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Abstract: Deep learning-based software defect prediction has been popular these days. Recently, the
publishing of the CodeBERT model has made it possible to perform many software engineering tasks.
We propose various CodeBERT models targeting software defect prediction, including CodeBERT-NT,
CodeBERT-PS, CodeBERT-PK, and CodeBERT-PT. We perform empirical studies using such models
in cross-version and cross-project software defect prediction to investigate if using a neural language
model like CodeBERT could improve prediction performance. We also investigate the effects of
different prediction patterns in software defect prediction using CodeBERT models. The empirical
results are further discussed.

Keywords: software defect prediction; deep transfer learning; pre-trained language model; soft-
ware reliability

1. Introduction

As modern software is getting more complex, it is of great importance to ensure
software reliability. Up to now, the most practical way of building high-reliable software
is via a huge amount of testing and debugging. Therefore, software defect prediction, a
technique to predict defects in software artifacts, has gained popularity by lessening the
burden of developers to prioritize their testing and debugging efforts [1].

For decades, hand-crafted metrics have been used in software defect prediction.
Since AlexNet [2], deep learning has been growing rapidly in image recognition, speech
recognition, and natural language processing [3]. The same trend also appears in software
defect prediction because deep learning models are more capable of extracting information
from long texts, i.e., source code. Instead of using hand-crafted metrics that are designed
top-down, deep learning models are able to generate code features bottom-up from source
code and could describe both syntax and semantic information. Many researchers [4–25]
use various kinds of deep learning models, e.g., Convolutional Neural Networks (CNN),
Long-short Term Memory (LSTM) models, and Transformers for software defect prediction,
and achieve promising results. However, due to the limited dataset size in software defect
prediction (compared to massive lines of source code directly available in open source
repositories), it is hard to believe that a deep learning model trained for software defect
prediction can really “understand” the source code itself. Therefore, two problems arise.
Can we use a model that “understands” source code for software defect prediction? How should we
use such a model for software defect prediction?

The language model, a core concept in natural language processing, is gaining popular-
ity. The reason is that, given the abundance of natural language corpora, and the difficulty
of getting labels for prediction tasks, it is more economic-efficient to fully leverage the
original corpora in an unsupervised fashion before the language model is later used in
other prediction tasks. There are many popular language models such as Word2Vec [26]
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and Glove [27]. Recently in 2019, BERT [28] improves natural language pre-training us-
ing mask-based objectives and a Transformer-based architecture. BERT has successfully
improved many state-of-the-art results for various natural language tasks.

Along with the development of the natural language model, recent research also
shows great success in applying natural language models to artificial languages, especially
programming languages. Such programming language models mainly embed local and
global context [29], abstract syntax trees (ASTs) [30,31], AST paths [32], memory heap
graphs [33], and the combination of ASTs and data-flows [34,35]. CodeBERT [36] is one of
the latest released powerful language models that is a transformer pre-trained with a Bert-
like architecture on open source repositories. It could support paired natural language and
multi-lingual programming language tasks, such as code search and code documentation
generation. Despite the great success of fine-tuning CodeBERT in downstream tasks, it
remains unclear if CodeBERT could improve results in software defect prediction.

In this paper, we investigate the feasibility of using the CodeBERT model for software
defect prediction. Specifically, we propose four models based on CodeBERT: CodeBERT-NT,
CodeBERT-PT, CodeBERT-PS, and CodeBERT-PK. We perform experiments to investigate
the performance of CodeBERT-based models that “understand” source code syntax and
semantic and design new prediction patterns that are specially designed for pre-trained
language models like CodeBERT. The experimental data are available at https://gitee.com/
penguinc/applsci-code-bert-defect-prediciton. (accessed on 23 May 2021).

Our contributions are as follows:

• We are the first to introduce pre-trained programming language models for software
defect prediction.

• We propose new forms of prediction patterns specially designed for pre-trained
language models in software defect prediction.

• We discuss the reason why new forms of prediction patterns work in software
defect prediction.

2. Background
2.1. Deep Learning Based Software Defect Prediction

Figure 1 shows a typical workflow of deep learning-based software defect prediction.
The first step is to extract software modules from open-source repositories. A software
module could be a method, a class, a file, a code change, etc. The second step is to mark
software modules as buggy/clean. The bug information is extracted from post-release
defects recorded in bug tracking systems, e.g., Bugzilla. If a software module contains bugs
found in later releases, the module is marked as buggy. The third step is to extract code
features from software modules. In deep learning-based software defect prediction, typical
code features include character-based, token-based, AST-node-based, AST-tree-based, AST-
path-based, and AST-graph-based features. The fourth step is to build a deep learning
model to generate features and train the instances. Frequently used deep learning models
in software defect prediction include CNN, LSTM, Transformers, etc. The last step is to use
the trained deep learning model for inference, i.e., predict whether a software module is
buggy or clean.

https://gitee.com/penguinc/applsci-code-bert-defect-prediciton
https://gitee.com/penguinc/applsci-code-bert-defect-prediciton
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formation density represented and the training difficulty of deep learning models given 
insufficient datasets. Some researchers also present representations based on AST paths, 
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cus on defect characteristics [19]. 
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Deep learning-based software defect prediction can be organized into two categories:
Software defect prediction based on deep learning and hand-crafted features. Deep

learning is expert at combining hand-crafted features. Therefore, hand-crafted features can
be fed into deep learning models to improve prediction performance. Yang et al. [37] are the
first to use fully connected neural networks for hand-crafted feature combinations. Other
deep learning models include autoencoders [38,39] and ladder networks [39]. The results
show that deep representations of hand-crafted features could further improve prediction
performance compared to experiments using traditional machine learning models and
hand-crafted features.

Software defect prediction based on deep learning and generated features. With the
rapid progress in the natural language processing domain, deep learning models are capable
of processing long texts, e.g., source code. Unlike designed top-down hand-crafted features,
the features are generated bottom-up from the source code, which could represent structural
and semantics information of the source code. Recently, many deep learning models, including
Deep Belief Networks [4,15], CNN [5–7,10,17,19,24,25], LSTM [11,12,14,16,18], Transformers [8],
and other deep learning models [13,22] are used in software defect prediction.

Researchers also explore more efficient ways of source code representations. Most
researchers use AST sequence to represent source code [4,5,7,17] which balances the in-
formation density represented and the training difficulty of deep learning models given
insufficient datasets. Some researchers also present representations based on AST paths,
e.g., PathPair2Vec [9] and Code2Vec [32]. AST paths could extract node-path information
that is not shown in AST sequences at the cost of the explosion of path numbers and
training efforts. Other researchers explore context information based on AST sequences to
focus on defect characteristics [19].

2.2. Deep Transfer Learning

In some domains, including software defect prediction, it is challenging to construct
a large-scale, high-quality dataset due to the high cost of labeling data samples. Transfer
learning, which assumes that training data do not have to be identically distributed (i.i.d.)
with test data, could mitigate the problem of insufficient training data [40].

The definition of transfer learning is proposed by Tan et al. [41] as below. Given a
learning task Tt based on Dt, and we can get help from Ds for the learning task Ts. Transfer
learning aims to improve the performance of predictive function fT(·) for the learning
task Tt by discovering and transferring latent knowledge from Ds and Ts, where Ds 6= Dt
and/or Ts 6= Tt. In addition, in most cases, the size of Ds is much larger than the size of Dt,
Ns � Nt.

Deep transfer learning is a special form of transfer learning that uses a non-linear
deep learning model for transfer learning [41]. Deep transfer learning can be organized
into four categories: instance-based deep transfer learning, which uses instances in source
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domain by appropriate weights; mapping-based deep transfer learning, which maps
instances from two domains into a new data space with better similarity; network-based
deep transfer learning, which reuses the parts of the network pre-trained in the source
domain; and adversarial-based deep transfer learning, which uses adversarial learning to
find transferable features that are both suitable for both domains. Among the four methods,
network-based deep transfer learning is generally accepted by researchers and has been
practically used in many domains. For example, researchers could use pre-trained models
published by large IT companies like Google and Facebook and fine-tune the model via
deep transfer learning to adapt to downstream tasks. More recently, pre-training language
models with large amounts of unlabeled data and fine-tuning in downstream tasks have
made a breakthrough in the natural language processing domain, such as OpenAI GPT
and BERT [28].

A typical process of network-based deep transfer learning is shown in Figure 2. First,
a pre-trained deep learning model is downloaded and available for fine-tuning. The
weights are reserved in a pre-trained model. Second, the last layers of the pre-training deep
learning models are identified, and the existing weights of these layers are removed. It
is assumed that a pre-trained model contains two parts: general knowledge embedding
layers and classification layers that target a specific upstream task, e.g., masked language
model for text processing. It is generally accepted to reset the weights of the classification
layers so that the model remains common knowledge, whereas it could be generalized to
downstream tasks, e.g., text classification. Third, the downstream training data, which is
usually much small than the dataset to train the pre-trained model up to several orders
of magnitude, are fed to the model, which is called the fine-tuning process. During the
process, the model learns how to perform downstream prediction tasks based on both
pieces of knowledges from the pre-trained model and the downstream training data. Last,
the fine-tuned model is available for downstream prediction tasks.
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Deep transfer learning requires that the upstream and downstream tasks are trans-
ferrable. For example, suppose we use a pre-trained model on text generation (e.g., text
corpora form Wikipedia) and use the model for text sentiment classification (e.g., whether
a sentence is positive or negative). In that case, the tasks are transferrable because such
models will classify a sentence as positive or negative based on both keywords like fantastic
and awful, and the whole meaning of the sentence, e.g., a rhetorical question could entirely
divert the meaning of a sentence.

2.3. BERT and CodeBERT

Language models can be roughly categorized into N-gram language models and
neural language models. Classical neural language models include Word2Vec [26] and
Glove [27], which are still popular in software defect prediction [4,5,7]. BERT [28] improves
natural language pre-training by using mask-based objectives and a Transformer-based
architecture, which has successfully improved many state-of-the-art results for various
natural language tasks. It is one of the best pre-training language models for downstream
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tasks, considering that more powerful models (e.g., GPT3 [42]) are not open-source and not
easily accessible. RoBERTa [43] is a replication of the BERT paper which follows BERT’s
structure and proposes an improved pre-training procedure. CodeBERT [36] follows the
architecture of BERT and RoBERTa, i.e., the RoBERTa-large architecture. Unlike BERT and
RoBERTa, which target natural languages, CodeBERT utilizes both natural languages and
source codes as its input.

The overall architecture of BERT is shown in Figure 3. The core blocks in BERT are
Transformers [44], which follow an encoder-decoder architecture. Based on the attention
mechanism, Transformers could convert the distance of any two words in a sentence to
1, which mitigates the long-term dependency problems in natural language processing.
The input corpora are first encoded into feature vectors via multi-head attention and fully
connected layers. Then, the feature vectors are fed to the decoder, which includes masked
multi-head attention, multi-head attention, and fully connected layers, and are finally
converted to the conditional probabilities for prediction. Unlike the OpenAI GPT model,
BERT uses a bidirectional Transformer that enables extracting context from both directions.
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Since we do not change the architecture of CodeBERT, the formulas of the CodeBERT
model, BERT model, RoBERTa model, and Transformers model are omitted for simplicity.

3. Motivation
3.1. Proving the Naturalness Assumption via Language Models in Software Defect Prediction

The use of language models greatly speeds up the advancements in natural language
processing. In terms of the software engineering domain, there is usually a few years
gap between the time a new language model is proposed and the time it is used in this
domain. For example, the use of Word2Vec and Glove is still popular in software defect
prediction. Similarly, since the breakthrough of the natural language processing domain
(the BERT model) is proposed in 2019, it is not until last year before CodeBERT, a pre-
trained programming language model using the BERT architecture, is proposed, and the
model is open to the public.

It is yet unclear whether using a pre-trained language model will improve the predic-
tion performance of software defect prediction. Since naturalness has been regarded as an
essential part of code characteristics [45,46], researchers would assume that a large-scale
programming language model would be more competent in identifying “unnatural” code,
i.e., code that does not follow the universal patterns identified from large code corpora.
Recently, the naturalness assumption has been proven by IBM researchers by tagging AST
nodes via pre-trained language models [47]. The naturalness assumption indicates that
“unnatural” codes are more likely to be buggy when it comes to software defect prediction.
However, it remains unclear whether the naturalness assumption is valid in software
defect prediction.
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3.2. The Influence of Prediction Patterns in Software Defect Prediction

The traditional software defect prediction pattern is to predict whether there are
software defects in the source code. Specifically, given the features generated from machine
learning models, software defect prediction aims to predict 0 for clean code and 1 for
buggy code. During the process, a prediction model will not be aware that it performs
defect prediction. Assume that we tell the model that it is performing software defect
prediction tasks by some means; the model is expected to directly link the textual concept
of defects to the semantic parts expressed by natural languages in the source code. Unlike
the traditional prediction pattern that takes only code semantics into account, the new
prediction pattern also considers textual semantics. For example, if a function is named
“Workaround” and the function is unnaturally complex, a model could judge from textual
semantics that a historical bug may not be fully solved and may reoccur in the future, and
judge from code semantics that a function with very high complexity may be more likely
to be buggy. It is worth noting that the new prediction patterns require that the model is a
programming language model that understands both natural language and programming
language, e.g., CodeBERT.

4. Approach
4.1. Workflow

The workflow of our approach is shown in Figure 4. The approach consists of six steps.
In step A, different prediction patterns are chosen, which influences the components of the
input data. In step B, the source code is tokenized into tokens, guided by the grammar
rules in Backus Normal Form. In step C, the tokens are mapped to integer indexes, and
some special tokens are also added. In step D, a simple class balancing method is applied
to the indexed tokens. In step E, we feed the balanced data to a CodeBERT model based on
model data available at the HuggingFace website [48]. Finally, in step F, we predict a new
source file as buggy or clean using the trained CodeBERT model.

1 

 

 
Figure 4. The overall workflow of our approach for software defect prediction.

4.2. Choosing Prediction Pattern

This paper uses three prediction patterns for software defect prediction, which origi-
nates from motivation 2 in the previous section, as shown in Figure 5. The first prediction
pattern is the most commonly used pattern that takes the source code as inputs and predicts
0 for clean code and 1 for buggy code. The second prediction pattern takes both the source
code and a declarative sentence (e.g., “The code is buggy”) as inputs and predicts 0 if the
declarative sentence does not match the source code (i.e., the code is clean) or predicts 1
otherwise. In this case, the declarative sentence is more like a question answered with 0
or 1. The third prediction pattern takes both the source code and a list of keywords (e.g.,
bug, defect, error, fail, patch) as inputs and predicts 0 if the keyword list does not match
the source code (i.e., the code is clean), or predicts 1 otherwise. The second and the third
prediction pattern is very similar, despite that the second prediction pattern requires more
textual comprehension of the declarative sentence, while the third prediction pattern could
lessen the burden of textual comprehension by leveraging keyword search and mapping.



Appl. Sci. 2021, 11, 4793 7 of 19

Appl. Sci. 2021, 11, 4793 7 of 19 
 

 
Figure 5. Traditional, sentence-based, and keyword-based prediction patterns. The classification 
model is omitted for simplicity. 

In the following sections, we name the first prediction pattern as “traditional”, the 
second prediction patter as “sentence”, and the third prediction pattern as “keyword” for 
simplicity. 

4.3. Tokenizing Source Code 
During the compilation of the source code, a normal tokenizer that separates the to-

kens following grammar rules is sufficient. However, as is usually neglected during com-
pilation, the semantics hidden in texts, e.g., function names and variable names, are often 
neglected. Therefore, a tokenizer that could extract the text semantics in source code 
should be used. 

We follow the settings of CodeBERT, which uses a word piece tokenizer. Before the 
original source code is fed into the word piece tokenizer, code comments are removed, 
the white spaces at the head and the tail of the source code are removed, the tokens are 
separated by splitting the white space, and the punctuations are also separated into inde-
pendent tokens. This paper uses three preprocessing patterns for software defect predic-
tion, which corresponds to the three prediction patterns described in Subsection 4.2. The 
first preprocessing pattern (i.e., the traditional pattern) starts with a <s> mark at the be-
ginning and </s> at the end. The second and the third preprocessing pattern (i.e., the sen-
tence and keyword pattern) add an extra </s> mark to separate the source code and the 
declarative sentence or the keywords. The preprocessed code is then ready for tokeniza-
tion. 

During the tokenization process, the source code is tokenized using a pre-trained vo-
cabulary file. The uncommon words are separated into several sub-words with higher 
occurrences in the vocabulary file using a greedy longest-match-first algorithm. For ex-
ample, the word “TestCase” will be separated into “Test” and “##Case”. The “##” token 
marks that the token is a sub-word token. If a token is not found in the vocabulary file, an 
unknown token, <UNK>, will be used. 

4.4. Mapping Tokens 
The CodeBERT model provides a standardized tokenizer, BertTokenizer, that takes 

the preprocessed source code as input and outputs a list of integers. The BertTokenizer 
maps each token to an integer specified in the vocabulary file, including sub-word tokens, 
out-of-vocabulary tokens (<UNK>), and other special tokens (<s> and </s>). If padding is 
enabled, 0 will be padded before or after the generated integers to ensure that all gener-
ated integer lists have the same length. 

4.5. Handling Class Imbalance 
Class imbalance is common in software defect prediction because the buggy rate of 

a project is usually below 50%. We choose a simple class imbalance method, random over-
sampling, so that the training set is balanced, i.e., 50% buggy samples and 50% clean sam-
ples. 
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In the following sections, we name the first prediction pattern as “traditional”, the
second prediction patter as “sentence”, and the third prediction pattern as “keyword”
for simplicity.

4.3. Tokenizing Source Code

During the compilation of the source code, a normal tokenizer that separates the
tokens following grammar rules is sufficient. However, as is usually neglected during
compilation, the semantics hidden in texts, e.g., function names and variable names, are
often neglected. Therefore, a tokenizer that could extract the text semantics in source code
should be used.

We follow the settings of CodeBERT, which uses a word piece tokenizer. Before the
original source code is fed into the word piece tokenizer, code comments are removed,
the white spaces at the head and the tail of the source code are removed, the tokens
are separated by splitting the white space, and the punctuations are also separated into
independent tokens. This paper uses three preprocessing patterns for software defect
prediction, which corresponds to the three prediction patterns described in Section 4.2.
The first preprocessing pattern (i.e., the traditional pattern) starts with a <s> mark at the
beginning and </s> at the end. The second and the third preprocessing pattern (i.e., the
sentence and keyword pattern) add an extra </s> mark to separate the source code and the
declarative sentence or the keywords. The preprocessed code is then ready for tokenization.

During the tokenization process, the source code is tokenized using a pre-trained
vocabulary file. The uncommon words are separated into several sub-words with higher
occurrences in the vocabulary file using a greedy longest-match-first algorithm. For ex-
ample, the word “TestCase” will be separated into “Test” and “##Case”. The “##” token
marks that the token is a sub-word token. If a token is not found in the vocabulary file, an
unknown token, <UNK>, will be used.

4.4. Mapping Tokens

The CodeBERT model provides a standardized tokenizer, BertTokenizer, that takes
the preprocessed source code as input and outputs a list of integers. The BertTokenizer
maps each token to an integer specified in the vocabulary file, including sub-word tokens,
out-of-vocabulary tokens (<UNK>), and other special tokens (<s> and </s>). If padding is
enabled, 0 will be padded before or after the generated integers to ensure that all generated
integer lists have the same length.

4.5. Handling Class Imbalance

Class imbalance is common in software defect prediction because the buggy rate of
a project is usually below 50%. We choose a simple class imbalance method, random
oversampling, so that the training set is balanced, i.e., 50% buggy samples and 50%
clean samples.
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4.6. Loading Pre-Trained Model

The pre-trained CodeBERT model is published by researchers and is available online.
There are two ways of using the CodeBERT model: reuse model weights or only reuse
the model architecture. We experiment on both methods to investigate whether using
pre-trained programming language models outperforms training a model with the same
architecture from scratch. In the first method, we reuse weights of the encoder and decoder
and clean the weights of the classification layers because we perform different tasks in pre-
training and fine-tuning phases (software defect prediction VS neural code search). In the
second method, we just reuse the RoBERTa-large model, which is adopted by CodeBERT.

Since we use pre-trained models, we do not aim to change most of the hyperparame-
ters. Specifically, we use Transformer with six layers, 768-dimensional hidden states, and
12 attention heads as our decoder. We set the learning rate as 10−5, the batch size is 32, and
the maximum epoch is 20. We tune hyperparameters and perform early stopping on the
test set. The only difference, batch size, is due to the computational limitations.

4.7. Predicting Software Defects

After we feed the training set to the CodeBERT model, all parameters, including
weights and biases, are fixed. Then, we ran the trained or fine-tuned CodeBERT model
for each file in the test set to obtain prediction results. The results were in the form of a
float number between zero and one, based on which we predicted a source file as buggy
or clean. If the result was above 0.5, the prediction was regarded as buggy; otherwise, it
was clean.

5. Experimental Setup

All of our experiments are run on a laptop with 5-holdouts repeated experiments.

5.1. Evaluation Metrics

We use four evaluation metrics to evaluate prediction performance, namely F-measure
(F1), G-measure, area under curve (AUC), and Matthews correlation coefficient (MCC). These
evaluation metrics are popular in software defect prediction and can comprehensively
evaluate model capabilities.

F-measure is the most frequently used evaluation metric in software defect prediction.
It highlights the prediction results on buggy samples and balances the precision and recall.
Specifically, F1 is the most common form of F-measure, which takes the harmonic average
of precision and recall (also TPR, true positive rate). F1 is calculated as follows:

precision = TP
TP+FP (1)

recall = TPR = TP
TP+FN (2)

F1 = 2∗precision∗recall
precision+recall (3)

G-measure is the harmonic mean of recall and true negative rate (TNR). G-measure
targets the false alarm effects, which is of great importance in software defect prediction.
G-measure is calculated as follows:

TNR = TN
TN+FP (4)

G−measure = 2∗TPR∗TNR
TPR+TNR (5)

AUC is a very important evaluation metric in many machine learning tasks. Unlike
most evaluation metrics, AUC is not sensitive to the threshold settings, which inferencing
an output ranging from 0 to 1 as buggy or clean. AUC is also not sensitive to class imbalance,
which is often the case in software defect prediction.
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MCC is a good evaluation metric for imbalanced datasets. It focuses on buggy and
clean samples equally and describes the correlation between them. MCC is calculated
as follows:

MCC = TP∗TN−FP∗FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN) (6)

In this paper, we regard F1 as the main evaluation metrics. We perform multiple
experiments to find the experimental results with the best performance, i.e., best F1 values.
The best performance of other metrics, including G-measure, MCC, and AUC values, are
also recorded and shown online as supplementary data to our experimental results.

5.2. Evaluated Projects and Datasets

We use the PROMISE dataset [49], which targets open-source software defect pre-
diction. Specifically, we use the cross-version PROMISE source code (CVPSC) dataset
for cross-version software defect prediction and the cross-project PROMISE source code
(CPPSC) dataset for cross-project software defect prediction. Both the CVPSC and the
CPPSC dataset include bug labels of specified versions of open source projects and the
corresponding source code. Because the time cost of fine-tuning CodeBERT is not trivial,
we choose seven project version pairs and nine project version pairs for CVPSC and CPPSC,
respectively. Precisely, we follow the Pan et al.’s paper [7] to set the CVPSC dataset and
take the intersection of Shi et al.’s paper [17] and the project versions in the CVPSC dataset
to set the CPPSC dataset. Detailed information of the CVPSC and CPPSC dataset is shown
in Tables 1 and 2.

Table 1. CVPSC dataset description. The number of files, number of defects, and average buggy rate
are listed separately for the training set and the test set.

Training Set Test Set No. Files No. Defects Avg. Buggy Rate

Camel 1.4 Camel 1.6 847/934 145/188 17.1%/20.1%
JEdit 4.0 JEdit 4.1 184/367 67/67 36.4%/18.3%

Lucene 2.0 Lucene 2.2 186/238 91/143 48.9%/60.1%
Xalan 2.5 Xalan 2.6 755/877 380/411 50.3%/46.9%
Xerces 1.2 Xerces 1.3 436/446 70/67 16.1%/15%

Synapse 1.1 Synapse 1.2 205/256 55/86 26.8%/33.6%
Poi 2.5 Poi 3.0 380/438 248/281 65.3%/64.2%

Total 6549 2299 35.1%

Table 2. CPPSC dataset description. The number of files, number of defects, and average buggy rate
are listed separately for the training set and the test set.

Training Set Test Set No. Files No. Defects Avg. Buggy Rate

JEdit 4.1 Camel 1.4 367/847 67/145 18.3%/17.1%
Camel 1.4 JEdit 4.1 847/367 145/67 17.1%/18.3%
Lucene 2.2 Xalan 2.5 238/755 143/380 48.9%/50.3%
Xerces 1.3 Xalan 2.5 446/755 67/380 15%/50.3%
Xalan 2.5 Lucene 2.2 755/238 380/143 50.3%/48.9%

Poi 2.5 Synapse 1.1 380/205 248/55 65.3%/26.8%
Poi 3.0 Synapse 1.2 438/256 281/86 64.2/33.6%

Synapse 1.2 Poi 3.0 256/438 86/281 33.6%/64.2%
Xalan 2.5 Xerces 1.3 755/446 380/67 50.3%/15%

Total 8589 3401 39.6%

5.3. Baseline Models

Our paper aims to explore empirical findings on neural programming language
models, i.e., CodeBERT models. As the CodeBERT model takes BertTokenizer to tokenize
raw source code, which is very rare in software defect prediction, it is inappropriate to
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compare the results with other software defect prediction models based on ASTs, CFGs,
and so on because their inputs vary. Since it is extremely time-consuming to train a
new programming language model from scratch and published large-scale programming
language models are very scarce, we do not take other programming language models into
account when choosing baseline models. We choose the following six baseline models:

• Pre-trained CodeBERT sentence model (CodeBERT-PS). CodeBERT-PS uses the pre-
trained CodeBERT model available on HuggingFace and predicts the answer of a
declarative sentence, “The code is buggy”, regarding a specific piece of code. If the
output is 1, the code is buggy. Otherwise, the code is clean.

• Pre-trained CodeBERT keyword model (CodeBERT-PK). CodeBERT-PK uses the pre-
trained CodeBERT model available on HuggingFace and predicts the relationship
between a specific piece of code and a set of keywords, including bug, defect, error,
fail, and patch. If the output is 1, the code is buggy. Otherwise, the code is clean.

• Pre-trained CodeBERT traditional model (CodeBERT-PT). CodeBERT-PT uses the
pre-trained CodeBERT model available on HuggingFace and predicts if the source
code is buggy, which is adopted by most researchers. If the output is 1, the code is
buggy. Otherwise, the code is clean.

• Newly-trained CodeBERT traditional model (CodeBERT-NT). CodeBERT-NT uses the
architecture of the CodeBERT model but discards the existing weights and trains from
scratch. The model predicts if the source code is buggy, which is adopted by most
researchers. If the output is 1, the code is buggy. Otherwise, the code is clean.

• RANDOM. The RANDOM model predicts if a source file is buggy randomly. A model
that performs worse than RANDOM is no better than random guessing and, therefore,
no practical value.

6. Experiments and Results
6.1. Research Questions

We propose two research questions to investigate the feasibility, efficiency, and pre-
diction patterns of using CodeBERT, a programming language model, for software defect
prediction. RQ1 compares the pre-trained CodeBERT model with the newly-trained Code-
BERT model in terms of prediction performance and time efficiency in cross-version defect
prediction and cross-project defect prediction. RQ2 compares different prediction patterns
in terms of prediction performance in cross-version defect prediction and cross-project
defect prediction.

RQ1: Does the pre-trained CodeBERT model outperform a newly-trained CodeBERT model?
RQ2: Do different prediction patterns affect software defect prediction performance?

6.2. RQ1: Does the Pre-Trained CodeBERT Model Outperform a Newly-Trained
CodeBERT Model?

We decompose RQ1 into two sub-research questions, RQ1a and RQ1b, that use the CVPSC
and the CPPSC dataset for cross-version and cross-project defect prediction, respectively.

6.2.1. RQ1a: Does the Pre-Trained CodeBERT Model Outperform a Newly-Trained
CodeBERT Model in Cross-Version Defect Prediction?

To answer RQ1a, we perform cross-version defect prediction experiments on the
CVPSC dataset to compare the prediction performance of the CodeBERT-NT, CodeBERT-PT
model, and RANDOM model in terms of F-measure, as shown in Table 3. For example, we
get an F-measure of 0.509 and 0.493 on the CodeBERT-NT and CodeBERT-PT models for the
Camel project. Compared to the F-measure of 0.287 on the RANDOM model, CodeBERT-
NT and CodeBERT-PT model outperform the trivial RANDOM baseline. Considering the
average results of the F-measure, the CodeBERT-PT model outperforms the CodeBERT-NT
model by 2.1%. Both models significantly outperform the RANDOM baseline at 0.397.
Therefore, the CodeBERT-PT model outperforms the CodeBERT-NT model on the CVPSC
dataset for cross-version defect prediction.
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Table 3. Performance comparison of CodeBERT-NT, CodeBERT-PT, and RANDOM models on the
CVPSC dataset for cross-version defect prediction. The float values are the average F-measure values.
The best F-measure values are highlighted in bold.

Training Set Test Set CodeBERT-NT CodeBERT-PT RANDOM

Camel 1.4 Camel 1.6 0.509 0.493 0.287
JEdit 4.0 JEdit 4.1 0.567 0.642 0.267

Lucene 2.0 Lucene 2.2 0.653 0.707 0.546
Xalan 2.5 Xalan 2.6 0.581 0.627 0.484
Xerces 1.2 Xerces 1.3 0.349 0.321 0.231

Synapse 1.1 Synapse 1.2 0.445 0.443 0.402
Poi 2.5 Poi 3.0 0.702 0.72 0.562

Average 0.544 0.565 0.397

Apart from the prediction performance of the two models, the time cost of the two
models also varies. We investigate the fluctuating level of F-measure on CodeBERT-NT and
CodeBERT-PT for each project, as shown in Figure 6. Despite the initial epochs, both models
have good convergence. Specifically, the CodeBERT-PT model in solid blue line converges
more quickly and has fewer fluctuations after several epochs, which shows less time cost.
According to our statistics, training an effective CodeBERT-PT model could be four times
faster than training an effective CodeBERT-NT model. This is easy to comprehend, as the
CodeBERT-PT model is pre-trained by a large corpus. It greatly reduces the cost of learning
syntactic and semantic rules of programming languages.
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Summary of RQ1a: The prediction performance of CodeBERT-PT outperforms the
CodeBERT-NT by 2.1% in cross-version software defect prediction. The CodeBERT-PT also
trains four times faster than the CodeBERT-NT with lower fluctuations.
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6.2.2. RQ1b: Does the Pre-Trained CodeBERT Model Outperform a Newly-Trained
CodeBERT Model in Cross-Project Defect Prediction?

We perform cross-project experiments on the CPPSC dataset to compare the prediction
performance of the CodeBERT-NT and CodeBERT-PT model on F-measure, as illustrated
in Table 4. For instance, we achieve an F-measure of 0.293 and 0.354 on the CodeBERT-NT
and CodeBERT-PT model for the JEdit-Camel project. The RANDOM model achieves an
F-measure of 0.255, which is lower than the CodeBERT-NT and CodeBERT-PT models. The
CodeBERT-PT model outperforms the CodeBERT-NT model by 0.9% in terms of average
F-measure. Both models also significantly outperform the RANDOM baseline at 0.402.
Therefore, the CodeBERT-PT model outperforms the CodeBERT-NT model on the CVPSC
dataset for cross-project defect prediction.

Table 4. Performance comparison of CodeBERT-NT, CodeBERT-PT, and RANDOM models on the
CPPSC dataset for cross-project defect prediction. The float values are the average F-measure values.
The best F-measure values are highlighted in bold.

Training Set Test Set CodeBERT-NT CodeBERT-PT RANDOM

JEdit 4.1 Camel 1.4 0.293 0.354 0.255
Camel 1.4 JEdit 4.1 0.342 0.36 0.267
Lucene 2.2 Xalan 2.5 0.707 0.66 0.502
Xerces 1.3 Xalan 2.5 0.627 0.659 0.502
Xalan 2.5 Lucene 2.2 0.321 0.648 0.546

Poi 2.5 Synapse 1.1 0.443 0.431 0.349
Poi 3.0 Synapse 1.2 0.72 0.531 0.402

Synapse 1.2 Poi 3.0 0.493 0.587 0.562
Xalan 2.5 Xerces 1.3 0.642 0.445 0.231

Average 0.51 0.519 0.402

Apart from the prediction performance of the two models, the time cost of the two
models also varies. We investigate the fluctuating level of F-measure on the CodeBERT-NT
and CodeBERT-PT model for each project, as shown in Figure 7. The F1 level fluctuates
more severely on the whole compared with Figure 6 in RQ1a, indicating that the prediction
performance of cross-project defect prediction is not as good as cross-version defect predic-
tion, which is often the case in software defect prediction. Specifically, the CodeBERT-PT
model in solid blue line converges more quickly and generally has fewer fluctuations,
indicating less time cost. Statistics show that training a CodeBERT-PT model could be
1.5 times faster than training a CodeBERT-NT model. Although the CodeBERT-PT model
also has advantages in time cost, the ratio decreases from 4 to 1.5 due to cross-project
defect prediction.

Summary of RQ1b: The CodeBERT-PT outperforms the CodeBERT-NT model in cross-
project software defect prediction. The CodeBERT-PT model also trains 1.5 times faster
than the CodeBERT-NT model with lower fluctuations.

Summarizing RQ1a and RQ1b, we can conclude RQ1.
Summary of RQ1: The CodeBERT-PT model outperforms the CodeBERT-NT model

in software defect prediction. The CodeBERT-PT model also trains much faster than the
CodeBERT-NT model with lower fluctuations.
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6.3. RQ2: Do the Different Prediction Patterns Affect Software Defect Prediction Performance?

We decompose RQ2 into two sub-research questions, RQ2a and RQ2b, that use the CVPSC
and the CPPSC dataset for cross-version and cross-project defect prediction, perspectivity.

6.3.1. RQ2a: Do the Different Prediction Patterns Affect Software Defect Prediction
Performance in Cross-Version Defect Prediction?

We perform cross-version defect prediction experiments on the CVPSC dataset to
compare the prediction performance of CodeBERT-PS, CodeBERT-PK, and CodeBERT-PT
model on F-measure, as illustrated in Table 5. For instance, we achieve an F-measure of
0.505, 0.52, and 0.493 on the CodeBERT-PS, CodeBERT-PK, and CodeBERT-PT model for
the Camel project. The RANDOM model for the Camel project achieves an F-measure of
0.287, which is lower than the three CodeBERT-based models. Considering the average F-
measure, CodeBERT-PS and CodeBERT-PK models perform very similarly, which get 0.616
and 0.613, respectively. The CodeBERT-PT model performs poorer than the CodeBERT-PS
and CodeBERT-PK models as a 5% decrease in F-measure. All three models outperform
the RANDOM model, which achieves an F-measure of 0.397.

Table 5. Performance comparison of CodeBERT-PS, CodeBERT-PK, CodeBERT-PT, and RANDOM
models on the CVPSC dataset for cross-version defect prediction. The float values are the average
F-measure values. The best F-measure values are highlighted in bold.

Training Set Test Set CodeBERT-PS CodeBERT-PK CodeBERT-PT RANDOM

Camel 1.4 Camel 1.6 0.505 0.52 0.493 0.287
JEdit 4.0 JEdit 4.1 0.661 0.701 0.642 0.267

Lucene 2.0 Lucene 2.2 0.743 0.741 0.707 0.546
Xalan 2.5 Xalan 2.6 0.684 0.675 0.627 0.484
Xerces 1.2 Xerces 1.3 0.36 0.313 0.321 0.231

Synapse 1.1 Synapse 1.2 0.566 0.548 0.443 0.402
Poi 2.5 Poi 3.0 0.795 0.795 0.72 0.562

Average 0.616 0.613 0.565 0.397
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Summary of RQ2a: The CodeBERT-PS and CodeBERT-PK models behave similarly,
and both outperform the CodeBERT-PT model in cross-version software defect prediction.

6.3.2. RQ2b: Do the Different Prediction Patterns Affect Software Defect Prediction
Performance in Cross-Project Defect Prediction?

We perform cross-project defect prediction experiments on the CPPSC dataset to
compare the prediction performance of CodeBERT-PS, CodeBERT-PK, CodeBERT-PT, and
RANDOM models on F-measure, as illustrated in Table 6. For instance, for the JEdit-Camel
project, we achieve an F-measure of 0.357, 0.357, and 0.354 on the CodeBERT-PS, CodeBERT-
PK, and CodeBERT-PT model. The RANDOM model achieves an F-measure of 0.255, which
is lower than the three CodeBERT-based models. Considering the average F-measure, the
CodeBERT-PS model outperforms the CodeBERT-PT models by 5% in F-measure, while
the CodeBERT-PK model outperforms the CodeBERT-PT model by 3% in F-measure. All
three models outperform the RANDOM model, which achieves an F-measure of 0.402.

Table 6. Performance comparison of CodeBERT-PS, CodeBERT-PK, CodeBERT-PT, and RANDOM
models on the CPPSC dataset for cross-project defect prediction. The float values are the average
F-measure values. The best F-measure values are highlighted in bold.

Training Set Test Set CodeBERT-PS CodeBERT-PK CodeBERT-PT RANDOM

JEdit 4.1 Camel 1.4 0.357 0.357 0.354 0.255
Camel 1.4 JEdit 4.1 0.543 0.556 0.36 0.267
Lucene 2.2 Xalan 2.5 0.672 0.662 0.66 0.502
Xerces 1.3 Xalan 2.5 0.651 0.65 0.659 0.502
Xalan 2.5 Lucene 2.2 0.745 0.714 0.648 0.546

Poi 2.5 Synapse 1.1 0.482 0.516 0.431 0.349
Poi 3.0 Synapse 1.2 0.533 0.545 0.531 0.402

Synapse 1.2 Poi 3.0 0.682 0.568 0.587 0.562
Xalan 2.5 Xerces 1.3 0.463 0.392 0.445 0.231

Average 0.57 0.551 0.519 0.402

Summary of RQ2b: The CodeBERT-PS and CodeBERT-PK models behave well, and
both outperform the CodeBERT-PT model in cross-project software defect prediction.
Specifically, the CodeBERT-PS model outperforms the CodeBERT-PK model.

Summarizing RQ2a and RQ2b, we can conclude RQ2.
Summary of RQ2: The CodeBERT-PS and CodeBERT-PK models behave well, and

both outperform the CodeBERT-PT model in software defect prediction. Specifically, the
CodeBERT-PS outperforms or at least is similar to the CodeBERT-PK model.

7. Discussion
7.1. Assumptions That Influence Software Defect Prediction

The empirical results of RQ1 indicate that using a pre-trained CodeBERT language
model predicts defects more accurately and is more time-efficient than using a newly-
trained model with the same architecture. The results of the time efficiency part are
easy to understand, while the conclusions of the prediction performance part are more
profounding. The result demonstrates that the naturalness assumption regarding software
defect prediction can be proven by both statistics-based metrics like cross-entropy and deep
learning models like neural language models. The advantage of neural language models
over cross-entropy is that neural language models are more capable of characterizing the
naturalness of code. The problem arises: How can the naturalness assumption be combined
with other assumptions to enhance prediction performance?

To solve the problem, we summarize and list the assumptions that influence software
defect prediction in Figure 8. The assumptions include:

(1) Product-based assumptions. Product-based assumptions focus on the scale and
complexity of software. If the source code is large in size or complex, it is more
likely to be buggy. Related metrics include LOC (lines of code) and CC (cyclomatic
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complexity) for source code, WMC (weighted method per class) and DIT (depth
of inheritance) for object-oriented software, Degree and Betweenness Centrality for
software complex networks.

(2) Process-based assumptions. Process-based assumptions focus on history and expe-
rience during the development process of software. If the historical version of the
source code is buggy, or the source code is developed by inexperienced programmers,
it is more likely to be buggy. Related metrics include code churn, fix, developer expe-
rience, developer interaction, ownership between software modules and developers,
and so on.

(3) Machine learning-based assumptions. Machine learning-based assumptions focus on
code patterns and naturalness. If the source code includes frequent patterns in buggy
source code or the source code is unnatural, i.e., not following patterns followed by
the majority of the developers, it is more likely to be buggy. Related metrics include
semantic features generated from source code ASTs and neural language models.
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As we use generated features for software defect prediction, and because the product-
based and process-based features are mostly hand-crafted features, their combination does
not seem to improve prediction performance that much. For example, Wang et al. [4] tried
to combine generated features and hand-crafted features and gain tiny improvements.
Therefore, we infer that effective combinations of generated features should come from
the machine learning-based assumption. Since the naturalness assumption has been
proved in software defect prediction via neural language models, and the code pattern
assumption has also been proven by various researchers in deep learning-based software
defect prediction, it is worth investigating the relationship between the two assumptions.
From our perspective, these two assumptions are demonstrated independently in the
existing experimental design. For example, the use of AST nodes and AST paths proves
that simplifying source code and highlighting components that are more related to defects
can improve prediction performance in software defect prediction. The reason behind
it may be that adding redundant information introduced by grammar definitions does
not help improve prediction performance for software defect prediction. However, the
CodeBERT model does not take advantage of ASTs and performs tokenization directly
on the source code, which is generally accepted in text processing but can be improved
in programming language processing. If a programming language model could be pre-
trained using AST sequences or AST paths as input, it is more likely that the code pattern
assumption and naturalness assumption can be combined in experimental design to further
improve prediction performance.
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7.2. The Relationship between Prediction Pattern and Buggy Rate

The empirical results of RQ2 indicate that CodeBERT-PK and CodeBERT-PS outper-
form CodeBERT-PT significantly. The key difference between them is the extra information
from the keywords and sentences.

We investigate the relationship between keywords used in CodeBERT-PK and bug
distribution, as shown in Table 7. We first calculate the occurrences of keywords and
exclude some unrelated cases that may confuse the statistics, e.g., “debug”, “prefix”, and
“postfix”. We then count the number of samples that includes the keyword at least once
and check whether it is a buggy sample or a clean sample. The buggy rate of samples that
include the keywords is also calculated accordingly. The results show that the buggy rate
of samples that include keywords is higher than the average buggy rate of 35.1%. The
keyword-based prediction pattern highlights the relationship between the keywords and
the prediction results, implying that source code that includes the keywords is more likely
to be buggy. This may be the reason why CodeBERT-PK could outperform CodeBERT-PT
in software defect prediction. The fact that the prediction performance of CodeBERT-PS
outperforms or is similar to CodeBERT-PK indicates that the pre-trained CodeBERT model
is capable of understanding natural language sentences that are strongly linked with the
source code, which is proven in previous studies on the CodeBERT model. Specifically,
the experimental settings of the CodeBERT-PS model could help in establishing implicit
links among the purpose space (software defect prediction tasks), code semantic space
(structural and semantics of the source code), and naturals text space (function names,
variable names, etc.)

Table 7. Relationship between keywords used in CodeBERT-PK and buggy rate.

Keyword Count No. Samples No. Defects No. Non-Defects Buggy Rate

Bug 24 8 4 4 50%
Defect 14 4 3 1 75%

Fail 302 120 47 73 39.2%
Error 3011 654 326 328 49.8%
Patch 562 93 55 38 59.1%

8. Threats to Validity

Programming language. Our dataset comes from the PROMISE repository, which is
written in Java. However, our method is not limited to programming languages.

Dataset size. Our dataset uses a subset of the PROMISE repository, which is also used
in previous work. Due to the limit that the project must be open-source, some datasets, i.e.,
the NASA dataset, are unavailable.

Selection of the CodeBERT model. We choose the standard CodeBERT model based
on the RoBERTa architecture. Although other forms of CodeBERT models are available,
e.g., graphCodeBERT, we believe the chosen model is powerful enough in our study.

9. Conclusions and Future Work

This paper proposes a variety of CodeBERT models targeting software defect pre-
diction, including CodeBERT-NT, CodeBERT-PS, CodeBERT-PK, and CodeBERT-PT. We
perform empirical studies using such models in cross-version and cross-project software
defect prediction to investigate if using a neural language model like CodeBERT could
improve prediction performance. We also investigate the effects of different prediction
patterns in software defect prediction using CodeBERT models. The empirical results show
that using a pre-trained CodeBERT model improves prediction performance and could
save time cost. The empirical results also show that using sentence-based and keyword-
based prediction patterns could improve the prediction performance of pre-trained neural
language models for software defect prediction. We also discuss the assumptions that
influence software defect prediction and the relationship between prediction patterns and
buggy rate.
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We would like to validate our results on AST node-based or AST path-based neural
programming language models in the future. It is also interesting to investigate if the
combination of comments as natural language texts and source code could further improve
software defect prediction performance. It would also be of great value to replicate our
findings in just-in-time software defect prediction using the latest datasets, e.g., the GHPR
dataset [50].
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