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Abstract: Despite their importance, relatively little attention has been paid to vehicle routing prob-
lems with asymmetric costs (ACVRPs), or their benchmark instances. Taking advantage of recent
advances in map application programming interfaces (APIs) and shared spatial data, this paper
proposes new realistic sets of ACVRP benchmark instances. The spatial data of urban distribution
centers, postal hubs, large shopping malls, residential complexes, restaurant businesses and con-
venience stores are used. To create distance and time matrices, the T map API, one of the most
frequently used real time path analysis and distance measurement tools in Korea, is used. This paper
also analyzes some important issues prevailing in urban transportation environments. These include
the challenges of accounting for the frequency and distance in which air travel differs from reality
when measuring closeness, the differences in distance and time for outgoing and return trips, and the
rough conversion ratios from air distance to road distance and to road time. This paper contributes
to the research community by providing more realistic ACVRP benchmark instances that reflect
urban transportation environments. In addition, the cost matrix analyses provide insights into the
behaviors of urban road networks.

Keywords: vehicle routing problems; asymmetric costs; benchmark instances; urban transportation;
map application program interface; road distance; road time; shared data

1. Introduction

Generally, vehicle routing problems (VRPs) involve a homogeneous fleet of vehicles
with a fixed capacity to serve a set of customers from a single depot. All vehicles must
depart from and return to the depot. Restrictions such as route lengths or time limits
will constrain the distance traveled by the vehicles. The goal is to assign a sequence of
deliveries to each vehicle so that service can be provided to all customers while minimizing
the total distance traveled or the total time consumed by the fleet. The standard VRP is
often referred to as a capacitated vehicle routing problem (CVRP). VRP variations exist,
including the multi-depot vehicle routing problem (MVRP), in which vehicles depart from
multiple depots, and the open vehicle routing problem (OVRP), in which vehicles do not
return to the depot. More detailed lists and descriptions can be found in [1,2].

Relatively little attention or effort has been paid to the creation of benchmark instances
for VRPs with asymmetric costs, or asymmetric cost VRPs (ACVRPs). For an ACVRP, a
number of old small-sized benchmark instances exist, but they are not able to adequately
reflect real-world problems. There are also many new larger-sized instances that lack
rationale for the methods used in their creation. This lack can, in part, be explained by
the difficulty in obtaining the exact road distance or time from all nodes to other nodes.
However, recent advances in technology have made it possible to clear this hurdle. Now
with the advance of map service providers and their efficient application programming
interfaces (APIs), the distance or time of paths can be estimated very accurately.

As illustrated in Figure 1, map APIs can provide precise costs between nodes. The
figure explains why the real road distances from map APIs should be used instead of air
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distances or the straight-line distances between coordinates. In Figure 1a, A′ exemplifies
the closest node from Node A in the road networks of a map service provider. The air
distance from A to B may be larger than the air distance from A to C, but the road distance
from A to B (blue solid line) is much larger than the road distance from A to C (red dotted
line). Figure 1b shows that outbound and return distances can differ by a significant margin.
With air distance, the difference of cost from A to B (blue solid line) and from B to A (red
dotted line) cannot be properly considered.
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outbound and return trip costs are different.

Travel costs are asymmetric in real-world settings. That is, the cost of traveling from
one node to another node, and the cost of the return trip, can vary. This simple but
important fact has naively been ignored in VRP research and operations.

The cost differences may be too small to be concerned with in cases where obstacles and
road directions are less important. This would include long-haul or truck-line transportation.
However, on a scale of goods distribution or last-mile deliveries where customer nodes are
densely populated, the cost differences of outbound and return trips are too large to be
ignored. Taking the asymmetry into account has become not only possible, but also significant.
Solving a VRP with air distances and then applying asymmetric road distances has been
reported to be suboptimal by almost five percent [3]. The asymmetry has a large effect over
the solution methods and quality in VRPs, and this dynamic should be considered when
proposing and improving routing algorithms [4]. The research community needs properly
designed and realistic ACVRP benchmark instances when developing these algorithms.

This paper supplements the pool of ACVRP benchmarks with more realistic instances.
An increasing number of governmental authorities are now operating public data portals,
which is also true in Korea. Various types and abundant sizes of data have become readily
accessible to the public. The provided instances are derived from the actual geographic
data of urban distribution centers (UDCs), regional hubs for postal services, shopping
malls, restaurant businesses, residential facilities and convenience stores in the cities of
Seoul and Busan, Korea. The real road distance and road time matrices are built using the
T map API. T map, owned by SK Telecom, is the most accurate and the most used map
service provider in Korea [5,6].

Using the realistically created road distance and road time matrices, this paper reveals
the frequency and distances by which the air distance differs from reality. The findings not
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only explain the necessities of using map APIs when planning deliveries in urban areas,
but also provide insights and guidelines for urban and logistics planners.

The rest of the paper is organized as follows. Section 2 provides a literature review
and background information. The ACVRP and its existing benchmark instances are sum-
marized, and a recent trend of including the use of map APIs in solving VRP variants is
reviewed. In Section 3, first, the need for new realistic benchmark instances is explained,
and then methods, reasons and sources for the new data sets are presented. Using the
road distance and road time in the new benchmark sets, Section 4 conducts an analysis on
three issues: how air distance can be deceiving when measuring costs, how outgoing and
return trips differ in cost, and the magnitude in which road distances exceed air distances
on average. Section 5 provides some possible limitations on the proposal and analysis of
the new benchmarks. Section 6 concludes the paper with a summary and suggestions on
future research.

2. Literature Review
2.1. VRP with Asymmetric Costs

The rich VRP [7] was developed to tackle multiple real-life VRP considerations, in-
cluding uncertainty, the use of heterogeneous fleets, and realistic time or distance factors.
One important branch of the rich VRP is the VRP with asymmetric costs. Extensive studies
regarding the effect of asymmetric costs on the traveling salesman problem (TSP) [8] and
VRP [4] argue that asymmetry has a large effect over the solution methods and quality, and
that asymmetry should be considered when proposing and improving routing algorithms.
Lead and founder of OptaPlanner [3], Geoffrey De Smet, reported that solving a VRP with
air distances and then applying asymmetric road distances was suboptimal by almost five
percent. Despite the inevitability and significance of asymmetry, insufficient attention has
been paid to ACVRPs in the existing literature [9,10].

A number of exact algorithms for ACVRPs were addressed in [11,12]. Subsequently,
researchers have focused on numerous ACVRP variants, including backhaul [13], simulta-
neous pickup and delivery [14], heterogeneous fleets [10], exclusive lanes [15], stochastic
demands [16], and time windows [17]. However, few researchers paid attention to the
classical ACVRP itself. This was not because the scientific community had conquered the
problem. Rather, this was due to the fact that the ACVRP lacks benchmark instances or
published best-known solutions.

A well-known set of benchmark instances was provided in Fischetti’s work [18], which
included eight instances with the number of nodes, or the dimension, ranging from 34 to
74. By modifying the original vehicle capacity of 1000 to different levels, instances grew in
terms of population [19], but not in terms of dimension. The small-sized ACVRP instances
were not sufficient to test state-of-the-art algorithms. A breakthrough was achieved by
a study that evaluated the effects of asymmetry in VRPs [4]. The research provided
1350 freely available asymmetric road distance instances with dimensions ranging from 50
to 500 [20]. The real road distances were obtained using the Google Maps API [21]. Each
instance was provided with two different levels of vehicle capacity, which made for a total
of 2700 instances. Of course, 2700 symmetric instances were also prepared to match the
asymmetric instances. Although they solved all instances using well-known heuristics, the
best solutions found were not reported. This was because the focus of the research was
on analyzing the effects of asymmetry, not on proposing an efficient routing algorithm.
Other than the research carried out by Herrero [10], in which 20 instances with dimensions
of 50 and 100 were deployed, the new instances remain untapped. OptaPlanner has also
created benchmark instances for ACVRPs that are available online [22]. The OpenStreetMap
API [23] was used to acquire real road distances and times. For each category of asymmetric
road distances, asymmetric road times, and symmetric air distances, five instances sized
from 50 to 2750 were provided, none of which had any record of the optimal or best-
known solutions.
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2.2. VRP and Map APIs

Apart from endeavoring to create benchmark instances, recent VRP studies have
also employed map APIs to produce more realistic and practical solutions. For instance,
utilizing the Google Maps API, a dynamic vehicle routing system based on online map
service was designed [24]. The map service was able to help accommodate dynamic
customer demands and traffic information in the research. In addition, a study on school
bus routing and scheduling, which could be treated as a multi-objective VRP, used the map
service to obtain economical routing results that met time window constraints [25]. The
OpenStreetMap API has been another option for accurate travel time estimations. A case
study on the development of a commercial dynamic vehicle routing system made good
use of the map service [26].

With accumulated data and knowledge, it is common that local map service companies
provide the best quality information for their region. For example, Baidu’s map service [27]
would be the most appropriate choice in China. Many studies on VRP variants, including
green VRPs [28], multi-depot VRPs with shared resources [29], or VRPs for emergency cold
chain logistics [30], have been carried out using the map service in China. In case of Korea,
T map, owned by SK Telecom, is the most popular and the most used map service in the
country. Holding the largest telecommunications market share in the country, the map
service has over ten thousand users [5]. In Seoul, Korea, the T map API service reflects
actual travel patterns and travel times better than foreign map APIs [6]. However, as of
writing, no cases could be found in the VRP literature that incorporated T map.

3. New Sets of Benchmark Instances for the ACVRP
3.1. Existing Benchmark Instances

To conveniently represent the sets of benchmark instances from previous studies,
they are named after their authors. In this paper, they will be referred to as Fischetti in-
stances [18], De Smet instances [22], and Rodríguez instances [20]. Before looking into each
set of instances in detail, the point is made that they were created in Western and Southern
European countries. It would be both interesting and necessary to develop benchmark
instances in Asian cities, including Seoul and Busan, with the aim of complementing the
knowledge and experience that, until now, has been developed from European cities. Com-
pared to Europe, Asian cities can have different population densities, road network systems,
urban planning, or periods of development, resulting in distinguished urban structures.

Fischetti instances are small in their number (the number of instances) and dimension
(the number of nodes). The instance sets are derived from real-life pharmaceutical product
delivery problems in downtown Bologna, Italy. There are eight instances in the set. Including
38 pharmacies, 32 herbalist shops, and a depot, the maximum dimension in the set is 71.
The dimensional sizes in the set would not be sufficient for testing cutting-edge VRP solving
algorithms. It is also noted that the instances were from the 1990s. The costs were obtained
from solving multiple shortest path problems on the road network and not from map APIs.

De Smet instances are not specifically designed for the ACVRP. After excluding
instances for multi-depot or time window problems, five ACVRP instances are available.
Each instance is provided with two matrix options, road distance and road time, which
make a total of ten instances for the set. The dimensions range from 50 to 2750. The fact
that the maximum dimension is very large makes these instances a viable alternative for
testing state-of-the-art VRP algorithms. However, the customer nodes are not exactly from
real-life problems. Administrative locations for cities, towns, and sub-towns are used as
the node coordinates.

Rodríguez instances are overwhelming in number. The set consists of 1350 instances.
For each instance, two settings—the requested demand quantity from the customers and
the vehicle capacity—are provided. This brings the aggregate number to 2700. The number
of customer nodes is set from small to large in size (from 50 to 500). The cost matrix is only
in road distance. The customer locations are generated based on random, grid and radial
distributions, as shown in Figure 2. Using geographic information system (GIS) functions,
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the generated locations are corrected to the nearest accessible location in the network. Even
though the authors made significant efforts to include realistic perspectives, it is arguable
that the locations are rather randomly placed, not exactly reflecting realistic circumstances.
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3.2. New Benchmark Instances

None of the existing sets of ACVRP benchmark instances satisfy all of the following
qualities at the same time: (i) it is large in number, (ii) it includes instances that are large
in dimension, (iii) its locations carefully reflect the reality of urban transportation, and
(iv) it includes both distance and time matrices. These four major requirements should be
included in newly created benchmark instances. Of note, having a time matrix for cost
considerations is important since labor costs are the dominant factor in delivery operation
costs, accounting for over 80 percent [31]. The new and freely available instances are posted
online in the Mendeley data repository [32].

3.2.1. Territory

Two cities in Korea, Seoul and Busan, are selected as territorial bases for the benchmark
instances. The major two cities have the largest populations in the country. Seoul has ten
million inhabitants, with a density of 16,523 persons per km2. Busan has three and a half
million, with a density of 4546 persons per km2. The two cities are selected to represent
urban logistics environments. Their geographic shapes are shown in Figures 3 and 4.
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3.2.2. Depot Locations

In the two cities, depot locations are based on UDCs, hub terminals for national postal
services, and some large shopping malls. Deliveries starting from the UDCs or postal hubs
are reasonable from a logistics point of view, but setting a shopping mall as depot location
may seem contrary. However, this reflects the booming demand in last-mile delivery
services, which have increased significantly during the COVID-19 pandemic.

The spatial data for the depot locations are obtained from shared data produced by
various public institutions in Korea. Locations for UDCs, postal hub terminals and mega
shopping malls are shared by the Korean National Logistics Information Center. Spatial
data for postal hub centers and shopping malls are from the Korean Ministry of Science and
ICT (Information and Communications Technology) and the Korean Land and Geospatial
Informatrix Corporation, respectively.

In Figures 5 and 6, large markets are denoted as blue squares. Among them, one for
Seoul and one for Busan are randomly chosen for the benchmark creation. Similarly, for
the UDCs and postal hubs, one of each are selected for the Seoul instances, and one of each
is selected for the Busan instances.

3.2.3. Customer Locations

The spatial data for customer locations are acquired from the National Spatial Data
Infrastructure Portal run by the Korean Ministry of Land, Infrastructure, and Transport.
The locations are restaurant businesses, residentials complexes, and convenience stores,
which are, respectively, marked as red circles, green diamonds, and yellow triangles in
Figures 5 and 6.

The figures are worth taking note of for two reasons. First, it is observed that residen-
tial areas and business areas are separated. Second, the entities of interest are geographically
clustered. This can be attributed to the first note, or the fact that there are more data-sparse
areas, as illustrated in Figure 6, mostly because of forested areas, fields, or farmlands.
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3.2.4. Vehicle Capacities

In the distribution of goods in the country, 1-ton trucks and 2.5-ton trucks are used most
frequently. A 1-ton truck, as the name itself implies, can carry one ton of cargo at maximum.
When it comes to volume, it can hold up to seven cubic meters of cargo. On a 2.5-ton truck,
about eighteen cubic meters of cargo can be loaded. The load factor, or the ratio of the truck’s
used capacity to available capacity, for 1-ton trucks and 2.5-ton trucks are reported to be
around 70 percent [35] by the Korea Ministry of Land, Infrastructure and Transport.

In urban freight distribution, the volume of packages can be the major limiting fac-
tor [36]. Accordingly, vehicle capacities are assumed to be the volume capacities in the new
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sets of benchmark instances. For 1-ton trucks and 2.5-ton trucks, the capacities are set to be
5 and 12.5 cubic meters, respectively.

3.2.5. Weight and Volume Per Delivery

As reported by the Korean Ministry of Science and ICT, Korea Post’s market share on
parcel delivery exceeds 50 percent. From Korea Post, 200,000 records of delivery weight
and volume have been shared to the public. Each customer delivery demand, whether it
is a boxed package or a bag of rice, includes weight and volume attributes, and Figure 7
represents the empirical distribution of weight and volume. The volume for each delivery
is set using this information, or with multiples of the values.
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3.2.6. Dimension and Distance from Depot

VRP dimension represents the number of nodes included in the problem. The nodes
are the depot and the customer locations. The dimension of the benchmark sets ranges
from 50 to 500. In the benchmark sets, the dimension increases along with the maximum
distance from the depot. For example, an instance with a dimension of 250 is created using
entities within 5 km from the depot, while an instance with a dimension of 500 is created
using the constraint of 10 km.

3.2.7. Cost Matrix

The new benchmark instances are based on the T map API’s road distances and road
times. As illustrated in Figure 1, using road distance from map APIs is more accurate than
using air distance and can reflect the asymmetric costs between nodes. Of note, having
a time matrix rather than just a distance matrix is crucial since labor costs are the major
factor in logistics costs.

Table 1 provides an example of different types of cost matrices assuming there are six
nodes {A, B, C, D, E, F}. Table 1a represents a symmetric air distance matrix where the travel
costs of an outbound trip and return trip are the same. The air distances are calculated
as straight lines that link each pair of nodes. This is unlikely in a real-world setting, and
Table 1b,c are asymmetric as they are based on a map API where real road networks are
considered. For each pair of nodes, the map API provides the shortest distance and time.
Since air distances are the shortest possible distances, road distances are always larger
than, or at least the same as, air distances. It is noted that the road time matrix in Table
1c is independent of the road distance matrix in Table 1b. As can be seen in the table, the
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road time from node A to B is larger than the time from node B to A. However, using road
distances produces the opposite result.

Table 1. Cost matrix examples: (a) Air distance; (b) road distance; (c) road time.

To

Distance between Coordinates Map API Used

(a) Air Distance (Meters) (b) Road Distance (Meters) (c) Road Time (Seconds)

A B C D E F A B C D E F A B C D E F

From

A 0 2348 2494 1261 3,72 2206 0 3109 5904 2528 680 6331 0 619 1311 396 228 1364
B 2348 0 4467 1861 2004 4151 3151 0 8478 4348 2429 8905 560 0 1755 679 397 1808
C 2494 4467 0 3749 2665 317 4247 6836 0 5904 4407 427 619 1101 0 881 709 53
D 1261 1861 3749 0 1207 3466 2223 4221 6928 0 1792 7354 648 917 1543 0 520 1596
E 372 2004 2665 1207 0 2362 722 2429 6049 1919 0 6476 152 430 1351 265 0 1404
F 2206 4151 317 3466 2362 0 4674 7263 427 6331 4834 0 692 1177 74 942 782 0

3.2.8. Solution Methods and Results

An important quality that a benchmark problem requires is that it offers known
solutions so that it can be used to compare different problem-solving algorithms. The
proposed benchmark sets are solved using some well-known VRP algorithms.

A sweep algorithm [37], in its simplest version, is used as the construction algorithm
to set the initial solutions. For each customer node, the polar angle toward the central
depot is calculated. Then, the algorithm triggers the clustering of customer nodes by
sweeping clockwise based on the polar angle. If the total capacity in one cluster exceeds
the vehicle capacity, a new cluster is created, and the process continues until there are no
remaining nodes.

To elicit improvements starting from the initial solution, a simulated annealing (SA) al-
gorithm is employed. First introduced by Kirkpatrick [38], SA is a random search algorithm
that is analogous to the annealing process used for metal. The algorithm probabilistically
allows permutations of degenerating solutions. The probability is high at the start of the
searching process (hot state), but it gradually decreases and approaches zero at the end
(cool state). Here, we implement the SA algorithm with two different operators—swap
and insert. The swap operation exchanges two randomly selected nodes, and the insert
operation moves a randomly selected node into a randomly selected position. The initial
temperatures in the SA algorithm are set to (average value in cost matrix)/log(0.5), and the
final temperatures are set to 0.01 of the initial temperature. The cooling rate is set to 0.90,
and for each temperature, (minimum required number of vehicle) × 130,000 permutations
are made.

Tables 2 and 3 summarize the new benchmark instances. For each named item
in Table 2, the distance matrix and time matrix are provided for cost consideration. In
addition, as shown in Table 3, two types of vehicles and three different multiples options
are considered. The multiple options in Table 3 are the values multiplied by the original
volume for each randomly created load. When a high value is multiplied, the average
number of loads per vehicle decreases.



Appl. Sci. 2021, 11, 4790 10 of 18

Table 2. Enumerative list of proposed benchmark instances.

City Depot Customer
Location Range within Dimension Name Avg Time

(DV1M5, Sec) *
BKS

(DV1M5) **

Seoul
(S)

UDC
(L)

Residential
Complex

(A)

2.5 km (S) 100 SLAS100 10 76,358
5 km (M) 250 SLAM250 58 182,120
10 km (L) 500 SLAL500 149 594,420

Restaurant
Business

(F)

2.5 km (S) 100 SLFS100 11 39,488
5 km (M) 250 SLFM250 66 135,313
10 km (L) 500 SLFL500 149 425,651

Convenience
Store
(C)

2.5 km (S) 50 SLCS50 6 47,043
5 km (M) 75 SLCM75 7 75,004
10 km (L) 100 SLCL100 11 180,753

Postal Hub
(P)

Residential
Complex

(A)

2.5 km (S) 100 SPAS100 11 115,582
5 km (M) 250 SPAM250 57 251,667
10 km (L) 500 SPAL500 139 729,496

Restaurant
Business

(F)

2.5 km (S) 100 SPFS100 11 47,119
5 km (M) 250 SPFM250 62 168,662
10 km (L) 500 SPFL500 146 480,624

Convenience
Store
(C)

2.5 km (S) 50 SPCS50 6 71,011
5 km (M) 75 SPCM75 7 142,406
10 km (L) 100 SPCL100 11 245,746

Large-sized
Mall
(S)

Residential
Complex

(A)

2.5 km (S) 100 SSAS100 11 73,950
5 km (M) 250 SSAM250 37 230,226
10 km (L) 500 SSAL500 135 561,442

Restaurant
Business

(F)

2.5 km (S) 100 SSFS100 11 62,644
5 km (M) 250 SSFM250 62 180,621
10 km (L) 500 SSFL500 143 492,579

Convenience
Store
(C)

2.5 km (S) 50 SSCS50 6 40,758
5 km (M) 75 SSCM75 7 109,477
10 km (L) 100 SSCL100 8 194,559

Busan
(B)

UDC(L)

Residential
Complex

(A)

20 km (S) 100 BLAS100 11 197,486
30 km (M) 250 BLAM250 71 612,256
40 km (L) 500 BLAL500 172 1,142,420

Restaurant
Business

(F)

20 km (S) 100 BLFS100 10 199,864
30 km (M) 250 BLFM250 71 524,744
40 km (L) 500 BLFL500 178 938,741

Convenience
Store
(C)

20 km (S) 50 BLCS50 5 180,941
30 km (M) 75 BLCM75 9 269,538
40 km (L) 100 BLCL100 10 322,354

Postal Hub
(P)

Residential
Complex

(A)

15 km (S) 100 BPAS100 11 190,075
20 km (M) 250 BPAM250 44 467,338
25 km (L) 500 BPAL500 191 904,537

Restaurant
Business

(F)

15 km (S) 100 BPFS100 11 193,485
20 km (M) 250 BPFM250 70 430,466
25 km (L) 500 BPFL500 168 694,761

Convenience
Store
(C)

15 km (S) 50 BPCS50 5 158,240
20 km (M) 75 BPCM75 9 252,686
25 km (L) 100 BPCL100 11 289,195

Large-sized
Mall
(S)

Residential
Complex

(A)

5 km (S) 100 BSAS100 10 100,103
10 km (M) 250 BSAM250 42 266,803
15 km (L) 500 BSAL500 161 609,610

Restaurant
Business

(F)

5 km (S) 100 BSFS100 11 86,652
10 km (M) 250 BSFM250 55 257,710
15 km (L) 500 BSFL500 142 471,597

Convenience
Store
(C)

5 km (S) 50 BSCS50 5 89,989
10 km (M) 75 BSCM75 9 136,604
15 km (L) 100 BSCL100 11 217,444

* Average solution time for DV1M5 instances. ** Best-known solution for DV1M5 instances.
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Table 3. Options for varying proposed benchmark instances.

Cost Vehicle Capacity Multiple Name

Distance
(D)

1-ton trucks
(V1) 5 cubic meters

5 times (M5) DV1M5
10 times (M10) DV1M10
20 times (M20) DV1M20

2.5-ton trucks
(V2) 12.5 cubic meters

5 times (M5) DV2M5
10 times (M10) DV2M10
20 times (M20) DV2M20

Time
(T)

1-ton trucks
(V1) 5 cubic meters

5 times (M5) TV1M5
10 times (M10) TV1M10
20 times (M20) TV1M20

2.5-ton trucks
(V2) 12.5 cubic meters

5 times (M5) TV2M5
10 times (M10) TV2M10
20 times (M20) TV2M20

Accordingly, twelve instances for each line in Table 2 are created. For example,
an instance of SLAS100 can be matched to different costs, capacities, and multiple op-
tions, creating the following twelve instances: SLAS100_DV1M5, SLAS100_DV1M10,
SLAS100_DV1M20, SLAS100_DV2M5, SLAS100_DV2M10, SLAS100_DV2M20, SLAS100_
TV1M5, SLAS100_TV1M10, SLAS100_TV1M20, SLAS100_TV2M5, SLAS100_TV2M10, and
SLAS100_TV2M20. In this way, a total of 648 new realistic problem instances are created.
For each instance, ten replications are made. The average solution time and the cost in
distance are provided in Table 2. Instead of enumerating the full list of 648 instances, the
values for only the DV1M5 option are presented in the table. The experimental results for
the rest of the options can be found in the benchmark’s data repository [32]. The solution
methods are programmed in Java. The first half of the instances, which are based on the city
of Seoul, are run on an Intel(R) Core (TM) i9-7900X CPU @ 3.30 GHz, while the remaining
instances (from Busan) are run on an Intel(R) Core (TM) i5-9600K CPU @ 3.70 GHz.

4. Analysis on Air Distance, Road Distance and Road Time

As described in Figure 1, using the air distance between nodes would elicit distorted
results. Using the newly created distance and time matrices in benchmark instances, we
answer the following issues: the distortions that air distance creates in measuring closeness,
the differences in the distance of outbound and return trips in terms of cost, and rough
multipliers to transform air distances into road distances or road times.

4.1. Closeness Deceived by Air Distance

There is no doubt that air distance can be deceiving when measuring closeness in
transportation networks. However, the question of how often and how much has rarely
been studied.

Figures 8 and 9 highlight the frequency and magnitude, respectively. More specifically,
Figure 8 presents the rate at which the use of air distances and road distances produce
different results. Suppose there are three nodes, A, B, and C. The air distances from A to
B and from A to C are measured and compared. This same comparison is subsequently
carried out using road distance or road time. If the comparison using air distance versus
road distance or road time creates different winners, it is assumed that the air distances
are inaccurate. Ten distance range boundaries are set for the analyses. The boundaries are
based on air distances. For a boundary of {0~1}, the air distances from A to B and from A
to C are both within 1 km. Two different average values are displayed in the figure. In a
nutshell, average (1) is calculated with nodes with similar air distances, while average (2)
also includes cases with dissimilar air distances. The average (1) refers to the average value
from all boundaries {0~1, 1~2, . . . , 9~10}. On the other hand, average (2) is the average
value from a different boundary, which is {0~10}. It is natural that average (2) has a lower
rate than average (1), since average (2) includes cases where differences in the air distance
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from A to B and from A to C are within 10 km, while average (1) only includes cases where
the differences are within 1 km.
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As shown in Figure 8, within the boundaries of 1 km, there is a 34.9% chance that the
air distance is wrong for the distance measurement, and a 40.6% chance that it is wrong for
the time measurement. Even if the boundary is set to be within 10 km, there still exists a
high chance that the air distance will be wrong: 11.6% for distance and 16.4% for time.

In Figure 8, it is noted that using air distance in a time measurement is more likely to
be inaccurate than for a distance measurement. This is true because the criterion used is
the air distance rather than the air time. It is also noted that as the distance range increases,
the rate at which air distance produces inaccurate results also increases.

However, as illustrated in Figure 9, the magnitude of inaccuracy decreases when the
distance range increases. For example, in a short distance rage of {0~1} km, the average
difference is as high as 2.5 times. That is, if the air distance measurement from A to B is
smaller than from A to C, there is about a 25% chance the measurement will be wrong, as
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shown in Figure 8a. In addition, the road distance measurement (with respect to cost) from
A to B will, in fact, be larger than from A to C by 2.5 times. As provided in Figure 9, within
the range {0~10}, the average differences are calculated as 27.9% for road distance and 29%
for road time.

4.2. Assymetric Costs

Another interesting challenge is to determine the differences in costs between the
outbound and return trips. The cost differences of the outbound trip from A to B and the
return trip from B to A are measured. The difference ratio is calculated, dividing the larger
cost by the smaller cost. The results are provided in Figure 10.
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As expected, the difference ratio decreases when the distance range increases. In the
shortest range where the distance range is only within 1 km, the average difference ratio
can be as high as 2.13 times for road distance and 2.59 times for road time. Within the
range of {0~10}, there exists a 20.6% difference in distance and a 32.9% difference in time,
on average. The difference ratio in road time is computed to be larger than road distance
across all boundaries, cities, and averages.

Figures 9 and 10 illuminate the point that different cities, or different areas in a city,
can have different road network characteristics. In the analyses, Busan tends to produce
higher difference rates than Seoul, especially within smaller boundaries. As can be seen
in Figures 5 and 6, Busan is covered with more forested areas, fields and farmlands than
Seoul. In addition, the difference in the number of one-way streets can be a factor.

4.3. Air Distance to Road Distance and Road Time Multiplier

Although imprecise, a simple but rough multiplier for transforming air distances into
a road distances or road times can be useful. For instance, when solving a vehicle routing
problem, the cost of traveling between nodes that are very far apart from each other does not
have to be exact. Many of the exceedingly long links are rarely considered or highlighted in
problem-solving processes. When employing map APIs, precisely acquiring every single road
distance or road time can be costly. It can be costly not only in terms of purchasing costs, but
also response times. For this reason, it is attractive to estimate road distances or road times
using rough multipliers for those links that exceed a pre-set threshold.

For the general conversion ratio, Figure 11 can provide some guidelines. It is noted
that the y-axis in Figure 11a ranges from 1.0 to 3.0. In Figure 11b, it ranges from 0.0 to 0.5.
This is because Figure 11a indicates meter-to-meter conversion ratios, while Figure 11b
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indicates meter-to-second conversion ratios. Road distances are always larger than, or
sometimes equal to, the air distances, which causes the ratio to exceed 1.0. However,
distance and time are in different scales, and a meter-to-second conversion ratio should
only be larger than zero. The conversion ratio decreases with increasing distance ranges.
The differences derive from the road network structure, as well as from the speed of the
vehicle. In general, average vehicle speed in a long haul is faster than a short one. Arterial
roads, trunk lines or expressways are more likely to be used in a long haul. Within 10 km of
air distance, the average rough multipliers for road distance and road time are calculated
as 1.57 and 0.14, respectively.

Appl. Sci. 2021, 11, x  14 of 18 
 

distances or road times using rough multipliers for those links that exceed a pre-set thresh-

old.  

For the general conversion ratio, Figure 11 can provide some guidelines. It is noted 

that the y-axis in Figure 11a ranges from 1.0 to 3.0. In Figure 11b, it ranges from 0.0 to 0.5. 

This is because Figure 11a indicates meter-to-meter conversion ratios, while Figure 11b 

indicates meter-to-second conversion ratios. Road distances are always larger than, or 

sometimes equal to, the air distances, which causes the ratio to exceed 1.0. However, dis-

tance and time are in different scales, and a meter-to-second conversion ratio should only 

be larger than zero. The conversion ratio decreases with increasing distance ranges. The 

differences derive from the road network structure, as well as from the speed of the vehi-

cle. In general, average vehicle speed in a long haul is faster than a short one. Arterial 

roads, trunk lines or expressways are more likely to be used in a long haul. Within 10 km 

of air distance, the average rough multipliers for road distance and road time are calcu-

lated as 1.57 and 0.14, respectively. 

  

(a) (b) 

Figure 11. General conversion ratio for air distance: (a) to road distance; (b) to road time. 

5. Discussion 

As explained in Sections 3.2.3 and 4.2, different areas can have different characteris-

tics with respect to road networks. Some areas are covered with more forested areas, fields 

and farmlands than others. In addition, some areas can include a greater number of one-

way streets than others. The proposed benchmark sets and the corresponding analyses 

may not represent the entire picture and characteristics of a country, or even a city. Alt-

hough they only provide partial images, the fact that the benchmark instances are realistic 

remains unchanged. 

The analyses in Section 4 are constrained to the maximum distance range of 10 km. 

This is because when creating road distance and road time matrices, the cost of links that 

exceed 10 km in terms of air distance are estimated rather than precisely defined, as noted 

in Section 4.3 using the values of boundary {9~10} in Figure 11. Asymmetry is applied to 

the estimated road distance and road time using the ratio values of boundary {9~10} pro-

vided in Figure 10. We believe this is applicable since we are focused on creating bench-

mark instances for last-mile deliveries and the distribution of goods in urban settings. 

Additionally, since 72.6% of the four million pairs are within 10 km of air distance, and 

27.4% are not, we are able to conclude that using the majority to assume the remainder is 

reasonable. More detailed information on the number of cases and the ratios for pairs of 

nodes within individual air distance ranges are provided in Figure 12. 

Figure 11. General conversion ratio for air distance: (a) to road distance; (b) to road time.

5. Discussion

As explained in Sections 3.2.3 and 4.2, different areas can have different character-
istics with respect to road networks. Some areas are covered with more forested areas,
fields and farmlands than others. In addition, some areas can include a greater number
of one-way streets than others. The proposed benchmark sets and the corresponding
analyses may not represent the entire picture and characteristics of a country, or even a
city. Although they only provide partial images, the fact that the benchmark instances are
realistic remains unchanged.

The analyses in Section 4 are constrained to the maximum distance range of 10 km.
This is because when creating road distance and road time matrices, the cost of links that
exceed 10 km in terms of air distance are estimated rather than precisely defined, as noted
in Section 4.3 using the values of boundary {9~10} in Figure 11. Asymmetry is applied
to the estimated road distance and road time using the ratio values of boundary {9~10}
provided in Figure 10. We believe this is applicable since we are focused on creating
benchmark instances for last-mile deliveries and the distribution of goods in urban settings.
Additionally, since 72.6% of the four million pairs are within 10 km of air distance, and
27.4% are not, we are able to conclude that using the majority to assume the remainder is
reasonable. More detailed information on the number of cases and the ratios for pairs of
nodes within individual air distance ranges are provided in Figure 12.
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Road distances and road times between nodes change over the time of day and over
the day of the week. This is because the distance or time from the map APIs are based
on the shortest or fastest path between nodes, and the greedy paths in the road network
change over periods. This is also because there are peak hours and off-peak hours in
urban transportation environments. Road distance and road time matrix creation is based
on a random time of day to ensure that we accommodate both peak and off-peak hour
characteristics in the new benchmark instances and in the analysis.

Even with the limitations discussed above, the newly proposed benchmark instances
have merit for a number of reasons. The previously available Fischetti [18], De Smet [22]
and Rodríguez [20] instances are all based on European regions. The new instances are
the first to be based on an Asian country. In addition, for the purpose of testing cutting-
edge VRP solving algorithms on single or multi-objective real-life problems, the new
instances are the first to satisfy multiple important qualities simultaneously. Specifically,
there are sufficient numbers and dimensions of problem instances, real data are used in
the generation of depot and customer node locations, both road time and road distance
matrices are present, and best-known solutions (BKS) are available. With these qualities
in mind, a comprehensive comparison of the existing and new benchmark instances is
provided in Table 4 below.

Table 4. Comparison of ACVRP benchmark instances.

Benchmark Number Dimensions Depot and Customer Nodes Road
Distance

Road
Time

Reported
BKS ***

Fischetti 32 * 34~74 Real data of pharmaceutical product delivery O X O

De Smet 10 ** 50~2750 Administrative districts O O X

Rodríguez 2700 50~500 Random, grid, and radial O X X

Proposed
instances 648 50~500

Real data of UDCs, postal hubs, large malls,
residential complexes, restaurants, and

convenience stores
O O O

* The original number was eight, but the instances grew in terms of population by modifying vehicle capacity. ** The number of instances is
50, but after netting only the ACVRP instances, 10 instances are available. *** The availability of best-known solutions.

6. Conclusions

Recognizing the lack of benchmark instances in VRPs with asymmetric costs, or
ACVRPs, this paper supplemented the instances with new and more realistic ones. The in-
stances were generated with the help of a wide range of publicly shared data and advanced
map API services in Korea. They were created using publicly shared spatial data for depot
and customer locations. The locations included UDCs, regional hubs for postal services,
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shopping malls, restaurant businesses, residential facilities, and convenience stores. For
road distance and road time matrices, T map, a map API renowned for its accuracy in
Korea, was used. A total of 648 ACVRP benchmark instances are now available online.

The proposed benchmark instances contribute to the research community since they
carefully and realistically reflect urban transportation environments. Real road distance
and road time matrices are asymmetric, and this asymmetry has a large effect over the
solution methods and quality in a VRP [4]. The benchmark instances will be useful in the
development of routing algorithms. In addition, the proposed instances are based on cities
in Korea, which makes them the first benchmarks based on any region outside of Europe.
Additionally, this paper is the first to present instances that satisfy all of the following
criteria: be large in number, include instances of large dimension, include both road time
and road distance matrices, reflect the realities of urban transportation, and provide records
on best-known solutions.

Using the benchmark instances’ abundant road distance and road time matrices, this
paper analyzed and answered three important questions in urban transportation planning
that have rarely been considered: (i) the frequency and magnitude in which air distance
differs from reality when measuring closeness, (ii) the differences in distance and time
for outgoing and return trips, and (iii) rough conversion ratios from air distance to road
distance and road time. The analyses were carried out for each boundary of 1 km within
10 km of air distance.

Overall, using air distance results in inaccurate decisions when measuring closeness.
For distance measurements, it is wrong 34.9% of the time by a magnitude of 27.9%. For
time measurements, it is wrong 40.6% of the time by 29%. On average, the outbound and
return trips differ by 20.6% in distance and 32.9% in time. The value 1.57 may be multiplied
to air distance when estimating road distance, and 0.14 may be used when converting air
distance in meters into road time in seconds.

The analyses contribute to the research community by highlighting characteristics
of urban transportation environments. Furthermore, this paper can be referenced when
emphasizing the necessity of using map APIs instead of air distances in transportation
planning. This paper provides some managerial implications. Accurate planning can
only be conducted with accurate distance and time measurements. It is important to have
reliable sources for road distance and road time estimations, particularly in the distribution
of goods or in last mile deliveries. Additionally, when distances increase, the inaccuracies
incurred by relying on air distances decrease in magnitude, as do the cost differences
between the outbound and return trips. For distant node pairs, it is plausible to use rough
estimations using the suggested conversion ratio in this paper.

Future research can be directed to overcome some of the limitations discussed in
Section 5. The maximum distance range for the analyses in this research was 10 km.
Beyond this perimeter, further distances can be explored and analyzed in future research.
Moreover, since road distances and road times between nodes can change across the day,
peak and off-peak hours can be separated to discover their differences in a future analysis.
Finally, and most importantly, ACVRP solving algorithms should be tested using the new
benchmark instances. The experiments should focus on the differences in the following
two solutions and objective function values (OFVs). The first solution is obtained by using
a symmetric air distance matrix, and then corresponding asymmetric road distances or
time-matrices are applied to the solution to calculate the total cost. For the second solution,
asymmetric road distances or road times are used in the first place. The two solutions can
be compared for analysis.
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