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Abstract: In recent years, many types of research have continued to improve the environment of
human speech and emotion recognition. As facial emotion recognition has gradually matured
through speech recognition, the result of this study provided more accurate recognition of complex
human emotional performance, and speech emotion identification will be derived from human
subjective interpretation into the use of computers to automatically interpret the speaker’s emotional
expression. Focused on use in medical care, which can be used to understand the current feelings of
physicians and patients during a visit, and improve the medical treatment through the relationship
between illness and interaction. By transforming the voice data into a single observation segment
per second, the first to the thirteenth dimensions of the frequency cestrum coefficients are used as
speech emotion recognition eigenvalue vectors. Vectors for the eigenvalue vectors are maximum,
minimum, average, median, and standard deviation, and there are 65 eigenvalues in total for the
construction of an artificial neural network. The sentiment recognition system developed by the
hospital is used as a comparison between the sentiment recognition results of the artificial neural
network classification, and then use the foregoing results for a comprehensive analysis to understand
the interaction between the doctor and the patient. Using this experimental module, the emotion
recognition rate is 93.34%, and the accuracy rate of facial emotion recognition results can be 86.3%.

Keywords: doctor-patient communication; speech emotion recognition; Mel Frequency Cepstrum Co-
efficients

1. Introduction

With technological advancement, artificial intelligence (AI) has been applied to pro-
cess repetitive and complicated tasks and to predict future scenarios in a broad scope
of industries. Currently, AI is employed in numerous medical areas, such as precision
medicine, breast cancer imaging diagnosis, and medical care. In medical care, the behavior
of medical personnel profoundly affects the emotional state of patients. AI can free up
a physicians’ cognitive and emotional space for their patients, and shift the focus away
from transactional tasks to personalized care and medical service [1–3]. Because patients
are vulnerable physiologically and psychologically, medical personnel should endeavor to
facilitate positive feelings in patients to enable the smooth completion of disease diagno-
sis, treatment, and prevention processes, thereby improving the communication quality
between the patient and the medical staff.

Because emotions enable people to better understand each other, efforts have been
made to enable machines to understand human emotions. Smart mobile devices, which in-
corporate speech recognition, can receive and respond to voice commands with synthesized
speech. Speech emotion recognition (SER) enables these devices to detect user emotions,
and SER has been adopted for more than 20 years [4,5] in the fields of human-machine
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interactions [6], emotion integration in robots [7], computer games [8], and psychological
assessment [9].

Although emotion recognition has been adopted in a broad way to daily living,
emotions involve subjective perceptions making the identification of human emotions a
challenge. The performance could not be improved beyond a certain limit as hand-crafted
features are not very capable of capturing complex phenomena such as emotional state [10].
Over the past decade, deep learning techniques have been employed in several fields
of research such as image classification, speaker recognition, speech and handwriting
recognition, etc. because of their ability to capture high-level discriminative features which
are otherwise not captured well in traditional handcrafted features. SER requires the
use of a classifier, which usually employs a supervised learning algorithm in training
a module to identify the emotion of a new voice signal. Supervised learning is crucial
in emotion labeling. Voice signals must be preprocessed to highlight their features for
extraction. These features consist of prosodies, frequency, and voice quality. In recent
studies, AI in data analysis and classifiers integrated with deep learning algorithms have
been prevalent [10–12].

Frequency features are frequently examined as eigenvalues in voice recognition and
have also been jointly investigated with prosodies in experiments. Human voices are
filtered by sound channels when they are generated and, after filtering, the resulting voices
are defined by their shapes. Any voice exhibits notable frequency features [13]. Frequency
features are acquired by converting time-domain signals into frequency-domain signals
through Fourier transform. Specifically, a speech is divided into blocks, and each block
is converted to frequency-domain signals through discrete short-time Fourier transform.
A mel-scale filter bank is applied to calculate the energy of sub-bands. The logarithms
of the sub-bands are then calculated. Finally, inverse Fourier transform is conducted to
acquire mel-frequency cepstrum coefficients (MFCCs), which are the most widely used
frequency features [14]. Numerous studies on MFCCs have involved comparing prosodic
features with spectral features and have shown that spectral features exhibit remarkable
results [15]. Therefore, this study employed MFCCs as eigenvalues for voice signals. Voice
quality comprises the physical properties of sound, such as jitter, shimmer, and harmonics
to noise ratios.

MFCCs, which were proposed by Davis and Mermelstein in the 1980s [16], have been
universally applied in automatic speech and speaker recognition. Before MFCCs were
introduced, linear predictive coefficients and linear prediction cepstral coefficients were
the primary eigenvalues employed in automatic speech recognition.

Artificial neural networks (ANNs) have been frequently used to solve classification
problems by the structure consists of an input layer, an output layer, and multiple hidden
layers. These layers are composed of nodes. The number of nodes in the input and output
layers depend on the types of data representation marks, and the number of nodes in the
hidden layers varies according to user needs. Each layer is connected to the next according
to an initial, randomly selected weight. After a sample is selected from the training data
set, the sample’s value is loaded into the input layer and forwarded to the next layer. In
the output layer, the weight is updated through backpropagation. Once the training is
complete, new data are classified according to their weights.

Emotional voice signals can be identified from a set of retrieved data and employed
MFCCs to identify emotions from the voice data [17]. The emotions were categorized as
happiness, anger, or sadness. Many algorithms have been designed for feature extraction
and speech signal testing. Likitha et al. [17], developed function-based MFCCs for the
extract of features from voice samples, and the standard deviation of each emotion category
was defined according to the means of MFCCs. In their research, SER can attain 80%
accuracy based on 60 experiments. Lalitha, Geyasruti, Narayanan, and Shravani (2015),
combined mel-frequency cepstrum eigenvectors with an ANN classifier to achieve an 85.7%
classification accuracy [18]. However, voice sample training and test rates should be further
improved to overcome erroneous classification.
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The goal of this study was to develop an SER instrument using ANN and speech
processing technology and to integrate other instruments to identify medical physicians’
and patients’ emotions in clinics.

2. Materials and Methods
2.1. Experimental Database

Emotions are subjective in concepts and have to be digitalized based on text descrip-
tions for the future processing of machine learning. Studies have endeavored to explore
the types of emotions in human beings and to analyze whether dimensional or label classi-
fication is more effective in debriefing emotional experience and classifying emotions into
rough, noncontinuous emotional experiences [19]. Due to the special multilingual envi-
ronment in Taiwan, a Taiwanese language emotional speech database was established [20].
The voices of patients were also included in the voice samples for each doctor, an emotion
training model was constructed by the sample database. Four types of emotions were
labeled and described as neutral, angry, happy, or sad in the 610 emotional voice samples.
Then, 315, 100, 90, and 105 records were identified as neutral, angry, happy, and sad,
respectively, in the measurement unit of seconds.

Before the experiment, the patient’s consent was obtained, and the experiment analysis
did not reveal the names and personal information of the participants (physicians and
patients) to ensure the privacy and personal information of the participants.

Audio data were divided into blocks of seconds starting from the beginning of each
sample as an observation unit during the identification process. An end block of less than
1 s in length was abandoned.

2.2. Audio Identification and Emotion Labeling

The recorded audio files collected from clinics were stored in iMovie format, audio
files are in WAVE format (Waveform Audio File Format), 16 KHz, 16-bit, mono. Label files
are ASCII text files, store with phoneme level and syllable levels data. The original audio
files were not recorded separately, audio interference unrelated to the doctors and patients
was present. The identities of the speakers had to be preliminarily identified and labeled
manually with each second as a unit for matching the files with facial emotion recognition
results. In this study, only the voice samples of doctors and patients were acquired, blocks
without voice signals were eliminated, and emotional labels were manually added.

2.3. Feature Extraction Using MFCC (Mel Frequency Cepstral Coefficient)

The applicability of MFCCs in SER has been verified [21]. Therefore, MFCCs were
employed in this study as eigenvalues, and the observation unit was defined as 1 s. In
voice processing, mel-frequency cepstrum is the linear transformation of nonlinear mel-
scale logarithmic energy spectra based on sound frequency. MFCCs are coefficients that
constitute mel-frequency cepstra [17,18,22] and are derived from the cepstra of voice signal
blocks. Mel-frequency cepstra, whose frequency bands are divided equidistantly on the mel
scale, emulate the human hearing system more closely than do normal logarithmic cepstra,
which feature linearly spaced frequency bands. The nonlinear frequency band division
improves the expression of sound signals in multiple fields, such as audio compression.

The voice samples were pre-emphasized before feature extraction to highlight the
high-frequency portions. A high pass filter was employed to highlight the high-frequency
formants in the samples. The samples were then blocked as several observation units called
“frames” (0.03 × sampling rate per frame). To prevent excessive differences between two
neighboring frames, an overlapping zone was set between the frames (0.02 × sampling
rate), thereby enhancing the continuity between the two frames. Each frame was multi-
plied by a Hamming window to further enhance the continuity between its neighboring
frames. The signals multiplied by the Hamming window exhibited notable formants in
fast Fourier transform.
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If the framed signals are S(n), n = 0, . . . , N − 1, then the framed signals multiplied by
the Hamming window are denoted as S’(n) = S(n) × W(n); particularly, W(n) is expressed
as W(n, a) = (1 − a) − a cos(2pn/(N − 1)), 0 ≤ n ≤ N − 1. Each a value generates a different
Hamming window. Generally, a is defined as 0.46. Because the features of audio signals
are difficult to detect in the time domain, they are usually converted to frequency-domain
energy distributions for observation. Different energy distributions represent different
audio features.

Each frame multiplied by a Hamming window must have its spectral energy distribu-
tion generated through fast Fourier transform. The modular square of the spectrum of the
audio signal is then calculated to identify its power spectrum.

The energy spectrum was processed using a mel-scale triangular bandpass filter
bank, which was defined as a bank with M filters, the number of filters must be close
to the number of critical bands. This study employed 40 filters, constituting a filtering
range of 133–6854 Hz. The interval between each pair of f(m) decreased as m decreased
and increased as m increased. The purpose of a triangular bandpass filter is to smooth
a frequency spectrum and eliminate the effect of harmonics, thereby highlighting the
formants of the original audio sample. Therefore, the tones and pitches of a speech sample
are not displayed in MFCC arguments; in other words, an MFCC-based speech recognition
system is not affected by the tonal differences in input speeches. This also lowers the
number of computation procedures required, and MFCCs can be obtained through discrete
cosine transform. See Figure 1 for the MFCC calculation procedure. In this study, 13-
dimensional MFCCs were acquired, and five eigenvectors (viz., maximum, minimum,
median, mean, and standard deviation) were extracted from each MFCC, for a total of 65.
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2.4. ANN

This study employed the ANN MATLAB Neural Pattern Recognition classifier [13],
which features a two-layer feedforward network with sigmoid hidden and SoftMax output
neurons, enabling it to arbitrarily classify vectors with sufficient neurons provided in the
hidden layers [23]. A Scaled conjugate gradient backpropagation training network was
employed (Figure 2). A set of learning samples was employed for data training, and a
classifier was established through argument matching. A set of validation data was applied
to adjust the arguments in the classifier in the trained model; for example, the number of
neurons in the hidden layers was determined in the neural network. The validation set was
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applied to confirm the network structure or control the arguments of model complexity. In
addition, a set of testing data was employed to verify the recognition capacity of the trained
model. In this study, 70%, 15%, and 15% of the samples were assigned to the training,
validation, and testing sets, respectively. The number of neurons in the hidden layers was
set as 10.
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2.5. Experimental Design and Procedures

A Chinese language SER system was constructed by using collected speech recordings
to train the SER model and testing the model using clinical speech data.

A speech database referred to captured emotional speech files that could be assessed
and that exhibited notable emotional expressions. The files were processed to extract the
eigenvalues for training the Mandarin language SER model. Subsequently, the actual
clinical speech was used in the model for block processing, identity recognition, emotion
labeling, and MFCC acquisition. The SER results were then compared with the manual
labeling results (Figure 3).
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2.5.1. Emotion Recognition Model

To establish the Mandarin language SER training model, speech samples from Chinese
language videos on YouTube were employed as training data. The emotional speech
samples required for the study were divided into 1-s blocks and independently labeled
with emotions. Subsequently, the maximum values, minimum values, medians, means,
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and standard deviations from the first to 13th dimensions of MFCCs were employed as
65 eigenvalues for model establishment. The MATLAB pattern recognition classifier was
then used to set 70%, 15%, and 15% of the acquired samples as training, validation, and
testing data, respectively, and the number of neurons in the hidden layers of ANN was set
as 10. Thus, the Chinese language SER model was established (Figure 4).
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2.5.2. Actual Clinical Speech Processing

Because the clinical speech files were simultaneously recorded, to eliminate the pres-
ence of noise and identities not required for the study (e.g., other medical personnel and
patient family members), the identities of the doctors and patients had to be recognized in
speech processing with per second as an observation unit. The speech files were processed
in the same manner as the SER model; that is, the files underwent speech processing,
emotion labeling, and feature extraction. The processed speech files were then verified
using the trained SER model, and the results were compared and analyzed.

2.5.3. Comparing and Analyzing the Recognition Results

Previous studies have employed emotional expression by professional actors or self-
recorded and labeled emotional speech files. In this study, emotion recognition was
conducted with a speech from actual clinical practice, and the participants were not
professional actors; therefore, the results were consistent with actual interpersonal commu-
nications. The recognition results of the clinical speech files using the trained SER model
were compared with the manually labeled emotional data to calculate the SER accuracy.

3. Results

To verify the eigenvalues acquired in previous studies as applicable for SER, the Berlin
Database of Emotional Speech, the most frequently applied German SER database, was
employed before the experiment. The other conditions of the German SER experiment,
namely emotion categories, speech block processing, feature extraction, and model settings,
were identical to those in the present Chinese language SER experiment. In the SER results,
84.7% of the samples were testing data, and the overall data accuracy was 92.4%; the area
under the receiver operating characteristic (AUROC) was 0.90. As indicated in Figure 5,
blue represents the receiver operating characteristic (ROC) curve of neutral emotion, green
represents that of anger, dark yellow represents that of happiness, and purple that of
sadness. If 0.5 < AUROC < 1, then the ROC curve exhibits more satisfactory results than
random guessing, verifying the classifier as effective in SER. According to the results of the
experiment, the eigenvalues acquired in this study are applicable in SER research.

3.1. SER Model

The emotion recognition accuracy of the established SER model on the testing data
was 91.3% (Table 1). Figure 6 illustrates the ROC curves in the model; in the training results,
0.5 < AUROC < 1, indicating that the model is effective in SER. The trained model was
then used to verify all the data sets, with an accuracy of 90.2% (Table 2). Figure 7 shows the
ROC curves for all the data sets.
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Table 1. SER model emotion categorization results on the testing data set (91.3% accuracy).

Neutral Angry Happy Sad Total

Neutral 45 0 1 1
Angry 0 15 2 0
Happy 2 2 6 0

Sad 0 0 0 18

Accuracy 95.7% 88.2% 66.7% 94.7% 91.3%
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Table 2. SER model emotion categorization results on all the data sets (90.2% accuracy).

Neutral Angry Happy Sad Total

Neutral 299 0 22 7
Angry 0 91 5 0
Happy 16 9 63 1

Sad 0 0 0 97

Accuracy 94.9% 91.0% 70.0% 92.4% 90.2%
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3.2. SER Result Comparison

Table 3 provides the comparison between manual emotion labeling and SER on
the emotions of doctors and patients. Most of the samples were identified as neutral
emotions. According to Table 2, the manual emotion labeling results differed slightly
from the SER results. For example, in the fourth second, the patient’s emotion was sad
according to the manual label but was identified as neutral in SER. A comparison between
the manual labeling and SER results for 30 clinical speech files revealed a classification
accuracy of 88.6%, indicating that the SER model developed in this study is effective in
emotion recognition.

Table 3. Comparison between manual emotion labeling and SER. Overlapping speech of multiple
individuals in clinics is labeled “x”; “0” indicates that the speech does not belong to particular
speaker identity.

Manual Emotion Labeling SER

Patient Doctor Patient Doctor

1 neutral 0 neutral 0

2 neutral 0 neutral 0

3 neutral 0 neutral 0

4 sad 0 neutral 0

5 happy 0 neutral 0
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Table 3. Cont.

Manual Emotion Labeling SER

Patient Doctor Patient Doctor

6 neutral 0 neutral 0

7 neutral 0 neutral 0

8 x 0 neutral 0

9 0 neutral 0 neutral

10 0 happy 0 happy

11 0 happy 0 neutral

12 neutral 0 neutral 0

13 neutral 0 neutral 0

14 0 happy 0 neutral

15 0 neutral 0 neutral

16 0 happy 0 neutral

17 neutral neutral neutral 0

18 neutral neutral neutral 0

19 0 neutral 0 neutral

20 neutral 0 neutral 0

21 neutral 0 neutral 0

22 neutral 0 neutral 0

23 neutral 0 neutral 0

24 neutral 0 neutral 0

25 neutral 0 neutral 0

4. Discussion and Conclusions

The detection rate for this study proves that emotion recognition has reached maturity
in facial recognition and can be a practical approach for the situation when doctors wear
masks or are outside the range of a camera, detection, and recognition of changes in facial
emotions become impossible. In this study, an SER model was developed to address this
shortcoming. The SER model can be applied to complement a facial emotion recognition
system for a comprehensive emotion recognition system.

This study adopts SER to solve accents and pronunciation in a language that may
lower recognition accuracy. A comprehensive mandarin language SER model was built for
a multi-lingual environment. The eigenvalues from the first to the thirteenth dimensions
of MFCCs were employed in conjunction with AI to enable a machine to learn the char-
acteristics of each emotion and automatically identify it, eliminating the need for manual
emotion labeling. The sentiment recognition system developed by the hospital is used as
a comparison answer to compare the sentiment recognition results of the artificial neural
network classification, and then use the foregoing results for a comprehensive analysis to
understand the interaction between the doctor and the patient. Using this experimental
module, the emotion recognition rate is 93.34%, and the accuracy rate of facial emotion
recognition results was 86.3%.

With the evolution of medical AI, studies have been conducted in developing various
symptom assessment systems, and natural language processing has been performed in
medical history research. However, to improve patient–doctor relationships, technological
application in medical AI empathy is expected. This study aimed to identify speaker
emotions through SER. In the future, by combining SER technology with facial emotion
recognition, emotion recognition accuracy can be improved, thereby achieving AI empathy.
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Doctors should provide a comfortable and compassionate medical environment when
treating patients and apply AI that is sensitive to interpersonal interactions. Patient
confidence and persistence play a critical role in successful disease prevention, diagnosis,
treatment, and management, and medical personnel behavior critically influences patient
feelings. AI empathy should be implemented to assist medical personnel to correctly
identify patient emotions and deliver appropriate emotional responses, thereby attaining
personalized processing of patient-doctor relationships.
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