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Abstract: This work presents a novel Best-Worst Ant System (BWAS) based algorithm to settle
the Traveling Salesman Problem (TSP). The researchers has been involved in ordinary Ant Colony
Optimization (ACO) technique for TSP due to its versatile and easily adaptable nature. However,
additional potential improvement in the arrangement way decrease is yet possible in this approach.
In this paper BWAS based incorporated arrangement as a high level type of ACO to upgrade the
exhibition of the TSP arrangement is proposed. In addition, a novel approach, based on hybrid
Particle Swarm Optimization (PSO) and ACO (BWAS) has also been introduced in this work. The
presentation measurements of arrangement quality and assembly time have been utilized in this
work and proposed algorithm is tried against various standard test sets to examine the upgrade in
search capacity. The outcomes for TSP arrangement show that initial trail setup for the best particle
can result in shortening the accumulated process of the optimization by a considerable amount. The
exhibition of the mathematical test shows the viability of the proposed calculation over regular ACO
and PSO-ACO based strategies.

Keywords: Particle Swarm Optimization (PSO); Best-Worst Ant System (BWAS); Ant Colony Opti-
mization (ACO); Traveling Salesman Problem (TSP)

1. Introduction

The solution of Traveling Salesman Problem (TSP) [1] and its variants aids in find-
ing the minimum travel distance as a cost function for a variety of computing problems.
The extraordinary theoretical importance of TSP solution has a variety of practical appli-
cations, for example, design of circuit board layout [2] and transportation [3]. With the
advent of intelligent transport, multi-machine industrial applications and swift delivery
services, there has been an increased interest in optimizing the solution for TSP. The shortest
travel distance, with the condition of traversing each node at least once, can be found by
using different approaches with each having some advantage and associated weakness.
Finding solution through an exact algorithm such as branch and bound [4] can take a
very long run-time, particularly for a large number of nodes. Given a build-up of nodes
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y = y1, y2, y3, . . . , yn, as the objective of finding nearest travel path solution, including
as much as decreased length with one time node visit condition. Vowing to practical
applications and theoretical features, it is considered NP hard problem in conjunctional
optimization. The other problems associated with direct methods like branch and bound [5]
is the ultra-long run-time because the size of TSP iteration increases with the characters
as combination explosion, for which even dynamic programming methods can hardly
provide a solution within an adequate amount of time. The other type to solve TSP are the
heuristic approaches such as bat algorithm [6], fruit fly algorithm [7–9], particle swarm
algorithm [10,11], cuttlefish optimization algorithm [12] and artificial bee colony algo-
rithm [13], which are result of the continued development of artificial intelligence. These
algorithms work with a goal to find a satisfactory result, regardless of the concern to find
an ideal one, because of time constraint. Ant Colony Optimization (ACO) [14], which is
proposed by Italian Dorigo, is a swarm intelligent optimization algorithm with wide range
of application like multi-objective optimization problems [15], vehicle routing problem [16],
resource constrained job scheduling [17], dynamic railway junction rescheduling [18].
The authors in [19] integrate a local search (LS) method with an existing PSO algorithm
with strong global search ability, named comprehensive learning PSO (CLPSO). In [20],
the authors have explained a new multiobjective programming model for the target disas-
sembly sequencing. It proposes an improved multiobjective ant colony algorithm to derive
optimal target disassembly sequences. ACO is based on the social solution path which is
build by a group of ants to travel in food search and then return back with an optimized
travel path [21,22]. The basic principle is the exchange of useful information about the
path by the ants, and thus improving the solution quality [23]. Better paths are chosen
by ants as indicated by the amount of pheromone, where then the pheromone is updated.
So, at this stage through different iterations the global optimal solution is induced [24].
The improved ACO like parallel and direction guided algorithms are presented in order to
resolve premature and algorithm performance of ACO impairments [25]. From the analysis
of predatory behavior of birds practical swarm optimization (PSO) intelligent algorithm
has been introduced, which function is to modify the location and speed of elements to gain
optimal outcomes in terms of population information and experience [26,27]. Moreover,
PSO can be easily implemented due to its simple structure, therefore, it is majorly applied
on problems like resource allocation, wind power prediction, etc., [28–30].

The above discussed PSO and ACO algorithms present efficient performance against
problems. However, the complex structure and probability of ACO has decreased its ser-
vices. Therefore, low cost and simple optimization procedures are necessary to overcome on
these issues. Thus, the hybrid algorithm of combined ACO and PSO is studied in this paper
to solve TSP. Enormous benchmark problems are used to test the performance of ACO-PSO
and performance is compared with the recently proposed variants of hybrid ACO-PSO.

Organization and Notation of Paper

The remaining part of the paper is organized as follows: PSO is elaborated in Section 3.
Section 4 presents ACO. Section 2 presents the Max Min ant system. Section 5 explains the
proposed modified version of the Best-Worst Ant System. Similarly, Section 6 discusses
hybrid algorithm of particle swarm and ant colony. Section 7 defines results and discussion.
Section 8 concludes the study.

2. Max and Min Ant System

The Max and Min Ant Colony System (MMAS), which is planned in the trial examina-
tion and use of the insect framework, makes three upgrades to the insect province framework.

1. To enhance the capacity of searching, highest value is set for every path of ini-
tial pheromone.
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2. In order to update pheromone, just ant with closest path is allowed in an iteration,
which is measured as follow.

ρmn(t + 1) = τρmn(t)
1

Lbest
(1)

where Lbest addresses the briefest length in the current emphasis:
3. To stay away from untimely assembly of the calculation, the pheromone centraliza-

tion of every way (τ) is restricted to [ τmin , τmax ] and the worth past this reach is
persuasively set to τmin or τmax.

3. Brief Review on PSO

PSO is considered a clever algorithm which is attained from the birds life way, where
the traveling particle is dependent upon the neighborhood and swarm’s global position.
In the process of optimization, the number of iterations are kept fixed to ensure the
convergence of the algorithm, after the selection of best number and best global value from
the locals. In addition, every element is given a memory space for the best spot at any
point found by utilizing the speed and position for the condition of every particle in the
ith emphasis, addressed by ϑp and ζp, respectively. The values of best position for the
ith particle (Pb) and best global position for the whole folk (Gb) are used to optimize the
movement of the whole group. The velocity, position and learning factors of the individual
particles are updated according to Equations (1)–(3), respectively.

ϑp+1 = ω ∗ ϑp + c, (2)

ζp+1 = ζp + ϑp+1, (3)

d = d1 ∗ ξ1 ∗ (Pbp − ζp) + d2 ∗ ξ2 ∗ (Gbp − ζp), (4)

where the inertial weight ω determines the total swarm population, the learning factors
d1 and d2 determine the self-seeking ability and collective search ability of an individual
particle. ξ1 and ξ2 can be between 0 and 1 with random probability.

4. Ant Colony Optimization

The ant colony algorithm is based on observing real abilities of ants to search for the
best possible path (shortest) for food. To describe it mathematically, consider a group of x
number of ants which are located at random locations across y number of cities, including
primarily pheromone ρmn(0) at the side of every city. The main city is added with taboo
table Zk(0) of each ant, whereby, each ant finding the city to proceed the coming step using
probability and can be defined as:

Pk
mn =


ρmn [t]α [ηmn ]β

ρmn [t]α [ηmn ]β
n ∈ Ak

0 n /∈ Ak

(5)

where Pk
mn indicates the likelihood of moving from city m to city n of the kth insect and

ρmn(t) is for the benefit of that of the ith iteration. etamn(t) is the corresponding of the
distance between city m and city n. Parameters α and β are the part of pheromones and
way length in picking probabilities, separately. Urban communities outside of the taboo
table comprise of the set At. After the taboo table of all the subterranean insect are satisfied,
the all out distance every insect goes through will be determined and the most limited
way will be recorded. All the while, the pheromone on each edge will be refreshed by the
Equation (5) given beneath.

ρmn(t + 1) = τρmn(t) +4ρk
mn (6)
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where

4ρmn =
m

∑
k=1
4ρk

mn. (7)

where ρmn addresses the amount of the amassed pheromones between city m and city n and
k τmnk is for the benefit of the pheromone created by insect k on the edge mn. In the mean
time, p is a number somewhere in the range of 0 and 1 showing the degree of pheromone
dispersal. By and large, the aggregate sum of pheromone delivered in one cycle, which is
addressed as Q, is restricted to speed up the intermingling speed. In the mean time, Lk is
for the benefit of the all out length of the kth way. For this situation, the recipe to ascertain
ρk

mn is expressed in Equation (7) as

4ρk
mn =

Q
Lk

(8)

5. The Proposed Best-Worst Ant System

The best worst ant system (BWAS) idea attempts to enhance the performance of ACO
models applying evolutionary algorithm ideas. The suggested BWAS uses the ant system
(AS) transition rule which can be stated as Equation (9):

Pk
r,s =


ρrs [t]α [ηrs ]β

∑max
µ∈jk(r)

ρru [t]α [ηru ]β
i f s ∈ jk

0 s /∈ jk
(9)

ρrs being the pheromone trail of edge (r, s), ηrs being the heuristic esteem, Jk(r) being the
set of nodes that stay to be visited by ants k, and with α and β being real value weigts. In
addition, the typical AS evaporation rule is utilized:
ρrs ←− (1− τ)ρrs, ∀ r, s, with τ ∈ [0, 1] belongs to the pheromone fall off parameter.
Furthermore, the BWAS has the three after daemon actions that are observed in deep in [31]

Best-Worst Performance Update Rule

This performance update rule is based on the Population Based Incremental Learning
(PBIL) [32] probability array update rule. The offline pheromone trail updating is given
below: ρrs ←− ρrs + ∆ρrs, where

Pk
r,s =

{
f (C(Sglobal−best)) i f (r, s) ∈ Sglobal−best

0 otherwise
(10)

In Equation (10), the f (C(Sglobal−best)) represents the measure of pheromone to be
placed by the global best ant, which relies upon the quality of the solution it produced,
C(Sglobal−best). Additionally, the edges present in the worst current ant are punished:
∀(r, s) ∈ Scurrent−worst and (r, s) /∈ Sglobal−best, ρrs ←− (1− τ)ρrs

6. Combined Algorithm of PSO and ACO
6.1. Strategy

Swarm intelligence based ACO-PSO are good algorithm for solving the problems
optimally. On the other side TSP is also a discrete optimization problem, however, its
control parameters are handled by experience technique. The essential thought of ACO-
PSO is to join the upsides of the two calculations and use BWAS to advance the boundaries
of ACO, which is applied to tackle TSP. With the mix of both BWAS and PSO, ACO-PSO
can set boundaries inside a sensible reach, in this manner upgrading the looking through
capacity and accelerating the union.

There are two instatement measures in ACO-PSO. One of the interaction is called
PSO introduction. In this cycle, N particles with three boundaries α, β and τ of every
individual are haphazardly created to frame a 3× N cluster. Where, α, β ∈ [0, 15] and τ
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∈ [0, 1]. In MMAS instatement, which is the other introduction measure, the underlying
pheromone of each side ρmn(0)= c what’s more, pheromone variety M ρmn = 0 are set.
At that point haphazardly place N subterranean insects and add the underlying chosen
city into untouchable table. The system of ACO-PSO is given in Algorithm 1.

It ought to be seen that g and G are the current cycle and the complete emphasis
individually. In the interim, n represents the city number of the issue. Furthermore,
to check the searching performance of the ACO-PSO, a few standard test sets are utilized
to test the effectiveness of the algorithm.

Algorithm 1 Pseudocode: Hybrid ACO-PSO

PSO initialization:
For d = 1 to D

MMAS introduction:
While (not arrive at the most extreme cycles of MMAS)

for i = 1 to i
For n = 1 to K

Determine target city as per condition (1)
Udate Taboo Table

end
end

Calculate the length of every subterranean insect way;
Find the ideal arrangement, the most exceedingly terrible arrangement and the worldwide
ideal arrangement of this emphasis;
Update worldwide pheromone utilizing condition (5);

end;
Set the most brief way length as the wellness work esteem;
Update the speed and position of every particle;
end

6.2. Pheromone Trail Mutation

The pheromone trails endure mutations to announce diversity in the search, as done
in PBIL with the memoristic structure. To do as such, Equation (11) shows how each line of
the pheromone matrix is transformed with probability Pm as:

ρ′ =

{
ρrs + mut(it, ρthreshold), i f a = o
ρrs −mut(it, τthreshold), i f a 6= o

(11)

with a being an arbitrary value in 0, 1, it being the present iteration, τthreshold being the
average of the pheromone trail in the edges forming the global best solution and with mut(·)
being a capacity making a more grounded mutation as the iteration counter increases.

6.3. Restart of the Search Process When It Gets Stuck

The pheromone matrix is restarted by setting all its components to τo when the
number of edges that are distinctive between the present best and the present worst
solutions is lesser than an obvious percentage. A simplified structure of a common BWAS
algorithm [31] can be used to make the Algorithm 2:
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Algorithm 2 Pseudocode: Best worst ant system algorithm.

Give an initial pheromone value, ρ0 to each edge
For n = 1 to k do (in equal)

Place insect n in an initial hub s and incorporate s in Dn
While (insect n not in an objective hub) do

Select the following hub to visit, r /∈ Dn by the AS change rule.
For Dn = 1 to m do

Run the nearby pursuit enhancement for the arrangement created by subter-
ranean insect n, rn.

sglobal−best ←− worldwide best subterranean insect visit. sglobal−worst ←− current most
noticeably terrible insect visit.

Pheromone dissipation and Best-Worst pheromone refreshing.
If (Stop Condition isn’t fulfilled) go to step 2.

7. Result and Discussion

The proposed outcomes are discussed as follows: The inertia weight is kept at 0.8 and
d1 and d2 are the learning factors which is equal to 2. Two experimental values, the optimal
solution and average value of the 20 independent runs are studied in this paper to evaluate
the outcomes. The two variants, PSO and ACO, are taken as comparison algorithm in order
to check the performance of ACO-PSO. As is exhibited in over, the outcomes acquired by
ACO-PSO is obviously superior to those of ACO and PSO among the 16 benchmark issues.
To be more instinctive, we draw the way of every calculation as per the ideal arrangements
utilizing the issue Pr124.

It can be demonstrated from the Tables 1 and 2 that the performance of ACO-PSO
is much superior to those of simple ACO and PSO not only in the aspect of best results,
however, also in worst case. Hence, it can be concluded that BWAS algorithm provides
more accurate results than those of MMAS. The analysis is performed using 16 set of
different functions from the test environments of IEEE Congress on Evolutionary Com-
putation (CEC) [33]. The mean and standard analysis of Tables 1 and 2 are mentioned in
Tables 3 and 4.

Figure 1a–c explain the experimental analysis for PSO (BWAS) in terms of best tour
path, best cost and averaging node branching, respectively. Figure 1a. includes the outcomes
of the global best tour path based on PSO (BWAS) algorithm. It is clarified that the results
present satisfactory convergence, which concludes that BWAS algorithm is more feasible as
compare to the current work, generating convergence with high speed. Figure 1b. explains
the best possible iterative cost in terms of time. Similarly, Figure 1c. depicts the average
node branching against iterative time for pr-124. Similarly, the Figure 2a–c present the
performance of best tour path, best cost and averaging node branching for ACO (BWAS)
based. Figure 3a–c denote the combined results of ACO-PSO (BWAS) based on best tour
path, best cost and averaging node branching. These results demonstrate that the outcomes
of ACO-PSO (BWAS) are better than individually ACO (BWAS) and PSO (BWAS). PSO
(MMAS) algorithm results for pr-124 are mentioned in Figure 4a–c. Figure 4a. shows the
better convergence based on best tour path, while Figure 4b,c represent global minimum
cost and best average node branching for pr-124. Figure 5a. describes the best possible
tour path for ACO (MMAS) based algorithm, the global minimum cost in terms of ACO
(MMAS) algorithm is depicted in Figure 5b. Moreover, Figure 5c. consists of best average
node branching for pr-124. The integrated results of ACO-PSO (MMAS) are shown in
Figure 6a–c. These results present more accurate performance than single ACO (MMAS)
and PSO (MMAS). Thus, It is found from the results of the BWAS proposed model are
several folds efficient that other existing variants. The Table 5 summarized the performance
of the proposed approach in comparison with exist literature.
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Table 1. Algorithm Performance Chart.

Proposed BWAS Algo MMAS

Problem ACO ACO-PSO ACO ACO-PSO

Best Worst Best Worst Best Worst Best Worst

Att48 10,436 35,522 10,401 35,071 34,504 36,539 35,123 35,514

Berlin52 7498 8106 7441 76,091 8054 8436 7663 7750

Bier127 133,246 153,792 121,873 124,731 208,175 214,690 124,842 125,812

kroE100 24,391 26,382 21,736 23,746 36,189 37,975 23,784 24,077

Lin105 16,267 18,371 13,079 14,787 25,429 27,571 14,990 15,100

Lin318 41,998 56,728 41,268 47,583 251,618 256,438 47,585 48,205

Pr124 62,532.5 66,282 60,192.6 64,575 64,513 66,282 60,999.3 61,496

Pr107 47,236.5 49,727 45,927 48,274 68,871 76,043 46,249 46,554

Ch130 7117.1 8367 6294 6498 13,441 13,952 6473 6525

Ch150 7446.3 7728 6593 6639 16,926 17,864 6852 6886

Ei151 436.17 451 440 449 438 463 448 452

Ei176 564.96 567.1 559 560 643 691 568 570

Ei1101 627.28 682 598 647 973 1006 700 706

kroA100 23,979 17,393 20,478 21,837 34,573 39,422 22,387 23,096

kroC100 22,857 24,748 18,539 20,378 36,260 39,123 21,579 21,804

Pr144 59,644 61,837 56,939 58,237 213,303 225,108 59,443 59,727

Table 2. Algorithm Performance Chart.

Proposed BWAS Algo MMAS

Problem PSO ACO-PSO PSO ACO-PSO

Best Worst Best Worst Best Worst Best Worst

Att48 10,398 41,135 10,368 35,071 41,307 43,477 35,123 35,514

Berlin52 7383 8906 7326 76,091 8752 9565 7663 7750

Bier127 178,926 188,165 121,873 124,731 188,651 196,774 124,842 125,812

kroE100 38,573 39,247 21,736 23,746 37,251 40,786 23,784 24,077

Lin105 26,914 27,452 13,079 14,787 28,149 28,925 14,990 15,100

Lin318 41,698 159,879 41,063 47,583 155,706 158,259 47,585 48,205

Pr124 61,319 63,726 60,192.6 64,575 61,727.2 65,436 60,999.3 61,496

Pr107 101,181 115,431 45,927 48,274 107,160 129,760 46,249 46,554

Ch130 10,054 11,038 6294 6498 11,179 12,083 6473 6525

Ch150 10,084 12,156 6593 6639 12,804 13,512 6852 6886

Ei151 410 499 443 449 511 533 448 452

Ei176 665 701 559 560 753 760 568 570

Ei1101 615 902 598 647 905 956 700 706

kroA100 35,114 38,162 20,478 21,837 37,413 39,595 22,387 23,096

kroC100 35,034 39,873 18,539 20,378 38,440 41,125 21,579 21,804

Pr144 149,376 179,837 56,939 58,237 164,662 187,458 59,443 59,727
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Table 3. Mean and standard deviation of Table 1 data.

Proposed BWAS Algo MMAS

Problem ACO ACO-PSO ACO ACO-PSO

Mean STD Mean STD Mean STD Mean STD

Att48 3.9 1005.2 3.1 995 4.2 1009 3.9 999

Berlin52 16.9 502.4 15.9 410 17.5 520 16.5 499

Bier127 65.4 1115.5 64.2 995 67.2 1150 66 1005

kroE100 22.1 154 21.5 132 22.7 166 22.3 143

Lin105 31.9 2012 30.4 169 32.5 2040 31.8 201

Lin318 89.2 906.2 88.5 808 90.6 932 89.2 880

Pr124 68.5 2126 67.4 1884 69 2232 68 1934

Pr107 32.5 307 30.5 268 32.9 332 31.5 302

Ch130 76.2 209.2 74.9 200 76.8 235 75.5 210

Ch150 81 27.4 79.2 20.5 81.9 28.1 80.5 235

Ei151 81 10.2 79.5 8.4 82 11.2 81.2 99

Ei176 70.2 1.10 69.1 0.8 70.9 1.25 69.8 0.99

Ei1101 31.5 310 29.5 266 32 355 30.5 310

kroA100 22.2 309 21.5 275 22.8 350 21.9 299

kroC100 22.1 402 21.5 311 22.4 432 21.8 365

Pr144 80 1006.4 80 984 80.5 1025 80.4 1012

Table 4. Mean and standard deviation of Table 2 data.

Proposed BWAS Algo MMAS

Problem PSO ACO-PSO PSO ACO-PSO

Mean STD Mean STD Mean STD Mean STD

Att48 3.2 920 2.9 890 3.9 999 3.3 992

Berlin52 15.4 410 14.9 388 16.2 455 15.5 403

Bier127 64.2 992 63.5 802 65.5 1005 64.1 920

kroE100 21.1 126 20.4 95 22.1 161 21 125

Lin105 30.5 1830 29.8 1695 31.2 2020 30.8 1725

Lin318 88.1 887 79.4 795 88.9 922 85.2 822

Pr124 66.9 1980 65.2 1910 67.8 2252 67.1 1920

Pr107 31.2 235 29.9 199 32.1 322 30.5 225

Ch130 75.1 159 73.8 102 76.2 205 74.5 155

Ch150 80.3 21.5 78.5 19.6 81.1 25.1 80.1 205

Ei151 80.5 9.4 78.4 9.1 81.4 10.4 79.9 94

Ei176 68.9 0.9 67.1 0.8 69.7 1.2 68.8 0.89

Ei1101 30.1 219 28.2 185 31.3 295 30 255

kroA100 21.3 212 20.4 175 22.1 289 21 220

kroC100 21.5 355 20.5 302 21.9 400 21 355

Pr144 78.6 958 77.9 898 79.4 992 78.4 958
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(a)

(b)

(c)

Figure 1. (a). Best tour Paths for PSO (BWAS); (b). Best cost for PSO (BWAS); (c). Average node
branching for PSO (BWAS).
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(a)

(b)

(c)

Figure 2. (a). Best tour Paths for ACO (BWAS); (b). Best cost for ACO (BWAS); (c). Average node
branching for ACO (BWAS).
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(a)

(b)

(c)

Figure 3. (a). Best tour Paths for ACO-PSO (BWAS); (b). Best cost for ACO-PSO (BWAS); (c). Average
node branching for ACO-PSO (BWAS)
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(a)

(b)

(c)

Figure 4. (a). Best tour Paths for PSO (MMAS); (b). Best cost for PSO (MMAS); (c). Average node
branching for PSO (MMAS).
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(a)

(b)

(c)

Figure 5. (a). Best tour Paths for ACO (MMAS); (b). Best cost for ACO (MMAS); (c). Average node
branching for ACO (MMAS).
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(a)

(b)

(c)

Figure 6. (a). Best tour Paths for ACO-PSO (MMAS); (b). Best cost for ACO-PSO (MMAS); (c). Aver-
age node branching for ACO-PSO (MMAS).
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Table 5. Comparison of the proposed framework with literatures.

Instance [26] [27] Proposed Model

Att48 - 10,628 10,436

Brlin52 7542 - 7498

Lin318 42,020 - 41,998

Eil101 629 629 627

8. Conclusions

This paper concludes the results of simple ACO and PSO for BWAS and MMAS
algorithms. The outcomes based on simple ACO and PSO show that approaches are
limited to solve TSP issues. Thus, a hybrid algorithm based on integration of BWAS
based ACO and PSO is proposed, to improve the solution for TSP. The optimization of
BWAS parameters is performed in concurrence with output from PSO, and results show
a reasonable improvement in shortening the optimized solution path. Hence, in order to
increase the searching ability and improving the overall results, multiple standard sets are
used as a baseline to compare the performance of the proposed algorithm with conventional
PSO and ACO methods. The results show the superiority of the proposed technique in
solving TSP.
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