generate a random number (ri) during
each iteration, if ri > NC, then the beta and delta wolves will be guided by nbesti using
Equations (9) and (10). Otherwise, the original Equations (3) and (4) will be used to guide
the beta and delta wolves. Please note that the alpha wolf is always guided by the original
position update equation (Equation (2)).
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2.4. Local Search

It is challenging for the niching techniques to hit the global optima accurately in
complex multi-modal problems reliably. We incorporated a local search technique into
our NGWO to generate offspring close to the personal best (Pbest). It also improves the
algorithm’s fine search capability, which increases the likelihood of obtaining optimal
results. The definition of Qu et al. [2] is used to establish the local search technique, and
the pseudo-code is provided below in Algorithm 1.

Algorithm 1 Local Search

1: Update the present Pbest by NGWO
2: for i = 1 to NP (number of wolves)
3: Search Pbest_nearesti (the nearest Pbest member to Pbesti)
4: if fit(Pbest_nearesti) < = fit(Pbesti)
5: Temp = Pbesti + 1.5 * rand * (Pbest_nearesti–Pbesti)
6: else
7: Temp = Pbesti + 1.5 * rand * (Pbesti–Pbest_nearesti)
8: end if
9: Check for bounds violation, and assess Temp.
10: if fit(Temp) < fit(Pbesti)
11: Pbesti = Temp
12: end if
13: end for

During each iteration of the NGWO, the niching technique is applied by using
Equations (6)–(8). The wolves update their positions based on Equations (2)–(5) and (9)–(10).
Finally, local search is applied to the wolves’ personal best (Pbest). Figure 1 shows a detailed
flow map of the proposed algorithm.

Figure 1. Steps of the NGWO algorithm.
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3. Result and Discussion
3.1. Experimental Setup

We evaluated the proposed algorithm’s performance comprehensively for 23 test
functions as a minimization problem [13,18]. These functions are very common for testing
any algorithm’s effectiveness, consisting of 7 unimodal, 6 multi-modal, and 10 fixed
dimensional multi-modal functions. The population and iteration number are set as 50 and
1000 for the proposed method, respectively. We keep these two features similar to the
other compared studies to make the comparison fair and non-biased. The compared PSO,
GSA, GWO, and SOGWO values are taken from [42], and niching CSA values are inserted
from [50]. The Matlab code of Jaya algorithm and IGWO algorithms are collected from the
authors website for comparison. The test functions are numerically presented here, and
their detailed properties are described in Table 1.

F1(y) =
D

∑
j=1

y2
j (11)

F2(y) =
D

∑
j=1
| yj|+

D

∏
j=1
|yj| (12)

F3(y) =
D

∑
j=1

i

∑
j=1

y2
j (13)

F4(y) = {|y|, 1 ≤ j ≤ n} (14)

F5(y) =
D−1

∑
j=1

[
100×

(
y2

j − yj+1

)2
+
(

yj − 1
)2
]

(15)

F6(y) =
D

∑
j=1

(
|yj + 0.5|

)
ˆ2 (16)

F7(y) =
D

∑
j=1

jy4
j + random[0, 1] (17)

F8(y) =
D

∑
j=1
−yj sin

(√∣∣∣yj

∣∣∣) (18)

F9(y) =
D

∑
j=1

(
y2

j − 10× cos
(
2πyj

)
+ 10

)
(19)

F10(y) = −20× exp exp

−0.2×

√√√√ 1
D

D

∑
j=1

y2
j

− exp exp

 1
D

√√√√ D

∑
j=1

cos 2πyj

+ 20 + e (20)

F11(y) =
D

∑
j=1

y2
j

4000
−

D

∏
j=1

cos
( yj√

j

)
+ 1 (21)

F12(y) =
π

n
(πx) +

D

∑
j=1

(
yj − 1

)2[
1 + 10

(
πxj+1

)]
+ (xn − 1)2 +

D

∑
j=1

u(yi, 10, 100, 4) (22)

xj = 1 +
yj+1

4 , u
(

yj, a, k, m
)
= k

(
yj − a

)
, if yj > a; or 0, if− a < yj < a; or k

(
−yj − a

)m
, if yj < a

F13(y) =
(

3πyj

)
+

D
∑

j=1

(
yj − 1

)2[
1 +

(
3πyj + 1

)]
+ (yn − 1)2 [1 + (2πyn)]}+
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∑
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u
(
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F14(y) =

(
1

500
+

25

∑
j=1

1
i + ∑2

i=1(yi − ai,j)

)−1

(24)

F15(y) =
11

∑
i=1

 ai −
yi

(
b2

i + biy2

)
b2

i + biy3 + y4

2

(25)

F16(y) = 4y2
1 − 2.1y4

1 +

(
1
3

)
y6

1 + y1y2 − 4y2
2 + 4y4

2 (26)

F17(y) = (y2 −
(

5.1
4π2

)
y2

1 +

(
5
π

)
y1 − 6) + 10 (1− (1/8π))cos y1 + 10 (27)

F18(y) =
[
1 + (y1 + y2 + 1)2 (19− 14y1 + 3y2

1 − 14y2 + 6y1y2 + 3y2
2
)]
×
[
30 + (2y1 − 3y2)

2 ×
(
18− 32y1 + 12y2

1 + 48y2 − 36y1y2 + 27y2
2
)]

(28)

F19(y) =−∑4
i=1 ci exp(−∑3

j=1 ai,j

(
yj − pi,j

)2
) (29)

F20(y) =−∑4
i=1 ci exp(−∑6

j=1 ai,j

(
yj − pi,j

)2
) (30)

F21(y) =−∑5
i=1

[
(y− ai)(y− ai)

T + ci

]−1
(31)

F22(y) =−∑7
i=1

[
(y− ai)(y− ai)

T + ci

]−1
(32)

F23(y) =−∑10
i=1

[
(y− ai)(y− ai)

T + ci

]−1
(33)

Table 1. Benchmark function properties.

Functions Dimension Range Global Optima

F1 30 [−100, 100] 0
F2 30 [−10, 10] 0
F3 30 [−100, 100] 0
F4 30 [−100, 100] 0
F5 30 [−30, 30] 0
F6 30 [−100, 100] 0
F7 30 [−1.28, 1.28] 0
F8 30 [−500, 500] −418 × D
F9 30 [−5.12, 5.12] 0
F10 30 [−32, 32] 0
F11 30 [−600, 600] 0
F12 30 [−50, 50] 0
F13 30 [−50, 50] 0
F14 2 [−65, 65] 1
F15 4 [−5, 5] 0.0003
F16 2 [−5, 5] −1.0316
F17 2 [−5, 5] 0.398
F18 2 [−2, 2] 3
F19 3 [0, 1] −3.86
F20 6 [0, 10] −3.32
F21 4 [0, 10] −10.1532
F22 4 [0, 10] −10.4028
F23 4 [0, 10] −10.5363

Table 2 displays the parameter configurations of the compared algorithms. For each
test function, we run the algorithms 30 times in MATLAB, and the performance indexes
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(mean, standard deviation (SD), minimum (min) values) and Friedman test results are
collected from the MATLAB and inserted in Tables 3–5, with the best values bolded.

Table 2. Parameters of the compared algorithms.

Algorithm Parameters and Their Numerical Values

PSO c1 = 2, c1 = 2
GSA c1 = 2, c2 = 2, G0 = 1
GWO a = 2 to 0
JAYA N/A

SOGWO a = 2 to 0
IGWO a = 2 to 0
NCSA Awareness probability = 0.30, flight length = 0.20

NGWO a = 2 to 0, NC = 0.5

Table 3. Results of unimodal benchmarks (F1–F7).

Func-
tions Index PSO

(1998)
GSA

(2011)
GWO
(2014)

JAYA
(2016)

SOGWO
(2020)

IGWO
(2021)

NCSA
(2020)

NGWO
(This Work)

F1 Mean 1.30× 10−11 2.00× 10−17 1.36× 10−70 1.20 × 10−8 6.05 × 10−77 2.98× 10−71 3.48 × 10−91 3.69 × 10−96

SD 8.80× 10−11 5.50× 10−18 2.57× 10−70 3.40 × 10−8 1.49 × 10−76 5.60× 10−71 1.05 × 10−90 8.25 × 10−96

Min 1.10× 10−15 1.10× 10−17 9.07× 10−73 1.71× 10−10 3.81 × 10−79 1.52× 10−73 N/A 1.38 × 10−107

F2 Mean 2.90 × 10−6 2.40 × 10−8 5.64× 10−41 2.66 × 10−4 1.18 × 10−44 1.30× 10−42 6.64 × 10−61 1.09 × 10−73

SD 1.30 × 10−5 4.40 × 10−9 6.43× 10−41 1.70 × 10−4 1.34 × 10−44 1.26× 10−42 1.71 × 10−60 5.96 × 10−73

Min 4.40 × 10−9 1.40 × 10−8 3.59× 10−42 1.45 × 10−6 3.50 × 10−44 1.36× 10−43 N/A 1.46 × 10−88

F3 Mean 1.20 × 102 2.30 × 102 1.09× 10−19 4.13 × 100 5.40 × 10−22 3.29× 10−14 1.60 × 10−27 1.29 × 10−9

SD 7.50 × 101 1.00 × 102 3.11× 10−19 8.26 × 100 2.60 × 10−21 9.26× 10−14 5.97 × 10−27 2.67 × 10−9

Min 1.90 × 101 7.50 × 101 2.56× 10−25 2.19 × 10−1 1.17 × 10−28 1.69× 10−18 N/A 1.70 × 10−18

F4 Mean 4.20 × 10−1 6.40 × 10−2 1.94× 10−17 1.52 × 100 1.18 × 10−19 1.01× 10−14 1.67 × 10−25 4.53 × 10−32

SD 1.90 × 10−1 2.50 × 10−1 3.68× 10−17 1.04 × 100 1.51 × 10−19 1.64× 10−14 7.64 × 10−25 1.01 × 10−31

Min 1.40 × 10−1 2.10 × 10−9 1.28× 10−18 2.92 × 10−1 7.08 × 10−21 1.72× 10−16 N/A 8.49 × 10−40

F5 Mean 2.70 × 101 2.80 × 101 2.63 × 101 3.73 × 101 2.65 × 101 2.74 × 101 2.68 × 101 2.48 × 101

SD 8.40 × 100 1.00 × 101 6.69 × 10−1 2.54 × 101 7.62 × 10−1 3.05 × 10−1 4.18 × 10−1 1.86 × 10−1

Min 2.50 × 101 2.60 × 101 2.51 × 101 8.44 × 100 2.50 × 101 2.47 × 101 N/A 2.45 × 101

F6 Mean 1.30× 10−12 0.00 × 100 4.12 × 10−1 1.21 × 10−8 2.83 × 10−1 1.00 × 10−5 3.16 × 10−1 2.66 × 10−4

SD 7.10× 10−12 0.00 × 100 2.45 × 10−1 2.28 × 10−8 2.47 × 10−1 3.07 × 10−6 2.39 × 10−1 1.24 × 10−4

Min 8.30× 10−16 0.00 × 100 1.09 × 10−5 1.24× 10−10 6.19 × 10−6 4.87 × 10−6 N/A 1.61 × 10−4

F7 Mean 7.00 × 10−3 2.80 × 10−2 5.68 × 10−4 2.87 × 10−2 4.93 × 10−4 7.60 × 10−4 8.06 × 10−4 3.41 × 10−4

SD 2.50 × 10−3 1.70 × 10−2 3.54 × 10−4 1.09 × 10−2 2.71 × 10−4 2.94 × 10−4 4.80 × 10−4 2.26 × 10−4

Min 1.70 × 10−3 8.40 × 10−3 1.49 × 10−4 1.27 × 10−2 8.57 × 10−5 3.33 × 10−4 N/A 8.38 × 10−5

Table 4. Results of the compared algorithms for multi-modal benchmarks (F8-F23).

Func-
tions Index PSO

(1998)
GSA

(2011)
GWO
(2014)

JAYA
(2016)

SOGWO
(2020)

IGWO
(2021)

NCSA
(2020)

NGWO
(This Work)

F8 Mean −9.00 × 103 −2.70 × 103 −6.07 × 103 −7.66 × 103 −6.57 × 103 −9.53 × 103 −7.25 × 103 −1.25 × 104

SD 5.20 × 102 4.70 × 102 5.37 × 102 1.01 × 103 8.03 × 102 1.40 × 103 9.86 × 102 9.77 × 101

Min −1.00 × 104 −4.20 × 103 −7.09 × 103 −9.66 × 103 −8.18 × 103 −1.13 × 104 N/A −1.26 × 104

F9 Mean 4.10 × 101 1.70 × 101 5.20 × 100 2.68 × 101 0.00 × 100 1.42 × 101 0.00 × 100 0.00 × 100

SD 1.50 × 101 4.30 × 100 1.89 × 100 9.89 × 100 0.00 × 100 5.80 × 100 0.00 × 100 0.00 × 100

Min 1.80 × 101 9.00 × 100 0.00 × 100 1.49 × 101 0.00 × 100 2.99 × 100 N/A 0.00 × 100

F10 Mean 9.10 × 10−8 3.40 × 10−9 1.31× 10−14 2.63 × 100 8.88 × 10−16 9.41 × 10−15 4.44 × 10−8 4.44 × 10−15

SD 2.00 × 10−7 4.10 × 10−10 2.73× 10−15 9.95 × 10−1 0.00 × 100 2.74 × 10−15 0.00 × 100 0.00 × 100

Min 4.60 × 10−9 2.20 × 10−9 7.99× 10−15 9.31 × 10−1 8.88 × 10−16 7.99 × 10−15 N/A 4.44 × 10−15

F11 Mean 1.20 × 10−2 4.30 × 100 5.23 × 10−4 1.99 × 10−2 0.00 × 100 9.55 × 10−3 0.00 × 100 0.00 × 100

SD 1.20 × 10−2 1.60 × 100 2.61 × 10−3 2.97 × 10−2 0.00 × 100 3.60 × 10−3 0.00 × 100 0.00 × 100

Min 5.10 × 10−15 2.00 × 100 0.00 × 100 8.43 × 10−10 0.00 × 100 0.00 × 100 N/A 0.00 × 100

F12 Mean 1.50 × 10−13 2.50 × 10−2 2.66 × 10−2 1.58 × 10−1 5.61 × 10−2 7.50 × 10−7 1.66 × 10−2 2.10 × 10−5

SD 3.60 × 10−13 6.10 × 10−2 1.55 × 10−2 2.26 × 10−1 1.42 × 10−2 1.81 × 10−7 8.75 × 10−3 3.62 × 10−6

Min 1.60 × 10−13 6.20 × 10−2 6.57 × 10−2 4.84 × 10−11 2.62 × 10−2 4.45 × 10−7 N/A 1.69 × 10−5
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Table 4. Cont.

Func-
tions Index PSO

(1998)
GSA

(2011)
GWO
(2014)

JAYA
(2016)

SOGWO
(2020)

IGWO
(2021)

NCSA
(2020)

NGWO
(This Work)

F13 Mean 2.00 × 10−31 2.10 × 10−18 3.25 × 10−1 1.97 × 100 3.53 × 10−1 1.42 × 10−5 4.08 × 10−1 1.12 × 10−2

SD 4.30 × 10−31 5.00 × 10−19 1.56 × 10−1 3.71 × 100 1.28 × 10−1 4.31 × 10−6 2.27 × 10−1 1.07 × 10−2

Min 9.90 × 10−31 1.22 × 10−18 1.58 × 10−5 6.58 × 10−9 1.42 × 10−5 7.42 × 10−6 N/A 3.42 × 10−4

F14 Mean 1.00 × 100 3.80 × 100 3.11 × 100 9.98 × 10−1 3.43 × 100 9.98 × 10−1 1.13 × 100 9.98 × 10−1

SD 3.20 × 10−17 2.60 × 100 3.73 × 100 0.00 × 100 3.72 × 100 5.83 × 10−17 5.03 × 10−1 1.11 × 10−16

Min 1.00 × 100 1.00 × 100 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 N/A 9.98 × 10−1

F15 Mean 1.20 × 10−3 4.10 × 10−3 4.36 × 10−3 4.30 × 10−4 2.38 × 10−3 3.07 × 10−4 3.75 × 10−4 3.08 × 10−4

SD 4.00 × 10−3 3.20 × 10−3 8.17 × 10−3 3.17 × 10−4 6.03 × 10−3 6.57 × 10−10 7.73 × 10−5 4.22 × 10−8

Min 3.10 × 10−3 1.40 × 10−3 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 N/A 3.07 × 10−4

F16 Mean −1.00 × 100 −1.00 × 100 −1.02 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100

SD 2.30 × 10−16 4.00 × 10−16 4.80 × 10−9 6.78 × 10−6 3.75 × 10−9 6.78 × 10−6 2.39 × 10−6 0.00 × 100

Min −1.00 × 100 −1.00 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 −1.03 × 100 N/A −1.03 × 100

F17 Mean 4.00 × 10−1 4.00 × 10−1 3.98 × 10−1 3.98 × 10−1 3.97 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

SD 3.40 × 10−16 3.40 × 10−16 3.36 × 10−7 0.00 × 100 4.86 × 10−7 0.00 × 100 1.09 × 10−5 0.00 × 100

Min 4.00 × 10−1 4.00 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 N/A 3.98 × 10−1

F18 Mean 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100

SD 3.10 × 10−15 2.20 × 10−15 4.88 × 10−6 1.51 × 10−15 4.63 × 10−6 1.24 × 10−14 9.98 × 10−6 1.49 × 10−15

Min 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 3.00 × 100 N/A 3.00 × 100

F19 Mean −3.90 × 100 −3.60 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100

SD 3.10 × 10−15 3.00 × 10−1 1.05 × 10−3 2.71 × 10−15 2.71 × 10−3 2.71 × 10−15 2.67 × 10−4 1.51 × 10−15

Min −3.90 × 100 −3.90 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 −3.86 × 100 N/A −3.86 × 100

F20 Mean −3.30 × 100 −1.90 × 100 −3.25 × 100 −3.29 × 100 −3.27 × 100 −3.32 × 100 −3.29 × 100 −3.32 × 100

SD 5.50 × 10−2 5.40 × 10−1 7.04 × 10−2 5.11 × 10−2 7.37 × 10−2 3.63 × 10−2 4.45 × 10−2 3.83 × 10−7

Min −3.30 × 100 −3.30 × 100 −3.32 × 100 −3.32 × 100 −3.32 × 100 −3.32 × 100 N/A −3.32 × 100

F21 Mean −7.20 × 100 −5.10 × 100 −9.95 × 100 −1.02 × 101 −9.66 × 100 −1.02 × 101 −7.73 × 100 −1.02 × 101

SD 3.30 × 100 7.40 × 10−3 1.01 × 100 7.23 × 10−15 1.51 × 100 3.12 × 10−8 2.19 × 100 1.55 × 10−3

Min −1.00 × 101 −5.10 × 100 −1.02 × 101 −1.02 × 101 −1.02 × 101 −1.02 × 101 N/A −1.02 × 101

F22 Mean −9.10 × 100 −7.50 × 100 −1.02 × 101 −1.04 × 101 −1.04 × 101 −1.04 × 101 −8.82 × 100 −1.04 × 101

SD 2.80 × 100 2.70 × 100 1.05 × 100 9.33 × 10−16 2.66 × 10−4 3.12 × 10−8 1.90 × 100 4.40 × 10−2

Min −1.00 × 101 −1.00 × 101 −1.04 × 101 −1.04 × 101 −1.04 × 101 −1.04 × 101 N/A −1.04 × 101

F23 Mean −9.40 × 100 −1.00 × 101 −1.03 × 101 −1.05 × 101 −1.05 × 101 −1.04 × 101 −9.16 × 100 −1.05 × 101

SD 2.80 × 100 7.80 × 10−1 1.08 × 100 1.81 × 10−15 5.41 × 10−1 7.40 × 10−8 1.86 × 100 6.64 × 10−10

Min −1.10 × 101 −1.10 × 101 −1.05 × 101 −1.05 × 101 −1.05 × 101 −1.04 × 101 N/A −1.05 × 101

Table 5. Ranking of the algorithms based on the Friedman test.

Functions PSO
(1998)

GSA
(2011)

GWO
(2014)

JAYA
(2016)

SOGWO
(2020)

IGWO
(2021)

NCSA
(2020)

NGWO
(This Work) p-Value

F1 7.000 5.967 4.433 8.000 4.067 3.400 1.833 1.267 4.902 × 10−39

F2 7.060 6.000 4.667 6.877 4.267 2.967 2.000 1.000 8.466 × 10−41

F3 6.830 8.000 2.067 6.100 2.567 4.033 1.400 4.933 8.027 × 10−40

F4 7.000 6.033 3.133 7.967 3.500 4.967 2.400 1.000 4.720 × 10−40

F5 5.400 4.700 5.533 4.367 5.733 2.400 4.767 1.133 1.633 × 10−17

F6 2.000 1.000 6.167 3.000 6.300 4.133 8.000 5.400 1.259 × 10−39

F7 7.900 6.300 3.400 6.800 3.367 4.300 2.400 1.533 2.906 × 10−35

F8 5.133 8.000 6.333 4.267 5.600 2.667 3.000 1.000 1.584 × 10−34

F9 7.767 5.733 2.633 6.933 2.500 5.567 2.433 2.433 2.922 × 10−39

F10 7.000 6.000 4.217 8.000 4.417 3.267 1.650 1.450 1.618 × 10−40

F11 6.000 8.000 3.133 6.333 3.383 3.617 2.733 2.700 3.735 × 10−33

F12 1.767 2.333 5.667 5.567 5.867 3.033 7.567 3.433 3.310 × 10−27

F13 2.367 1.300 5.900 4.867 6.267 3.033 7.767 3.533 4.302 × 10−32

F14 4.617 6.733 6.067 2.817 5.133 2.817 5.000 2.817 3.877 × 10−20

F15 6.500 7.700 4.817 2.333 4.983 2.817 5.213 1.517 1.506 × 10−31

F16 3.767 3.767 6.783 3.767 6.617 3.767 3.767 3.767 7.581 × 10−28

F17 3.517 3.517 7.567 3.517 7.333 3.517 3.517 3.517 4.257 × 10−40

F18 3.500 3.500 7.533 3.500 7.467 3.500 3.500 3.500 7.003 × 10−40

F19 3.500 3.500 7.533 3.500 7.467 3.500 3.500 3.500 7.003 × 10−41

F20 4.750 2.550 6.700 3.583 6.900 3.433 3.400 2.683 7.641 × 10−23

F21 4.133 5.233 5.967 2.500 6.067 2.767 5.250 4.083 3.014 × 10−15

F22 3.483 2.983 6.867 2.983 6.967 3.050 4.750 4.917 3.309 × 10−25

F23 4.650 1.500 6.633 1.500 6.867 4.033 5.500 5.317 2.890 × 10−31
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3.2. Classical Benchmark Functions
3.2.1. Exploitation Analysis

The unimodal functions (F1–F7) are well recognized for evaluating algorithm exploita-
tion ability. The performance indexes of unimodal functions are reported in Table 3. The
proposed NGWO shows the superior result for the considered unimodal functions and out-
performs all other algorithms for five unimodal functions (F1, F2, F4, F5, F7). Nonetheless,
the NCSA algorithm performs better for one unimodal function (F3), and GSA achieved
the best indexes for one unimodal function (F6).

3.2.2. Exploration Analysis and Local Optima Avoidance

The multi-modal functions are renowned for having multiple local optima, where
the number of local optima increases exponentially with dimensions. Therefore, the
multi-modal functions (F8–F23) are suitable for testing the exploration and local optima
avoidance ability of an algorithm. The NGWO algorithm shows very promising results
for the multi-modal functions. As seen from Table 4, the NGWO algorithm outperforms
all other algorithms and accomplished all the best indexes for nine functions (F8, F9, F11,
F16–F20, F23). Moreover, the NGWO algorithm found the global optima of ten multi-modal
functions with pinpoint precision (F9, F11, F16–F23). The NGWO algorithm achieved the
best SD indexes for a total of 14 functions, indicating the algorithm’s high local optima
avoidance ability. The lowest SD values, therefore, mean that there is less variation in the
algorithm’s optimum values, implying that the algorithm is stable.

3.2.3. Convergence Analysis

This paragraph illustrates the convergence ability of the NGWO and other compared
algorithms. Figure 2 shows the convergence characteristics of the unimodal benchmarks,
while Figure 3 depicts the convergence behavior of the six multi-modal benchmarks.
In Figures 2 and 3, the horizontal axis signifies the iteration number, and vertical axis
shows the median function values from 30 runs. In all Figures, the NGWO maintains
a consistent downward slope through the iteration periods, which indicates that the
wolves are sharing information to improve the cost function values (fitness) through the
iteration period. For most of the convergence curves of Figures 2 and 3, the NGWO shows
superior convergence ability that also indicates a proper balance between exploitation and
exploration. Furthermore, the NGWO algorithm only took 100 iterations to achieve the
exact global optima zero for multi-modal functions F9 and F11, demonstrating NGWO’s
rapid convergence speed.

Figure 2. Cont.
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Figure 2. Convergence characteristics of the algorithms for unimodal benchmark functions (F1–F7). Here, (a) represents
benchmark function F1, (b) represents benchmark function F2, (c) represents benchmark function F3, (d) represents bench-
mark function F4, (e) represents benchmark function F5, (f) represents benchmark function F6, (g) represents benchmark
function F7.
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Figure 3. Convergence characteristics of the algorithms for multi-modal benchmark functions (F8-F13). Here, (a) represents
benchmark function F8, (b) represents benchmark function F9, (c) represents benchmark function F10, (d) represents
benchmark function F11, (e) represents benchmark function F12, (f) represents benchmark function F13.

The parameter space, quest history, trajectory of the first wolf, convergence curves,
and wolves average fitness are plotted in Figures 4 and 5 to illustrate the convergence
behavior in detail. This section has considered the number of wolves and iteration as
50 and 100, respectively. It has been known from the literature [52] that abrupt position
changes during the initial iteration steps are more preferable for improving the exploration
ability of an algorithm. These changes need to be decreased to strengthen the exploitation
ability in the later part of the iteration. The trajectory and search history of the 1st wolf are
demonstrated in Figures 4 and 5. It is explicit from the first wolf’s search history (second
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column of Figures 4 and 5) that the wolves extensively searched through the search space
and exploited the best area. The trajectory of 1st wolf (3rd column in Figures 4 and 5) also
indicates the same phenomenon, where it emphasized more on exploration in the initial
steps, and it decreased through the iteration period. By contrast, the exploitation ability is
strengthened during the last periods of iteration. All of these indicate that the NGWO has
good convergence ability, and it achieves a proper balance between local exploitation and
global exploration.

Figure 4. Cont.
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Figure 4. Parameter space, search history, trajectory of 1st wolf, the average fitness of all wolves, and convergence curve of
NGWO for unimodal functions (F1–F7). Here, (a) represents benchmark function F1, (b) represents benchmark function
F2, (c) represents benchmark function F3, (d) represents benchmark function F4, (e) represents benchmark function F5, (f)
represents benchmark function F6, (g) represents benchmark function F7.

Figure 5. Cont.
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Figure 5. Parameter space, search history, trajectory of 1st wolf, the average fitness of wolves, and convergence curve of
NGWO for multi-modal functions (F8–F13). Here, (a) represents benchmark function F8, (b) represents benchmark function
F9, (c) represents benchmark function F10, (d) represents benchmark function F11, (e) represents benchmark function F12, (f)
represents benchmark function F13.

Figures 6 and 7 show the box plots for each algorithm for multi-modal functions. The
first six multi-modal functions are 30-dimensional problems (F7–F13), while the next ten
are fixed dimensional multi-modal problems, and the dimension numbers are reported in
Table 1. In MATLAB, we run each algorithm 30 times for each test function, saving the
best values from each run and plotting them as box plots. These box plots illustrate the
distribution of benchmark function results in a better way and indicates the dispersion and
symmetry of data sets. The box plots represent the first, second (median), third and lower
quartiles, upper bounds and outliers, respectively. The bigger size of the rectangular box
indicates that the data sets are scattered more, and the results obtained by the algorithm
are not stable. It also indicates the comparatively worst performance. The red crossbar
indicates the median of data sets, and the plus sign (+) in red indicates outliers. Among
the plots of Figure 6, the box plot location of the NGWO is lower than the other seven
algorithms for four functions (F8–F11, Figure 6a–d), and the box size is also lowest for these
functions. In Figure 6b,d the NGWO algorithm reached the exact zero for all data sets,
that is why there is no box for NGWO in these two figures. In the case of Figure 7a–j, the
NGWO shows the minimum distribution of the data sets and its box plots lies below that of
other algorithms. These things indicate the superiority of the proposed NGWO algorithm
and less variation in results, and stability of the algorithm.
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Figure 6. Box plot of the multi-modal benchmark functions (F8–F13). Here, (a) represents F8, (b) represents F9, (c) represents
F10, (d) represents F11, (e) represents F12, (f) represents F13.

Figure 7. Cont.
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Figure 7. Box plot of the fixed dimensional multi-modal benchmark functions (F14–F23). Here, (a) represents benchmark
function F14, (b) represents benchmark function F15, (c) represents benchmark function F16, (d) represents benchmark
function F17, (e) represents benchmark function F18, (f) represents benchmark function F19, (g) represents benchmark
function F20, (h) represents benchmark function F21, (i) represents benchmark function F22, (j) represents benchmark
function F23.
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3.2.4. Ranking of the Algorithms

To analyze the NGWO algorithm’s performance more thoroughly, we conducted non-
parametric Friedman tests to rank each algorithm. This multiple comparison test works
based on the recurrent measurement of the Anova, and it can determine the differences
among the compared algorithms. The best values of each algorithm for 30 runs were
stored in a matrix, and the Friedman test was applied to this matrix to obtain the mean
ranks of each algorithm for 30 runs. The Friedman test also provides the corresponding
p-values for each test function. It is explicit from the Friedman test results in Table 5 that
the proposed NGWO attained the best rank for 16 functions among a total of 23 benchmark
functions. Additionally, the JAYA, GSA, and PSO obtained the best ranking for 3, 2, and
1 functions, respectively.Very low p–Values indicate that the Friedman test results are
statistically significant.

3.3. Engineering Application of NGWO

The proposed algorithm has been tested for three real-life engineering case studies
and collected from the literature [18,43]. All three problems have inequality constraints,
and we use the hard penalty approach to handle the constraints. We have considered
100 wolves over 100 iterations to solve these three problems.

3.3.1. Welded Beam Design

The objective of this case study is to minimize a welded beam’s fabrication cost. It
consists of four decision variables such as bar thickness (b), bar height (t), attached part
length (l), and weld thickness (h), and seven inequality constraints (sheer and bending
stress, side constraints, end deflection, buckling load). The problem is mathematically
formulated as [43]:

f(y) = 1.10471y2
1y2 + 0.04811y3y4(14 + y2) (34)

τ(y) =
√

τ2
1 + τ1 τ2

y2
2R

+ τ2
2 (35)

τ1 =
P√

2y1y2
(36)

τ2 =
MR

J
(37)

M = P
(

L +
y2
2

)
(38)

R =

√
0.25 ∗

(
y2

2 +
(
y1 + y3

)2
)

(39)

J = 2/

{
√

2y1y2

[
y2

2
12

+
(y1 + y3 )̂2

4

]}
(40)

σ(y) =
6PL
x4y2

3
(41)

δ(y) =
4PL3

Ey4y3
3
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Pc(y) =
4.013E y3y3

4

6L2 (1− 0.25y3

√(
E
G

)
/L) (43)
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Here, P = 6000lb, L = 14 inch, δmax = 0.25 inch, E = 30× 106 psi, G = 12× 106 psi,
τmax = 13600 psi, σmax = 30000 psi. The inequality constraints are:

c1(y) = τ(y)− τmax ≤ 0 (44)

c2(y) = σ(y)− σmax ≤ 0 (45)

c3(y) = y1 − y4 ≤ 0 (46)

c4(y) = 1.10471y2
1 + 0.04811y3y4(14 + y2)− 5 ≤ 0 (47)

c5(y) = δ(y)− δmax ≤ 0 (48)

c6(y) = p− pc(y) ≤ 0 (49)

c7(y) = 0.125− y1 ≤ 0 (50)

The decision variable bounds are:

0.1 ≤ y1 ≤ 2; 0.1 ≤ y2 ≤ 10 ; 0.1 ≤ y3 ≤ 10; 0.1 ≤ y4 ≤ 2

3.3.2. Tension–Compression Coil Spring Design

The weight of the tension–compression coil is reduced in this case study. It consists of
three decision variables ((number of coils (n), wire diameter (d), mean coil diameter (D)),
and 4 inequality constraints. The following is a numerical representation of the problem:

Minimize f(y) =
(
y3 + 2

)
y1y2

2
The inequality constraints are:

c1(y) = 1−
y3

1y3

71785y4
2
≤ 0 (51)

c2(y) =
4y2

1 − y1y2

12566
(
y1y3

2 − y4
2
) + 1

5108y2
2
− 1 ≤ 0 (52)

c3(y) = 1−
140.45y2

y2
1y3

≤ 0 (53)

c4(y) =
y1 + y2

1.5
− 1 ≤ 0 (54)

Here, 0.25 ≤ y1 ≤ 1.30; 0.05 ≤ y2 ≤ 2; 2 ≤ y3 ≤ 15 ;

3.3.3. Three Bars Truss Design

Ray and Saini [53] first proposed this case study to minimize the bar’s weight. It has
2 variables and 3 constraints, and it can be mathematically presented as:

Minimize f(y) =
(

2
√

2 y1 + y2

)
× l

Subject to √
2y1 + y2√

2y2
1 + 2y1y2

(P− σ) ≤ 0 (55)

y2√
2y2

1 + 2y1y2
(P− σ) ≤ 0 (56)

1
2y1y2 +

√
2y2

1

(P− σ) ≤ 0 (57)

The variables ranges are: 0 ≤ y1 ≤ 1 ; 0 ≤ y2 ≤ 1 and l = 100 cm, P = 2 KN/cm2, and
σ = 2 KN/cm2
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3.4. Results of the Engineering Application
3.4.1. Optimization Result of Welded Beam Design

It is explicit from the reported results shown in Table 6 that the NGWO outperforms
all the previous algorithms for this case study. The proposed algorithm achieved optimal
values for four indexes among the five compared indexes (best, mean, worst, standard
deviation, and NFEs). In contrast, the HEAA algorithm achieved the best result for the
standard deviation index.

Table 6. Comparative study of Welded Beam design problem.

Algorithms y1 y2 y3 y4 f (Best) f (Mean) f (Worst) SD NFEs

NGWO 0.34094 3.5810 9.0321 0.2063 2.036 2.046 2.0632 1.02 × 102 20,100
GA [54] 0.2489 6.173 8.1789 0.2533 2.4331 N/A N/A N/A N/A
SC [55] 0.2444 6.238 8.2886 0.2446 2.3854 3.2551 6.3997 9.60 × 10−1 33,095

FSA [56] 0.2443 6.2158 8.2939 0.2443 2.3811 2.4042 2.489 N/A 56,243
AATM [57] 0.2441 6.2209 8.2982 0.2444 2.3823 2.387 2.3916 2.20 × 10−3 30,000
HEAA [58] 0.2444 6.2175 8.2915 0.2444 2.381 2.381 2.381 1.30 × 10−5 30,000

EEGWO [41] 0.2444 6.217 8.2928 0.2444 2.3813 2.3817 2.3824 4.18 × 10−4 50,000

3.4.2. Result of Tension–Compression Coil Spring Design

For tension–compression coil spring design, we compared our findings with 10 other
previous studies from the literature in Table 7. The NGWO algorithm achieved the optimal
values for four indexes, while the FSA algorithm attained the optimal value for SD index.

Table 7. Comparative study of tension–compression coil spring design.

Algorithms y1 y2 y3 f (Best) f (Mean) f (Worst) SD NFEs

NGWO 10.32826 0.35486 0.05026 0.011053 0.011755 0.012454 5.21 × 10−4 20,100
GA [59] 10.89052 0.36396 0.05198 0.01268 0.01274 0.01297 5.90 × 10−5 80,000
FSA [56] 11.21390 0.35800 0.05174 0.01266 0.01266 0.01266 2.20 × 10−8 49,531

CPSO [60] 11.24454 0.35764 0.05172 0.01267 0.01273 0.01292 5.20 × 10−5 200,000
HPSO [60] 11.26503 0.35712 0.05170 0.01266 0.01270 0.01271 1.58 × 10−5 81,000
GSA [13] 14.22867 0.05 0.31731 0.01287 0.01343 0.01421 1.34 × 10−2 30,000
GWO [18] 12.04249 0.34454 0.05117 0.01267 0.01269 0.01272 2.10 × 10−5 30,000
AFA [61] 11.31956 0.35619 0.05166 0.01266 0.01266 0.01280 1.27 × 10−2 50,000
TEO [62] 11.16839 0.35879 0.05177 0.01266 0.01268 0.01271 4.41 × 10−2 300,000

MGWO [63] 11.80809 0.34819 0.05133 0.01266 0.01267 0.01270 1.10 × 10−5 30,000
EEGWO [41] 11.3113 0.35634 0.05167 0.01266 0.01268 0.01272 2.22 × 10−5 50,000

3.4.3. Three Bars Truss Design Result

Table 8 summarizes the results of three bars truss design problem. The WCA and DEDS
algorithms achieved three and two best indexes, respectively. The NGWO algorithm’s
results are very similar to the previous best results obtained by various optimization
algorithms.
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Table 8. Results of three bars truss design problem.

Algorithms y1 y2 f (Best) f (Mean) f (Worst) SD NFEs

NGWO 0.789186 0.406806 263.8959 263.8964 263.8971 5.58 × 10−4 20,100
PSO [6] 0.781224 0.432548 264.2183 265.9553 267.459 1.38 × 100 30,000
SC [55] 0.788621 0.408401 263.8958 263.9033 263.9697 1.30 × 10−2 17,610

DEDS [64] 0.788651 0.408316 263.8958 263.8958 263.8958 9.70 × 10−7 15,000
GSA [13] 0.777662 0.448853 264.8299 271.0348 279.7925 4.12 × 100 30,000

HEAA [58] 0.78868 0.408234 263.8958 263.8959 263.8961 4.90 × 10−5 15,000
AATM [57] 0.788682 0.408229 263.8958 263.8966 263.9004 1.10 × 10−3 17,000
WCA [65] 0.788651 0.408316 263.8958 263.8959 263.8962 8.71 × 10−5 5250
MBA [66] 0.788565 0.40856 263.8959 263.898 263.916 3.93 × 10−3 13,280
GWO [18] 0.788409 0.409003 263.8959 263.8966 263.898 4.37 × 10−4 30,000
MVO [67] 0.788993 0.407351 263.8959 263.8961 263.8971 2.49 × 10−4 30,000
SCA [68] 0.789068 0.407162 263.8984 263.9356 263.9951 2.88 × 10−2 30,000

MGWO [63] 0.788561 0.408572 263.8959 263.8963 263.8976 4.29 × 10−4 30,000
EEGWO [41] 0.78841 0.40899 263.896 263.8963 263.8966 2.19 × 10−4 50,000

4. Conclusions

The GWO algorithm was influenced by the leadership structure and group hunting
system of wolves. The GWO algorithm undergoes the lack of population diversity and is
vulnerable to premature convergence in multi-modal problems. Hence, a new variant of
GWO called niching GWO (NGWO) with a modified position update equation is proposed
in this research to improve the performance of the GWO algorithm for solving multi-modal
problems. The niching techniques are well known for handling multiple optimal solutions
in the case of multi-modal optimization problems. A fitness Euclidean distance ratio-based
niching GWO called FER-GWO is used to strengthen the searchability of the algorithm. By
using the FER technique, the wolves are guided towards the nearby wolves’ best position,
having better cost function values.

The proposed NGWO algorithm has been thoroughly tested on 23 traditional bench-
mark functions and three real-world engineering cases. It achieves very promising results
and outperforms most other compared algorithms for the considered benchmarks and
engineering case studies. This superiority is accomplished by incorporating the nich-
ing technique to the basic GWO algorithm and modifying the position update equation,
whereas the local search increases the fine searchability. The reported results indicate that
the algorithm achieved well-balanced global exploration and local exploitation, which
further increases the algorithm’s accuracy. This research focuses on single-objective op-
timization problems only; however, future work will extend the NGWO algorithm to
multi-objective optimization problems.
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