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Abstract

:

This work presents a novel Best-Worst Ant System (BWAS) based algorithm to settle the Traveling Salesman Problem (TSP). The researchers has been involved in ordinary Ant Colony Optimization (ACO) technique for TSP due to its versatile and easily adaptable nature. However, additional potential improvement in the arrangement way decrease is yet possible in this approach. In this paper BWAS based incorporated arrangement as a high level type of ACO to upgrade the exhibition of the TSP arrangement is proposed. In addition, a novel approach, based on hybrid Particle Swarm Optimization (PSO) and ACO (BWAS) has also been introduced in this work. The presentation measurements of arrangement quality and assembly time have been utilized in this work and proposed algorithm is tried against various standard test sets to examine the upgrade in search capacity. The outcomes for TSP arrangement show that initial trail setup for the best particle can result in shortening the accumulated process of the optimization by a considerable amount. The exhibition of the mathematical test shows the viability of the proposed calculation over regular ACO and PSO-ACO based strategies.
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1. Introduction


The solution of Traveling Salesman Problem (TSP) [1] and its variants aids in finding the minimum travel distance as a cost function for a variety of computing problems. The extraordinary theoretical importance of TSP solution has a variety of practical applications, for example, design of circuit board layout [2] and transportation [3]. With the advent of intelligent transport, multi-machine industrial applications and swift delivery services, there has been an increased interest in optimizing the solution for TSP. The shortest travel distance, with the condition of traversing each node at least once, can be found by using different approaches with each having some advantage and associated weakness. Finding solution through an exact algorithm such as branch and bound [4] can take a very long run-time, particularly for a large number of nodes. Given a build-up of nodes   y =   y 1  ,  y 2  ,  y 3  , … ,  y n    , as the objective of finding nearest travel path solution, including as much as decreased length with one time node visit condition. Vowing to practical applications and theoretical features, it is considered NP hard problem in conjunctional optimization. The other problems associated with direct methods like branch and bound [5] is the ultra-long run-time because the size of TSP iteration increases with the characters as combination explosion, for which even dynamic programming methods can hardly provide a solution within an adequate amount of time. The other type to solve TSP are the heuristic approaches such as bat algorithm [6], fruit fly algorithm [7,8,9], particle swarm algorithm [10,11], cuttlefish optimization algorithm [12] and artificial bee colony algorithm [13], which are result of the continued development of artificial intelligence. These algorithms work with a goal to find a satisfactory result, regardless of the concern to find an ideal one, because of time constraint. Ant Colony Optimization (ACO) [14], which is proposed by Italian Dorigo, is a swarm intelligent optimization algorithm with wide range of application like multi-objective optimization problems [15], vehicle routing problem [16], resource constrained job scheduling [17], dynamic railway junction rescheduling [18]. The authors in [19] integrate a local search (LS) method with an existing PSO algorithm with strong global search ability, named comprehensive learning PSO (CLPSO). In [20], the authors have explained a new multiobjective programming model for the target disassembly sequencing. It proposes an improved multiobjective ant colony algorithm to derive optimal target disassembly sequences. ACO is based on the social solution path which is build by a group of ants to travel in food search and then return back with an optimized travel path [21,22]. The basic principle is the exchange of useful information about the path by the ants, and thus improving the solution quality [23]. Better paths are chosen by ants as indicated by the amount of pheromone, where then the pheromone is updated. So, at this stage through different iterations the global optimal solution is induced [24]. The improved ACO like parallel and direction guided algorithms are presented in order to resolve premature and algorithm performance of ACO impairments [25]. From the analysis of predatory behavior of birds practical swarm optimization (PSO) intelligent algorithm has been introduced, which function is to modify the location and speed of elements to gain optimal outcomes in terms of population information and experience [26,27]. Moreover, PSO can be easily implemented due to its simple structure, therefore, it is majorly applied on problems like resource allocation, wind power prediction, etc., [28,29,30].



The above discussed PSO and ACO algorithms present efficient performance against problems. However, the complex structure and probability of ACO has decreased its services. Therefore, low cost and simple optimization procedures are necessary to overcome on these issues. Thus, the hybrid algorithm of combined ACO and PSO is studied in this paper to solve TSP. Enormous benchmark problems are used to test the performance of ACO-PSO and performance is compared with the recently proposed variants of hybrid ACO-PSO.



Organization and Notation of Paper


The remaining part of the paper is organized as follows: PSO is elaborated in Section 3. Section 4 presents ACO. Section 2 presents the Max Min ant system. Section 5 explains the proposed modified version of the Best-Worst Ant System. Similarly, Section 6 discusses hybrid algorithm of particle swarm and ant colony. Section 7 defines results and discussion. Section 8 concludes the study.





2. Max and Min Ant System


The Max and Min Ant Colony System (MMAS), which is planned in the trial examination and use of the insect framework, makes three upgrades to the insect province framework.



	
To enhance the capacity of searching, highest value is set for every path of initial pheromone.



	
In order to update pheromone, just ant with closest path is allowed in an iteration, which is measured as follow.


   ρ  m n    ( t + 1 )  = τ  ρ  m n    ( t )   1  L  b e s t     



(1)




where   L  b e s t    addresses the briefest length in the current emphasis:



	
To stay away from untimely assembly of the calculation, the pheromone centralization of every way ( τ ) is restricted to [  τ  m i n   ,   τ  m a x   ] and the worth past this reach is persuasively set to   τ  m i n    or   τ  m a x   .







3. Brief Review on PSO


PSO is considered a clever algorithm which is attained from the birds life way, where the traveling particle is dependent upon the neighborhood and swarm’s global position. In the process of optimization, the number of iterations are kept fixed to ensure the convergence of the algorithm, after the selection of best number and best global value from the locals. In addition, every element is given a memory space for the best spot at any point found by utilizing the speed and position for the condition of every particle in the ith emphasis, addressed by   ϑ p   and   ζ p  , respectively. The values of best position for the ith particle   ( P b )   and best global position for the whole folk   ( G b )   are used to optimize the movement of the whole group. The velocity, position and learning factors of the individual particles are updated according to Equations (1)–(3), respectively.


   ϑ  p + 1   = ω ∗  ϑ p  + c ,  



(2)






   ζ  p + 1   =  ζ p  +  ϑ  p + 1   ,  



(3)






  d =  d 1  ∗  ξ 1  ∗  ( P  b p  −  ζ p  )  +  d 2  ∗  ξ 2  ∗  ( G  b p  −  ζ p  )  ,  



(4)




where the inertial weight  ω  determines the total swarm population, the learning factors   d 1   and   d 2   determine the self-seeking ability and collective search ability of an individual particle.   ξ 1   and   ξ 2   can be between 0 and 1 with random probability.




4. Ant Colony Optimization


The ant colony algorithm is based on observing real abilities of ants to search for the best possible path (shortest) for food. To describe it mathematically, consider a group of x number of ants which are located at random locations across y number of cities, including primarily pheromone    ρ  m n    ( 0 )    at the side of every city. The main city is added with taboo table    Z k   ( 0 )    of each ant, whereby, each ant finding the city to proceed the coming step using probability and can be defined as:


   P  m n  k  =        ρ  m n     [ t ]  α    [  η  m n   ]  β     ρ  m n     [ t ]  α    [  η  m n   ]  β       n ∈  A k       0    n ∉  A k        



(5)




where   P  m n  k   indicates the likelihood of moving from city m to city n of the kth insect and    ρ  m n    ( t )    is for the benefit of that of the ith iteration.   e t  a  m n    ( t )    is the corresponding of the distance between city m and city n. Parameters  α  and  β  are the part of pheromones and way length in picking probabilities, separately. Urban communities outside of the taboo table comprise of the set   A t  . After the taboo table of all the subterranean insect are satisfied, the all out distance every insect goes through will be determined and the most limited way will be recorded. All the while, the pheromone on each edge will be refreshed by the Equation (5) given beneath.


   ρ  m n    ( t + 1 )  = τ  ρ  m n    ( t )  + ▵  ρ  m n  k   



(6)




where


  ▵  ρ  m n   =  ∑  k = 1  m  ▵  ρ  m n  k  .  



(7)




where   ρ  m n    addresses the amount of the amassed pheromones between city m and city n and k  τ  m n k    is for the benefit of the pheromone created by insect k on the edge   m n  . In the mean time, p is a number somewhere in the range of 0 and 1 showing the degree of pheromone dispersal. By and large, the aggregate sum of pheromone delivered in one cycle, which is addressed as Q, is restricted to speed up the intermingling speed. In the mean time,   L k   is for the benefit of the all out length of the kth way. For this situation, the recipe to ascertain   ρ  m n  k   is expressed in Equation (7) as


  ▵  ρ  m n  k  =  Q  L k    



(8)








5. The Proposed Best-Worst Ant System


The best worst ant system (BWAS) idea attempts to enhance the performance of ACO models applying evolutionary algorithm ideas. The suggested BWAS uses the ant system (AS) transition rule which can be stated as Equation (9):


   P  r , s  k  =        ρ  r s     [ t ]  α    [  η  r s   ]  β     ∑  μ ∈  j k   ( r )    m a x    ρ  r u     [ t ]  α    [  η  r u   ]  β       i f s ∈  j k       0    s ∉  j k        



(9)




  ρ  r s    being the pheromone trail of edge   ( r , s )  ,   η  r s    being the heuristic esteem,    J k   ( r )    being the set of nodes that stay to be visited by ants k, and with  α  and  β  being real value weigts. In addition, the typical AS evaporation rule is utilized:



   ρ  r s   ⟵  ( 1 − τ )   ρ  r s    , ∀r, s, with    τ ∈ [ 0 , 1 ]   belongs to the pheromone fall off parameter. Furthermore, the BWAS has the three after daemon actions that are observed in deep in [31].



Best-Worst Performance Update Rule


This performance update rule is based on the Population Based Incremental Learning (PBIL) [32] probability array update rule. The offline pheromone trail updating is given below:    ρ  r s   ⟵  ρ  r s   + Δ  ρ  r s    , where


   P  r , s  k  =      f ( C  (  S  g l o b a l − b e s t   )  )     i f  ( r , s )  ∈  S  g l o b a l − b e s t        0    o t h e r w i s e       



(10)







In Equation (10), the   f ( C  (  S  g l o b a l − b e s t   )  )   represents the measure of pheromone to be placed by the global best ant, which relies upon the quality of the solution it produced,   C (  S  g l o b a l − b e s t   )  . Additionally, the edges present in the worst current ant are punished:   ∀  ( r , s )  ∈  S  c u r r e n t − w o r s t     and    ( r , s )  ∉  S  g l o b a l − b e s t    ,    ρ  r s   ⟵  ( 1 − τ )   ρ  r s    .





6. Combined Algorithm of PSO and ACO


6.1. Strategy


Swarm intelligence based ACO-PSO are good algorithm for solving the problems optimally. On the other side TSP is also a discrete optimization problem, however, its control parameters are handled by experience technique. The essential thought of ACO-PSO is to join the upsides of the two calculations and use BWAS to advance the boundaries of ACO, which is applied to tackle TSP. With the mix of both BWAS and PSO, ACO-PSO can set boundaries inside a sensible reach, in this manner upgrading the looking through capacity and accelerating the union.



There are two instatement measures in ACO-PSO. One of the interaction is called PSO introduction. In this cycle, N particles with three boundaries  α ,  β  and  τ  of every individual are haphazardly created to frame a   3 × N   cluster. Where,  α ,  β   ∈ [ 0 , 15 ]   and  τ   ∈ [ 0 , 1 ]  . In MMAS instatement, which is the other introduction measure, the underlying pheromone of each side   ρ  m n   (0) = c what’s more, pheromone variety   ρ  m n    = 0 are set. At that point haphazardly place N subterranean insects and add the underlying chosen city into untouchable table. The system of ACO-PSO is given in Algorithm 1.



It ought to be seen that g and G are the current cycle and the complete emphasis individually. In the interim, n represents the city number of the issue. Furthermore, to check the searching performance of the ACO-PSO, a few standard test sets are utilized to test the effectiveness of the algorithm.



	Algorithm 1 Pseudocode: Hybrid ACO-PSO



	 PSO initialization:

  For d = 1 to D

    MMAS introduction:

    While (not arrive at the most extreme cycles of MMAS)

       for i = 1 to i

          For n = 1 to K

           Determine target city as per condition (1)

           Udate Taboo Table

    end

 end

 Calculate the length of every subterranean insect way;

 Find the ideal arrangement, the most exceedingly terrible arrangement and the worldwide

 ideal arrangement of this emphasis;

 Update worldwide pheromone utilizing condition (5);

end;

Set the most brief way length as the wellness work esteem;

Update the speed and position of every particle;

end









6.2. Pheromone Trail Mutation


The pheromone trails endure mutations to announce diversity in the search, as done in PBIL with the memoristic structure. To do as such, Equation (11) shows how each line of the pheromone matrix is transformed with probability   P m   as:


   ρ ′  =       ρ  r s   + m u t  ( i t ,  ρ  t h r e s h o l d   )  ,     i f   a = o        ρ  r s   − m u t  ( i t ,  τ  t h r e s h o l d   )  ,     i f   a ≠ o       



(11)




with a being an arbitrary value in 0, 1, it being the present iteration,   τ  t h r e s h o l d    being the average of the pheromone trail in the edges forming the global best solution and with mut(·) being a capacity making a more grounded mutation as the iteration counter increases.




6.3. Restart of the Search Process When It Gets Stuck


The pheromone matrix is restarted by setting all its components to   τ o   when the number of edges that are distinctive between the present best and the present worst solutions is lesser than an obvious percentage. A simplified structure of a common BWAS algorithm [31] can be used to make the Algorithm 2:



	Algorithm 2 Pseudocode: Best worst ant system algorithm.



	 Give an initial pheromone value,   ρ 0   to each edge

  For n = 1 to k do (in equal)

   Place insect n in an initial hub s and incorporate s in   D n  

   While (insect n not in an objective hub) do

     Select the following hub to visit, r∉  D n   by the AS change rule.

 For   D n   = 1 to m do

   Run the nearby pursuit enhancement for the arrangement created by subterranean insect n,   r n  .

    s  g l o b a l − b e s t   ⟵   worldwide best subterranean insect visit.    s  g l o b a l − w o r s t   ⟵   current most noticeably terrible insect visit.

 Pheromone dissipation and Best-Worst pheromone refreshing.

 If (Stop Condition isn’t fulfilled) go to step 2.










7. Result and Discussion


The proposed outcomes are discussed as follows: The inertia weight is kept at 0.8 and   d 1   and   d 2   are the learning factors which is equal to 2. Two experimental values, the optimal solution and average value of the 20 independent runs are studied in this paper to evaluate the outcomes. The two variants, PSO and ACO, are taken as comparison algorithm in order to check the performance of ACO-PSO. As is exhibited in over, the outcomes acquired by ACO-PSO is obviously superior to those of ACO and PSO among the 16 benchmark issues. To be more instinctive, we draw the way of every calculation as per the ideal arrangements utilizing the issue Pr124.



It can be demonstrated from the Table 1 and Table 2 that the performance of ACO-PSO is much superior to those of simple ACO and PSO not only in the aspect of best results, however, also in worst case. Hence, it can be concluded that BWAS algorithm provides more accurate results than those of MMAS. The analysis is performed using 16 set of different functions from the test environments of IEEE Congress on Evolutionary Computation (CEC) [33]. The mean and standard analysis of Table 1 and Table 2 are mentioned in Table 3 and Table 4.



Figure 1a–c explain the experimental analysis for PSO (BWAS) in terms of best tour path, best cost and averaging node branching, respectively. Figure 1a. includes the outcomes of the global best tour path based on PSO (BWAS) algorithm. It is clarified that the results present satisfactory convergence, which concludes that BWAS algorithm is more feasible as compare to the current work, generating convergence with high speed. Figure 1b. explains the best possible iterative cost in terms of time. Similarly, Figure 1c. depicts the average node branching against iterative time for pr-124. Similarly, the Figure 2a–c present the performance of best tour path, best cost and averaging node branching for ACO (BWAS) based. Figure 3a–c denote the combined results of ACO-PSO (BWAS) based on best tour path, best cost and averaging node branching. These results demonstrate that the outcomes of ACO-PSO (BWAS) are better than individually ACO (BWAS) and PSO (BWAS). PSO (MMAS) algorithm results for pr-124 are mentioned in Figure 4a–c. Figure 4a. shows the better convergence based on best tour path, while Figure 4b,c represent global minimum cost and best average node branching for pr-124. Figure 5a. describes the best possible tour path for ACO (MMAS) based algorithm, the global minimum cost in terms of ACO (MMAS) algorithm is depicted in Figure 5b. Moreover, Figure 5c. consists of best average node branching for pr-124. The integrated results of ACO-PSO (MMAS) are shown in Figure 6a–c. These results present more accurate performance than single ACO (MMAS) and PSO (MMAS). Thus, It is found from the results of the BWAS proposed model are several folds efficient that other existing variants. The Table 5 summarized the performance of the proposed approach in comparison with exist literature.




8. Conclusions


This paper concludes the results of simple ACO and PSO for BWAS and MMAS algorithms. The outcomes based on simple ACO and PSO show that approaches are limited to solve TSP issues. Thus, a hybrid algorithm based on integration of BWAS based ACO and PSO is proposed, to improve the solution for TSP. The optimization of BWAS parameters is performed in concurrence with output from PSO, and results show a reasonable improvement in shortening the optimized solution path. Hence, in order to increase the searching ability and improving the overall results, multiple standard sets are used as a baseline to compare the performance of the proposed algorithm with conventional PSO and ACO methods. The results show the superiority of the proposed technique in solving TSP.
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Figure 1. (a). Best tour Paths for PSO (BWAS); (b). Best cost for PSO (BWAS); (c). Average node branching for PSO (BWAS). 
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Figure 2. (a). Best tour Paths for ACO (BWAS); (b). Best cost for ACO (BWAS); (c). Average node branching for ACO (BWAS). 
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Figure 3. (a). Best tour Paths for ACO-PSO (BWAS); (b). Best cost for ACO-PSO (BWAS); (c). Average node branching for ACO-PSO (BWAS). 
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Figure 4. (a). Best tour Paths for PSO (MMAS); (b). Best cost for PSO (MMAS); (c). Average node branching for PSO (MMAS). 
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Figure 5. (a). Best tour Paths for ACO (MMAS); (b). Best cost for ACO (MMAS); (c). Average node branching for ACO (MMAS). 
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Figure 6. (a). Best tour Paths for ACO-PSO (MMAS); (b). Best cost for ACO-PSO (MMAS); (c). Average node branching for ACO-PSO (MMAS). 
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Table 1. Algorithm Performance Chart.
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Proposed BWAS Algo

	
MMAS




	
Problem

	
ACO

	
ACO-PSO

	
ACO

	
ACO-PSO




	

	
Best

	
Worst

	
Best

	
Worst

	
Best

	
Worst

	
Best

	
Worst






	
Att48

	
10,436

	
35,522

	
10,401

	
35,071

	
34,504

	
36,539

	
35,123

	
35,514




	
Berlin52

	
7498

	
8106

	
7441

	
76,091

	
8054

	
8436

	
7663

	
7750




	
Bier127

	
133,246

	
153,792

	
121,873

	
124,731

	
208,175

	
214,690

	
124,842

	
125,812




	
kroE100

	
24,391

	
26,382

	
21,736

	
23,746

	
36,189

	
37,975

	
23,784

	
24,077




	
Lin105

	
16,267

	
18,371

	
13,079

	
14,787

	
25,429

	
27,571

	
14,990

	
15,100




	
Lin318

	
41,998

	
56,728

	
41,268

	
47,583

	
251,618

	
256,438

	
47,585

	
48,205




	
Pr124

	
62,532.5

	
66,282

	
60,192.6

	
64,575

	
64,513

	
66,282

	
60,999.3

	
61,496




	
Pr107

	
47,236.5

	
49,727

	
45,927

	
48,274

	
68,871

	
76,043

	
46,249

	
46,554




	
Ch130

	
7117.1

	
8367

	
6294

	
6498

	
13,441

	
13,952

	
6473

	
6525




	
Ch150

	
7446.3

	
7728

	
6593

	
6639

	
16,926

	
17,864

	
6852

	
6886




	
Ei151

	
436.17

	
451

	
440

	
449

	
438

	
463

	
448

	
452




	
Ei176

	
564.96

	
567.1

	
559

	
560

	
643

	
691

	
568

	
570




	
Ei1101

	
627.28

	
682

	
598

	
647

	
973

	
1006

	
700

	
706




	
kroA100

	
23,979

	
17,393

	
20,478

	
21,837

	
34,573

	
39,422

	
22,387

	
23,096




	
kroC100

	
22,857

	
24,748

	
18,539

	
20,378

	
36,260

	
39,123

	
21,579

	
21,804




	
Pr144

	
59,644

	
61,837

	
56,939

	
58,237

	
213,303

	
225,108

	
59,443

	
59,727
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Table 2. Algorithm Performance Chart.
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Proposed BWAS Algo

	
MMAS




	
Problem

	
PSO

	
ACO-PSO

	
PSO

	
ACO-PSO




	

	
Best

	
Worst

	
Best

	
Worst

	
Best

	
Worst

	
Best

	
Worst






	
Att48

	
10,398

	
41,135

	
10,368

	
35,071

	
41,307

	
43,477

	
35,123

	
35,514




	
Berlin52

	
7383

	
8906

	
7326

	
76,091

	
8752

	
9565

	
7663

	
7750




	
Bier127

	
178,926

	
188,165

	
121,873

	
124,731

	
188,651

	
196,774

	
124,842

	
125,812




	
kroE100

	
38,573

	
39,247

	
21,736

	
23,746

	
37,251

	
40,786

	
23,784

	
24,077




	
Lin105

	
26,914

	
27,452

	
13,079

	
14,787

	
28,149

	
28,925

	
14,990

	
15,100




	
Lin318

	
41,698

	
159,879

	
41,063

	
47,583

	
155,706

	
158,259

	
47,585

	
48,205




	
Pr124

	
61,319

	
63,726

	
60,192.6

	
64,575

	
61,727.2

	
65,436

	
60,999.3

	
61,496




	
Pr107

	
101,181

	
115,431

	
45,927

	
48,274

	
107,160

	
129,760

	
46,249

	
46,554




	
Ch130

	
10,054

	
11,038

	
6294

	
6498

	
11,179

	
12,083

	
6473

	
6525




	
Ch150

	
10,084

	
12,156

	
6593

	
6639

	
12,804

	
13,512

	
6852

	
6886




	
Ei151

	
410

	
499

	
443

	
449

	
511

	
533

	
448

	
452




	
Ei176

	
665

	
701

	
559

	
560

	
753

	
760

	
568

	
570




	
Ei1101

	
615

	
902

	
598

	
647

	
905

	
956

	
700

	
706




	
kroA100

	
35,114

	
38,162

	
20,478

	
21,837

	
37,413

	
39,595

	
22,387

	
23,096




	
kroC100

	
35,034

	
39,873

	
18,539

	
20,378

	
38,440

	
41,125

	
21,579

	
21,804




	
Pr144

	
149,376

	
179,837

	
56,939

	
58,237

	
164,662

	
187,458

	
59,443

	
59,727
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Table 3. Mean and standard deviation of Table 1 data.
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Proposed BWAS Algo

	
MMAS




	
Problem

	
ACO

	
ACO-PSO

	
ACO

	
ACO-PSO




	

	
Mean

	
STD

	
Mean

	
STD

	
Mean

	
STD

	
Mean

	
STD






	
Att48

	
3.9

	
1005.2

	
3.1

	
995

	
4.2

	
1009

	
3.9

	
999




	
Berlin52

	
16.9

	
502.4

	
15.9

	
410

	
17.5

	
520

	
16.5

	
499




	
Bier127

	
65.4

	
1115.5

	
64.2

	
995

	
67.2

	
1150

	
66

	
1005




	
kroE100

	
22.1

	
154

	
21.5

	
132

	
22.7

	
166

	
22.3

	
143




	
Lin105

	
31.9

	
2012

	
30.4

	
169

	
32.5

	
2040

	
31.8

	
201




	
Lin318

	
89.2

	
906.2

	
88.5

	
808

	
90.6

	
932

	
89.2

	
880




	
Pr124

	
68.5

	
2126

	
67.4

	
1884

	
69

	
2232

	
68

	
1934




	
Pr107

	
32.5

	
307

	
30.5

	
268

	
32.9

	
332

	
31.5

	
302




	
Ch130

	
76.2

	
209.2

	
74.9

	
200

	
76.8

	
235

	
75.5

	
210




	
Ch150

	
81

	
27.4

	
79.2

	
20.5

	
81.9

	
28.1

	
80.5

	
235




	
Ei151

	
81

	
10.2

	
79.5

	
8.4

	
82

	
11.2

	
81.2

	
99




	
Ei176

	
70.2

	
1.10

	
69.1

	
0.8

	
70.9

	
1.25

	
69.8

	
0.99




	
Ei1101

	
31.5

	
310

	
29.5

	
266

	
32

	
355

	
30.5

	
310




	
kroA100

	
22.2

	
309

	
21.5

	
275

	
22.8

	
350

	
21.9

	
299




	
kroC100

	
22.1

	
402

	
21.5

	
311

	
22.4

	
432

	
21.8

	
365




	
Pr144

	
80

	
1006.4

	
80

	
984

	
80.5

	
1025

	
80.4

	
1012
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Table 4. Mean and standard deviation of Table 2 data.
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Proposed BWAS Algo

	
MMAS




	
Problem

	
PSO

	
ACO-PSO

	
PSO

	
ACO-PSO




	

	
Mean

	
STD

	
Mean

	
STD

	
Mean

	
STD

	
Mean

	
STD






	
Att48

	
3.2

	
920

	
2.9

	
890

	
3.9

	
999

	
3.3

	
992




	
Berlin52

	
15.4

	
410

	
14.9

	
388

	
16.2

	
455

	
15.5

	
403




	
Bier127

	
64.2

	
992

	
63.5

	
802

	
65.5

	
1005

	
64.1

	
920




	
kroE100

	
21.1

	
126

	
20.4

	
95

	
22.1

	
161

	
21

	
125




	
Lin105

	
30.5

	
1830

	
29.8

	
1695

	
31.2

	
2020

	
30.8

	
1725




	
Lin318

	
88.1

	
887

	
79.4

	
795

	
88.9

	
922

	
85.2

	
822




	
Pr124

	
66.9

	
1980

	
65.2

	
1910

	
67.8

	
2252

	
67.1

	
1920




	
Pr107

	
31.2

	
235

	
29.9

	
199

	
32.1

	
322

	
30.5

	
225




	
Ch130

	
75.1

	
159

	
73.8

	
102

	
76.2

	
205

	
74.5

	
155




	
Ch150

	
80.3

	
21.5

	
78.5

	
19.6

	
81.1

	
25.1

	
80.1

	
205




	
Ei151

	
80.5

	
9.4

	
78.4

	
9.1

	
81.4

	
10.4

	
79.9

	
94




	
Ei176

	
68.9

	
0.9

	
67.1

	
0.8

	
69.7

	
1.2

	
68.8

	
0.89




	
Ei1101

	
30.1

	
219

	
28.2

	
185

	
31.3

	
295

	
30

	
255




	
kroA100

	
21.3

	
212

	
20.4

	
175

	
22.1

	
289

	
21

	
220




	
kroC100

	
21.5

	
355

	
20.5

	
302

	
21.9

	
400

	
21

	
355




	
Pr144

	
78.6

	
958

	
77.9

	
898

	
79.4

	
992

	
78.4

	
958
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Table 5. Comparison of the proposed framework with literatures.
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	Instance
	[26]
	[27]
	Proposed Model





	Att48
	-
	10,628
	10,436



	Brlin52
	7542
	-
	7498



	Lin318
	42,020
	-
	41,998



	Eil101
	629
	629
	627
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