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Abstract: In this paper, we review some of the most recent research regarding design, simulation,
implementation and evaluation of dynamic tolling schemes. Analyzing the structure of the reviewed
studies, we identify the common elements and the differences in the approaches chosen by different
authors, presenting an overview of the methods for price definition and of the simulation techniques
as well as a discussion on the newest technology applications in the field. Optimization revealed to
be the dominant price definition method, while control-based algorithms are notably employed for
managed lanes toll pricing schemes. Regarding traffic and driver behavior simulation we observed a
great variety of solutions throughout the reviewed papers, with a prevalence of macroscopic models
for the former and logit models for the latter. Still few papers include models for externalities
quantification, while AI paradigms are gaining importance in the field.

Keywords: congestion management; dynamic toll pricing; control-based algorithms; optimization;
driver behavior model; traffic model; externalities quantification

1. Introduction

During the last decades, the technique of dynamic pricing has started to play a key-role
in manifold domains of Intelligent Transportation Systems, such as fare pricing, charg-
ing/discharging pricing for electric vehicles, parking pricing and congestion pricing [1].
This technique entails the variation of prices according to market conditions, in response to
the demand-supply imbalance. Dynamic toll pricing is a variant of congestion pricing [1]
where tolls vary in real-time as a function of current traffic conditions, as opposed to flat
tolls, which stay constant over time, and scheduled tolls, where tolls vary by time of day,
day of the week or season following a predetermined schedule [2].

The idea of traffic congestion pricing was introduced in the 1920s by the pioneering
work of Pigou [3], but its first implementation was only in 1975 with the Singapore Area
Licensing Scheme [4]. Congestion pricing can be applied at different scales, from single
lanes to large scale networks.

In Figure 1, we can see the distribution by scope of the dynamic toll pricing studies
analyzed in this review, revealing the predominance of studies concerning managed lanes,
followed by networks and, eventually, general tolled facilities.

Managed lanes, i.e., High Occupancy Toll (HOT) and Express lanes facilities constitute
one of the few examples of congestion toll pricing operating schemes; as of January 2019,
dynamic toll pricing is implemented on at least 13 managed lanes facilities in the United
States [5] and their schemes are considered to be the closest to pure dynamic toll [6], while,
at the moment, there are no implemented dynamic city tolling systems [7]. Although most
of the adopted dynamic toll pricing strategies are simple and heuristic [8], some of the
existing schemes showed to have better performances than fixed tolls [9,10], encouraging
researchers to develop new schemes.
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1. Introduction

During the last decades, the technique of dynamic pricing has started to play a key-role
in manifold domains of Intelligent Transportation Systems, such as fare pricing, charg-
ing/discharging pricing for electric vehicles, parking pricing and congestion pricing [1].
This technique entails the variation of prices according to market conditions, in response to
the demand-supply imbalance. Dynamic toll pricing is a variant of congestion pricing [1]
where tolls vary in real-time as a function of current traffic conditions, as opposed to flat
tolls, which stay constant over time, and scheduled tolls, where tolls vary by time of day,
day of the week or season following a predetermined schedule [2].

The idea of traffic congestion pricing was introduced in the 1920s by the pioneering
work of Pigou [3], but its first implementation was only in 1975 with the Singapore Area
Licensing Scheme [4]. Congestion pricing can be applied at different scales, from single
lanes to large scale networks.

Figure 1. Distribution of the analyzed dynamic toll pricing studies by scope.
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Figure 1. Distribution of the analyzed dynamic toll pricing studies by scope.

To present a brief overview of the research efforts carried out worldwide on dynamic
toll pricing, we evaluated the studies published to date. This analysis was based on the
Scopus search engine (www.scopus.com (accessed on 3 May 2021)). The query string was
written to find documents matching the keywords ‘dynamic’ AND ‘toll’ AND ’pricing’ in
the title, the abstract or the keywords. This query provided 209 references in all, spanning
from 1992 to 2021. For comparison, we show the results of other query runs (Table 1), using
different combinations in pairs of the same keywords.

Table 1. Results of three different runs of the keywords search in title, abstract or keywords of
documents on the Scopus search engine, characterized by different keywords combinations.

Keywords References Years (Since)

dynamic AND toll AND pricing 209 1992
dynamic AND toll 1503 1973

dynamic AND pricing 8894 1967

The analysis of the outcomes of the query indicates that dynamic toll pricing embraces
a very diverse group of subject areas with a prevalence of engineering, social science,
computer science and mathematics, as appears in Table 2. A classification of the documents
by year, in Figure 2, suggests an overall increase of the research efforts on dynamic toll
pricing during the last decades, with a peak of published documents in 2018. In this
review, we will focus in particular on the research efforts carried out since 2008 when
existing research on pricing algorithms for HOT operations was considered to be in its
early stage [11]. Sorting of the documents by country (Figure 3) revealed that the USA
and China are the countries that have contributed the most to the number of documents
published on dynamic toll pricing.
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Table 2. Analysis of the search results in terms of subject areas, from Scopus.

Subject Area Documents

Engineering 151
Social Sciences 111
Computer Science 72
Mathematics 21
Environmental Science 12
Economics, Econometric and Finance 11
Decision Sciences 9
Business, Management and Accounting 6
Physics and Astronomy 5
Energy 4
Earth and Planetary Science 3
Arts and Humanities 1
Chemical Engineering 1
Materials Science 1
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Figure 3. Distribution of the published documents on dynamic toll pricing by country.

In almost all approaches evaluated in this survey, the overall structure consists of a
pricing strategy followed by a simulation study that evaluates the pricing strategy. This
simulation study is carried out using a socio-technical model that combines a driver behav-
ior model and a traffic flow model [12], with some papers also including quantification of
traffic externalities.

A list of the main reviewed dynamic toll pricing studies described by reference, year
of publication, scope, main pricing rule principle, traffic simulation basis, driver behavior
model and recent technology application is presented in Table 3 and Table 4, which is a
continuation of Table 3. All the quantitative considerations about the popularity of different
scopes and methods presented in this paper are determined based on the papers mentioned
in Table 3 and Table 4.

In Section 2, we introduce an overview of the most relevant methods for price defini-
tion, in Section 3, we review some of the adopted simulation techniques, in Section 4, we
carry out a discussion about the interactions of the newest technology applications with
dynamic toll pricing, and in Section 5 we present our conclusions with some insights about
future research perspectives.

Figure 3. Distribution of the published documents on dynamic toll pricing by country.

In almost all approaches evaluated in this survey, the overall structure consists of a
pricing strategy followed by a simulation study that evaluates the pricing strategy. This
simulation study is carried out using a socio-technical model that combines a driver behav-
ior model and a traffic flow model [12], with some papers also including quantification of
traffic externalities.

A list of the main reviewed dynamic toll pricing studies described by reference, year
of publication, scope, main pricing rule principle, traffic simulation basis, driver behavior
model and recent technology application is presented in Table 3. All the quantitative
considerations about the popularity of different scopes and methods presented in this
paper are determined based on the papers mentioned in Table 3.

In Section 2, we introduce an overview of the most relevant methods for price defini-
tion, in Section 3, we review some of the adopted simulation techniques, in Section 4, we
carry out a discussion about the interactions of the newest technology applications with
dynamic toll pricing, and in Section 5 we present our conclusions with some insights about
future research perspectives.
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Table 3. A list of the main reviewed studies described by reference (Ref.), year of publication, scope, main pricing rule principle, traffic
simulation basis, driver behavior model and recent technology application. We included in the table also some studies which do not
give a complete pricing scheme, but are limited to the presentation of some tool which can be combined with other models in order to
obtain a complete pricing scheme. The following abbreviations are adopted in this table: AD = Arrivals-Departures, adj. = adjustable,
av. = average, bottl. = bottleneck, CTM = Cell Transmission Model, D2D = Day-to-day, discr. = discrete, distr. = distribution, DTC = de-
parture time choice, DUE = Dynamic User Equilibrium, emb. = embedded, enh. = enhanced, fac. = facilities, Gauss. = Gaussian,
infl. = inflow, log-n. = log-normal, LS = large scale, LWR = Lighthill-Witham-Richards, macro = macroscopic, max. = maximizing,
MC = multiclass, meso = mesoscopic, MFD = macroscopic fundamental diagram, micro = microscopic, min. = minimizing, MM = multi-
modal, MN = multinomial, na. = national, NW = networks, obj. = objective, op. = optimal, oper. = operator, opt. = optmization,
P = proportional, PD = porportional derivative, PI = Proportional Integral, PQ = Point-Queue concept, PWcontr. = piece-wise linear
control, PID = Proportional Integral Derivative, rd = road, RF = random forest, RL = reinforcement learning, sens. = sensitivity,
SRDC = simultaneous route-and-departure choice, syst. = system, TDGP = total delay on general purpose lanes, TE = total emissions,
throughp. = throughput, transp. = transportation, TTC = total travel cost, TTT = total travel time, TTTC = total travel time cost,
UE = User Equilibrium, unt. = untolled, urb. = urban, vehic. = vehicular, VOT = value of time, Weib. = Weibull.

Ref. Year Scope Pricing Rule Traffic Simulation Driver Behavior Recent
Technology

[13] 2009 managed lanes P control delay operator (PQ) binary logit self-learning
[11] 2008 HOT lanes PWcontr. micro (VISSIM) binary logit -
[14] 2018 managed lanes PWcontr. op. gains micro (VISSIM) agent-based -
[15] 2014 managed lanes PWcontr. op. gains micro (VISSIM) agent-based -
[16] 2015 managed lanes PWcontr. op. gains micro (VISSIM) binary logit -
[17] 2016 HOT lanes PD control macro (LWR-based) binary logit -
[18] 2016 MM urb. NW PI control macro (MFD) agent-based -
[19] 2018 LS NW PI control macro (MFD) C-logit -
[20] 2014 HOT lanes PI control macro (LWR) binary logit -
[21] 2015 HOT lanes PID control micro (Paramics) agent-based -
[22] 2018 HOT lanes PD control macro (LWR-based) binary logit -
[23] 2016 HOT lanes cascaded control micro (VISSIM) VOT distr. (Gauss.) -
[24] 2017 toll lanes optimal control queuing theory binary logit -
[25] 2018 toll lanes optimal control queuing theory binary logit -
[26] 2018 LS system optimal control discretized model UE -
[27] 2008 freeways optimal control micro (Paramics) emb. in Paramics -
[28] 2013 toll facilities revenue-max. opt. linear function binary logit -
[29] 2015 tolled route revenue-max. opt. micro (CORSIM) VOT distr. (Weib.) -
[30] 2019 managed lanes revenue-max. opt. micro (MITSIM) path-size logit -

meso (DynaMIT)
[31] 2011 HOT lanes throughp.-max. opt. macro (CTM [32]) binary logit self-learning
[8] 2013 HOT lanes av.flow-max. opt. macro (CTM [32]) binary logit self-learning
[33] 2015 toll. NW (D2D) bi-objective opt. UE UE -
[34] 2014 transp. NW syst.cost-min. delay operator VOT distr. -
[35] 2009 general NW bi-level opt. UE UE -
[36] 2018 two-layer NW bi-level opt. macro (MFD) UE -

micro (VISSIM)
[37] 2019 NW bi-level opt. DUE DUE -
[38] 2012 NW bi-level opt. DUE DUE -
[39] 2016 NW (D2D) Markov DP Markovian path-size logit -
[40] 2018 managed lanes Markov DP macro (CTM) VOT distr. (disc.) -
[41] 2018 managed lanes Markov DP macro (CTM) agent-based MA RL
[42] 2020 express lanes Markov DP macro (CTM) MC binary logit deep RL

MC decision route
[43] 2013 LS MM NW game theory delay oper. (ABM) Nash Equilibrium -
[44] 2014 HOT lanes game theory delay operator (AD) VOT distr. (log-n.) -
[45] 2014 HOT lanes multi-obj. opt. delay operator (AD) VOT distr. (log-n.) -
[46] 2012 managed lanes revenue-max. opt. macro [47] binary logit -
[48] 2015 HOT lanes opt. (any objective) macro (CTM) binary logit -
[49] 2020 HOT lanes throughp.-max. opt. delay operator (PQ) MN logit -

UE VOT distr.
general lane-choice
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Table 3. Cont.

Ref. Year Scope Pricing Rule Traffic Simulation Driver Behavior Recent
Technology

[50] 2012 urb. NW P control macro (MFD) binary logit -
agent-based -

[51] 2017 large urb. NW outflow-max. opt. macro (MFD) UE -
[52] 2013 HOT lanes P control micro (CORSIM) emb. in CORSIM -
[53] 2017 toll roads multi-obj. opt. meso (DynusT) - -
[54] 2016 large NW bottl. model [55] meso econometric DTC -
[56] 2017 large NW TTT-min. opt. meso econometric DTC -
[57] 2015 toll vs. unt. fac. various obj. opt. delay operator (AD) UE -
[58] 2015 HOT lanes TTTC-min. opt. delay opertor (BPR) time and price sens. -

TTT-min. opt.
[59] 2017 urb./na. rd NW shifting obj. - - big data mining
[6] 2019 urb./na. rd NW shifting obj. (adj.) delay opertor (BPR) binary logit -
[12] 2013 HOT lanes HOT infl.-max. opt. delay operator (AD) VOT distr. (Burr) -
[60] 2013 toll. vehic. NW TTC&TE-min. opt. SRDC (DUE)[61] SRDC (DUE)[61] -
[62] 2019 HOT lanes TDGP-min. opt. delay operator (AD) RF predictions RF predictions

2. Overview of Dynamic Toll Price Definition Methods

The dynamic tolling operations schemes currently in force in the managed lanes fa-
cilities in the United States are proprietary, and therefore not available to the public [63].
A notable exception is the algorithm employed to compute MnPASS dynamic toll is pub-
lished [64]; MnPASS was one of the first managed lanes facilities to become dynamically
tolled in 2005 [65] creating a congestion-free lane for both single occupancy vehicles whose
drivers are willing to pay the toll and high occupancy vehicles [66]. During the morning
and evening peak hours, the toll rate for a particular entry point of the MnPASS express
lanes is a function of the maximum density downstream of the entry point: variations of
this density define a specific variation of the toll based on lookup tables [64] with a 3-min
tolling interval [13].

Two operational objectives are identified for HOT lanes in [49]: (i) to keep free-flow
conditions to ensure travel time reliability; and (ii) to maximize the tolled lanes’ throughput
in order to minimize the system’s total delay. The most relevant methods for dynamic toll
price definition explored in literature that we present in the remainder of this section are
usually built to pursue one of these two objectives or a combination of both. We can say
that control-based approaches are more focused on the former objective, while optimization
algorithms usually pursue the latter or the maximization of another performance index
of the tolled infrastructure. Figure 4 displays the distribution of the analyzed studies
categorized by scope and main price definition method. We note that optimization (OPT) is
the predominant price definition method, especially for studies regarding networks (NW)
and tolled facilities (TF). For managed lanes studies (ML), which include also research
concerning HOT lanes, express lanes and general toll lanes, control-based algorithms
(C) are adopted in almost as many cases as optimization-based ones. We also stress that
optimal control, which may be considered an application of both optimization and control
theories, is implemented in two papers relating to managed lanes, one relating to network
and one relating to toll facilities and we counted these algorithms in the control-based
groups. Three approaches that are not attributable either to optimization or control theory,
identified with label OTH, are employed for networks.
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Figure 4. The distribution of the analyzed studies categorized by scope (inner circle) and main
price definition method (outer circle). Labels: ML = Managed Lanes, NW = Networks, TF = Tolled
Facilities, OPT = Optimization, C = Control, OTH = Other.
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In what follows, Section 2.1 is dedicated to control-based algorithms and Section 2.2
to optimization-based approaches.

2.1. Control-Based Algorithms

The general topic of traffic modeling and control has been studied at length in the
literature (ex. [67]). Broadly speaking, traffic control can be classified as either road-based
or vehicle-based. Road-based traffic control includes ramp management via methods such
as ramp metering [68,69], posting of variable speed limits so as to homogenize speeds
and avoid stop-and-go waves [70,71], average speed enforcement [72,73], lane control
redirecting vehicles to different lanes [74], Route Guidance and Information Systems (RGIS)
communicated to drivers through various messaging methods [75,76]. A fairly large
literature exists on vehicle-based control, which pertain to Vehicle-to-Infrastructure (V2I)
based communication strategies and Connected and Automated Vehicles (CAVs) based
coordination strategies [77]. In addition to the above methods, one can consider a dynamic
toll-pricing based approach, which may be viewed as either road-based or vehicle-based,
where the toll price is messaged to the driver (either through a message posted on the
road or directly to the vehicle), and the driver makes a decision in turn whether to enter
the highway or not [17,22]. Viewing real-time traffic information data as a sensor and the
toll based on these data as a control input, the underlying traffic congestion problem is
posed as a control problem, where the driver can be viewed as an actuator. The concept
of transactive control, a feedback control strategy enabled through economic contracts to
incentivize and enable flexible consumption, is eliciting significant attention of late [78],
with multiple applications in dynamic toll pricing.
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A simple feedback digital control law for on-ramp metering called ALINEA was
proposed in [79] as in (1):

r(k) = r(k− 1) + kp · [ore f − o(k)]. (1)

The metering rate at time k, r(k) (in equivalent passenger vehicles/hour, or veh/h), is
defined by the product of a proportional gain kp with the difference between the desired
value of an occupancy parameter ore f and its current value o(k) (in % km/km), which,
in turn, is related to traffic density ρ(k) (in equivalent passenger vehicles/km, or veh/km)
by Equation (2):

ρ(k) = η · o(k), (2)

where η is defined as in (3):

η =
ν

100 · l , (3)

with ν equal to the number of lanes on the mainstream and l (in km/veh) equal to the
mean effective vehicles length in km.

A principle similar to ALINEA was applied in [13] to build a toll pricing controller,
given by Equation (4):

π(k + 1) = π(k) + kp · [o(k)− ore f ], (4)

where the toll price π(k) (in monetary units) is defined by a controller, being the control
variable an occupancy parameter. A similar concept was applied in [11], where the optimal
HOT flow ratio to set the dynamic toll is defined by a control-based piecewise linear
function, in [50] and in [52]. Also in [14–16] the control mechanism is based on a piecewise
linear function but with variable revenue-maximizing optimal gains.

In [17], desired flow into the HOT at time t (in veh/h), indicated with y(t), is computed
through a proportional derivative (PD) analog controller with a feedforward additive
component (5):

y(t) = kp · e(t) + kd · ė(t) + k f f · ρre f , (5)

where kp, kd and k f f represent proportional, derivative and feedforward gains, respectively,
and e(t) is an error signal, given by the difference between the desired density ρre f and the
current density ρ(t) (in veh/km).

In [18], in turns, a proportional integral (PI) controller defines time-dependent tolls
for road networks based on the congestion level of the network (proportional part) and on
users’ adaption to the tolls (integral part). A PI feedback control for toll pricing extendable
to time-dependent pricing for a large scale dynamic traffic network is presented in [19] and
a PI adaptive controller computes desired HOT flow rates in [20].

The HOT dynamic pricing algorithm proposed in [21] embeds a proportional integral
derivative (PID) controller that considers the time delay between the tollbooth and the exit
of HOT lanes.

In [80] we propose a dynamic toll pricing scheme based on feedback control theory,
similar to the approach in [17,22], for a freeway segment with multiple access locations.

Cascaded feedback control is employed to build a discrete-time dynamic tolling
computation algorithm that later was successfully implemented in a HOT between Ben
Gurion Airport and Tel Aviv, in Israel [23]. Without going into the details of the equations,
the inner loop is a PD controller which computes the toll rate increment having the inflow
to the HOT as feedback signal, while the outer loop is given by a PI controller that calculates
the inflow reference value with the average velocity on the HOT lane as the feedback signal.

In optimal control, the control gains are optimized so that some performance measure
of the system, function of its current and past states and inputs, is maximized. Hamilton-
Jacobi-Bellman equation is used to design feedback optimal control laws that utilize real-
time traffic information for defining dynamic tolls of lanes or routes in [24–26]. The ex-
tended Kalman filtering technology is employed in [27] for a stochastic optimal control
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based algorithm to execute a freeway traffic management mechanism that integrates dy-
namic toll and ramp control.

2.2. Optimization-Based Algorithms

While control-based dynamic toll pricing approaches described in Section 2.1 usually
focus on keeping free-flow conditions, optimization-based algorithms are built around the
maximization of some performance index of the system. Road managers may be interested
in implementing strategies that, as they deal with congestion on the managed road, satisfy
some objectives as maximization of revenue, social welfare, freeway throughput, or a com-
bination of them [48]. A general formulation of the unconstrained optimization problem
for the definition of such strategies is given by Equation (6):

π(n) = argmax
π(n)

n+N

∑
k=n

g(π(k)), (6)

where the toll price for tolling interval n + 1, π(n + 1) is the one that maximizes the ac-
cumulation of a performance index g(π(k)), chosen according to the strategy objectives,
over a certain period of time, called rolling horizon, corresponding to the following N
intervals. The complete formulation of the optimization problem is given by (6) with
appropriate constraints. Manifold single-objective pricing strategies with similar formula-
tions are presented in literature: revenue-maximizing problems are described in [28–30,46],
a throughput maximizing problem is formulated in [31], and an average-flow maximizing
toll is presented in [8]. In [8,30,31], penalty methods are applied, replacing the constraints
to ensure free-flow with penalty functions added to the objective function.

As is intuitive, strategies obtained via the maximization of a performance indicator
associated with a single objective may not satisfy other possible objectives: for example,
total system travel time minimization and revenue maximization are found to conflict
in [40]; multi-objective approaches in literature aim to design tolls from a compromise
among multiple objectives, seeking Pareto optimum, a solution characterized by the fact
that “no other feasible solutions can improve at least one objective without deteriorating
another” [60]. A bi-objective optimization approach is proposed in [33], where the objective
function γ is defined as the weighted sum of the system cost c (in monetary units) and time
τ (in time units) (7):

γ = c + w · ξ̄ · τ, (7)

where ξ̄ is the weighted average value of time (VOT), to convert time units in monetary
units, and w is a non-negative weighting parameter, called Pareto parameter. The obtained
toll expression reduces to a minimum cost scheme for w = 0 and to a minimum time
scheme, in case of w → ∞. The authors of [60] propose a toll defined by a bi-objective
program for a tollable vehicular network, seeking to minimize both total delays and
emissions, formulating the problem as a mathematical programming with complementarity
constraints (MPCC) and solving it with a quadratic penalty-based gradient projection
algorithm. A Pareto-improving queue-eliminating dynamic toll is proposed in [34].

Dynamic toll pricing problems are generally particularly difficult because of their
fundamental bi-level form, where the upper level is the one picking the optimal tolls,
which are subject to route-choice constraints that constitute the lower-level dynamic traffic
assignment [81]. The computational complexity of the toll design problem is known to
be NP-hard [81–83], even when the formulation is not explicitly dynamic [37,84–87]. As a
consequence, these problems are typically solved through heuristics or meta-heuristics [81].
In [35], a bi-level dynamic second-best toll pricing model is solved through a relaxation
scheme consisting in the conversion of the bi-level formulation into a single level nonlinear
programming problem, which is then solved iteratively. In [36], the genetic algorithm and
the method of successive average are used to solve a two-layer network dynamic congestion
pricing problem. In [37], a hybrid self-adaptive gradient projection (SAGP) and artificial
bee colony (ABC) algorithm are employed to solve a bi-level dynamic congestion tolling
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problem, with the SAGP solving the lower level and ABC for the upper one. In [38], bi-level
cellular particle swarm optimization is applied to a dynamic optimal toll problem with
equilibrium constraints under demand uncertainty. Optimal dynamic pricing problems
have also been formulated as Markov Decision Process and solved through approximate
dynamic programming via state space aggregation [39], value function approximation with
different initializations [40], a multiagent reinforcement learning algorithm [41] and policy
gradient methods with tolls determined via a feedforward neural network [42].

The bi-level nature of dynamic toll pricing problems can also be described from
a game theory perspective, where drivers and road managers are identified as players.
At the lower level, drivers choose their paths pursuing their travel costs minimization
without considering the impact of their choices on the other network users [88]. The traffic
assignment resulting from drivers’ selfish choices is a Nash equilibrium called user equilibrium
(UE) or Wardrop equilibrium [39,89,90]. User equilibrium traffic assignment may not
coincide with the socially best solution, identified as System Optimum (SO), which is
characterized by minimization of the total system travel cost [86]. In this context, road
managers can introduce congestion pricing at the upper level as a cooperation mechanism
to minimize total system costs [91], driving a user equilibrium pattern toward a System
Optimum. A Stackelberg game occurs between the road operators who act as leaders
due to their dominating role in the decision process and the users who act as followers,
whereas a Nash game occurs between competing road operators [92]. Dynamic toll pricing
algorithms based on Stackelberg game theory are presented in [43,45].

According to [93], dynamic marginal cost tolls can stabilize transportation networks
around their social optimum traffic assignment. In [94], the system optimal traffic flow
pattern is obtained through piecewise linear tolls on a subset of the network links. In [51],
marginal costs-based dynamic pricing strategies are showed to eliminate all the delays and
minimize the total schedule deviation cost experienced by users. A dynamic toll pricing
scheme to achieve system optimum on a day-to-day basis is explored in [95].

The authors of [96], analyzing a morning commute problem, compared a conventional
system optimum corresponding to the minimization of the total system travel cost taking
into account user heterogeneity with a time-based system optimum, where the total travel
time is minimized and found that the latter is Pareto-improving compared to the former.

In summary, in this Section, we have described the main dynamic toll pricing rules
proposed in the literature, classifying them depending on whether they are based on
feedback control (Section 2.1) or on optimization theory (Section 2.2). The following Section
is dedicated to the simulation methods that can be employed to test the pricing rules.

3. Overview of Simulations

The pricing rules described in Section 2 represent possible interventions on transporta-
tion networks to improve operating achievements. Real-life drivers are informed of the toll
value and decide whether to pay the toll to use the tolled facility or choose an alternative
transportation solution. Data about the traffic formed by the users who accepted to pay
the toll are usually collected through sensors, then elaborated and used as inputs for the
definition of the toll. Nevertheless, since real-life experiments are challenging to perform
in the transportation engineering field, there is a need for a simulation environment that
can model drivers’ choices and their effects on traffic in order to test the performance of
new pricing strategies in a closed-loop framework. This section is dedicated to review-
ing the main simulation frameworks presented in the most recent dynamic toll pricing
literature. Traffic and Driver Behavior Models are presented in Sections 3.1 and 3.2, respec-
tively. In view of the ever-growing ecologic concerns, recent researches frequently include
emissions models to simulate vehicle-driven environmental deterioration. We dedicated
Section 3.3 to the discussion of these models.
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3.1. Traffic Simulation

The traffic model is an essential part of dynamic tolling design studies; it aims to
quantify some traffic characteristics corresponding to each transport alternative, depending
on the traffic volumes choosing that particular transport solution. A comprehensive survey
on traffic state estimation can be found in [97]. According to the scale, traffic flow models
can be classified as macroscopic, mesoscopic or microscopic, with an increasing level
of detail:

• macroscopic models are usually based on the analogy of traffic with fluid dynamics,
thus traffic is described by the value of a few synthetic variables (flow, density and
speed);

• microscopic models focus on the single vehicles’ trajectories, and mesoscopic models
share both the previously mentioned families’ elements.

In terms of formulation in a macroscopic model, traffic state is described by vector (8):

H(x, t) =

v(x, t)
ρ(x, t)
q(x, t)

, (8)

where v(x, t) is velocity (in km/h), ρ(x, t) is density (in veh/km) and q(x, t) is flow (in
veh/h), all function of time t and location x on the infrastructure. Traffic flow is modeled
locally through a system of partial differential equations inspired by hydrodynamics, as the
system given by (9): {

∂q(x,t)
∂x + ∂ρ(x,t)

∂t = 0
q(x, t) = q(ρ(x, t))

. (9)

The first equation of the system is a conservation law, whereas the second equation,
expressing flow rate in function of density, is called fundamental diagram.

The Lighthill-Whitham-Richards (LWR) kinematic wave model [98,99], characterized
by the fundamental relation (10):

q(x, t) = v(x, t) · ρ(x, t). (10)

This relation is considered pioneering in macroscopic traffic flow modeling [97]. This
model is used to characterize traffic flow evolution on the HOT lane in [20]. A stochastic
macroscopic traffic flow model built by [47] on the classical LWR model is adopted in [46]
for managed lanes. An accumulator model consisting in an aggregate, lumped-parameter
model, based on the LWR model, is proposed in references [17,22]. The Cell Transmission
Model (CTM) [100,101] and its derivatives, which are based on the discretization of the
differential equations of the LWR model, are broadly used in traffic flow modeling for
dynamic tolling design. In [40,48], traffic dynamics on managed lanes is modeled through
CTM. Lou [8] adopts a multi-lane hybrid CTM proposed by [32] to describe traffic dynamics
in HOT facilities.

The Macroscopic fundamental diagram, also called Network Fundamental Diagram,
introduced by [102] to model networks traffic dynamics on an aggregate level by consid-
ering relations between space-mean traffic flow and density in urban regions, is adopted
in [18,19,36,50,51].

In microscopic models, on the contrary, traffic is described at a disaggregated level by
single-vehicle trajectories as given by (11):

xi = xi(t). (11)

In (11), xi(t) identifies the position of vehicle i at time t. Microscopic modeling is
at the base of simulation platforms that have been often used in dynamic toll pricing
studies at the network level: car-following-based VISSIM [11,14–16,23,36], Paramics [21,27],
CORSIM [29,52] and MITSIM [30]. A mesoscopic modeling-based simulator, DynusT,
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is employed in [53] and a regional mesoscopic dynamic traffic assignment simulation
environment is adopted in [54,56]. DynaMIT, a mesoscopic dynamic traffic simulator is
applied in [30] toghether with microscopic simulation. Usually, these platforms can model
both traffic and driver behavior.

In some studies, where the considered situation is analyzed as a bottleneck, traffic
modeling is limited to a delay operator: in [13,49] traffic dynamics are described through
the point-queue concept [103], assuming that the average travel time is given by the sum of
a congestion-independent cruise time and a queuing delay. In [45] delays derive from the
comparison between arrivals and departures curves, and a similar approach is followed
in [57]. BPR (Bureau of Public Roads) volume-delay functions are adopted in [58,59].
Queuing theory is used in [24,25]. Arnott’s bottleneck model is finally employed in [43].
For more details on traffic modeling, we refer the reader to [67].

As shown in Figure 5, traffic simulation is quantitatively dominated by macroscopic
models, delay operators and microscopic models, which together cover almost three fourths
of the analyzed methods with similar percentages, between 20% and 30%.
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3.2. Driver Behavior

A User Behavior Model reproduces people’s choices among different transportation alter-
natives based on the alternatives’ and the users’ characteristics. Drivers’ choices between two
alternatives may be described through binary logit models, where the utility of each alternative
is a function of its current travel time and toll [6,8,11,13,16,17,20,22,24,25,28,31,46,48,49]. In such
cases, general utility function Uj(t) for an alternative j is formulated as in (12):

Uj(t) = δ · πj(t) + ε · τj(t) + ζ, (12)

where δ and ε represent the weighting of travel time and toll price, respectively, and ζ is an
offset term used to take into account other unobservables. πj(t) and τj(t) are respectively
toll price and travel time of alternative j at time t. Other factors may be taken into account
besides toll and travel time, for instance in [14], the utility is also a function of travel time
reliability, which, in some cases, has been even found to be more valued than travel time
savings [104]. Once defined a utility function, the probability of choosing alternative j in a
binary logit model is expressed by (13):

pj(t) =
1

1 + e∆U(t)
, (13)
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where ∆U(t) represents the difference in the utility function values of the two alternatives
at time t.

Binary choices between a tolled and an untolled alternative may also be modeled
through the cumulative distribution function of drivers’ VOT F(ξ). The users whose VOT
exceeds a particular limit, called the critical VOT ξcr(t), are assumed to choose the tolled
alternative. The critical VOT is defined as the ratio of the toll price π(t) and the difference
in travel times ∆τ(t) between the two alternatives at time t, as in (14):

ξcr(t) =
π(t)

∆τ(t)
. (14)

Indicating with p(t) the proportion of drivers choosing the tolled alternative we can
formulate the model as in (15):

p(t) = p(ξcr(t)) = 1− F(xcr(t)). (15)

Different distribution functions are considered in the literature: a log-normal distribu-
tion is proposed in [45]; Weibull distribution is chosen for fitting in [29]; the authors of [12]
adopt a simplified variant of the Burr distribution; the authors of [40] employ a discrete
distribution of users’ VOT; Gutman [23] assumes a Gaussian drivers’ VOT probability
distribution. We note that multinomial logit models may also be considered for modeling
choices with more than two alternatives, whereas the driver behavior model described
by (14) and (15) cannot be used in such cases. This last model, in turn, can consider drivers’
heterogeneity in VOT.

Drivers choices can also be modeled through user equilibrium considerations. As men-
tioned in Section 2.2, the user equilibrium is a Nash equilibrium derived from drivers’
selfish choices that operate to pursue travel costs minimization. In [57] the user equilibrium
condition between tolled and untolled alternative for users all characterized by the same
VOT is formulated as given by (16):

τuntolled(t) = τtolled(t) + πtolled(t), (16)

where τtolled(t) and τuntolled(t) indicate the travel time on the tolled alternative and on
the untolled alternative at time t, respectively, and πtolled(t) is the toll price of the tolled
alternative at time t. Condition (16) holds when both alternatives are used; otherwise, only
the less expensive alternative is used.

Modeling the case of large networks is typically more complex than for two-alternative
cases: a route-choice model usually models driver behavior in association with a departure-
time-choice model. The authors of [60] present a dynamic user equilibrium, where travelers
engage in a Nash-like game choosing routes and departure times aiming to minimize
selfishly their travel costs, which account for travel time, early/late arrival penalties
and tolls. The authors of [54,56] adopt an econometric model considering drivers’ socio-
economic characteristics and the network level-of-service to capture the drivers’ departure
time choice in consequence of the toll. In [30], a path-size logit model is used for route
choice, considering the similarities between overlapping paths.

While most models assume homogeneous drivers, agent-based models may be used
to take into account drivers’ heterogeneity, as in [14,15,18,21,50].

In Figure 6 we may observe that logit models are quantitatively prevailing in driver
behavior simulation, with user equilibrium, VOT distribution and agent-based models all
present in over 10% of the studies and choice models embedded in micro-simulation traffic
models (label: embedded in micro) in about 4% of the studies.
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3.3. Externalities Quantification

Drivers are responsible for additional costs imposed upon other users and society, such
as congestion, accidents, pollutants emissions and noise. These costs, called externalities,
can be internalized through road charging [4]. As referred in Section 2.2, social welfare
improvement, and maximization are among the objectives of dynamic pricing schemes,
thus, together with the quantification of travel times, which is usually done through traffic
assignment and reflects congestion, some studies include models for the quantification of
other externalities.

Vehicular pollutants emissions include carbon dioxide (CO2), nitrous oxides (NOx), volatile
organic compounds (VOC), carbon monoxide (CO), and particulate matter (PM10) [105,106].
The emission may be estimated through emission factors (in gram/km), as in [107], or modeled
in function of traffic conditions. Emission models are classified by [60] into three categories:
microscopic, macroscopic and mesoscopic. In microscopic approach, the emission rates ei(t) of
single vehicles i (in gram/m/s), are modeled as a function of the vehicular velocity vi(t) (in
km/h) and, possibly, acceleration ai(t) (in m/s2), as in (17):

ei(t) = f (vi(t), ai(t)), (17)

while in macroscopic emission models, the average emission rate ē(t) (in gram/m/s) on
a road segment is expressed as a function of the average density ρ̄(t) in (veh/km) and
average velocity v̄(t) (in km/h) in that segment as in (18):

ē(t) = g(ρ̄(t), v̄(t)). (18)

Finally, mesoscopic models combine elements of the two previous approaches.
In [86], carbon dioxide emissions are quantified through a microscopic model as a

velocity function only. In [108], emission rate is calculated at a macro level as a function of
average segment velocity and vehicle type.

A noise emissions model is presented in [109]: noise emission levels are calculated on
a macro level for each road segment due to traffic volume, heavy-duty vehicles share and
maximum speeds. A grid of receivers is considered for calculating noise immission levels,
which allow the quantification of the noise damages to be internalized.

The authors of [110] recently observed that when more than one externality is con-
sidered for marginal cost pricing, there exist correlation between the externalities, and it
should be taken into account with proper correction factors.

Not only are externalities considered for dynamic toll schemes design, but they are
also part of evaluation criteria, as in the Benefit-cost analysis of variable pricing projects
in [105,106].
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In summary, in this section we have presented the main components of the traffic simula-
tion frameworks adopted in literature, grouping them into traffic models (Section 3.1), driver
behavior models (Section 3.2) and externalities quantification models (Section 3.3). We now
briefly discuss the most recent technology applications in the dynamic toll pricing field.

4. Interactions with Recent Technology Applications

The development of new communication and transportation technology is having
various positive effects on road toll pricing, making it faster, easier, cheaper and more
reliable [111]. In particular, connected traffic sensors enable the collection and storage of
big amounts of data, which can be processed and mined to support real-time decision
making [59], including dynamic toll pricing definition. Self-learning techniques have been
proposed to gradually learn the parameters of the driver behavior model by the mining
of the recorded traffic data [8,13,31], enabling a more accurate representation of the users’
preferences, which is fundamental for price definition. Reinforcement learning algorithms
for optimization of dynamic pricing strategies are employed in [41,42] and random forest
predictions are included in [62].

Connected drivers and vehicles allow the definition of user-specific strategies, where
toll authorities can guide users’ mode and routing choices with user-dependent advice and
dynamic pricing [109,112–114].

5. Conclusions

In this paper, we have reviewed recent literature about dynamic toll pricing focusing
in particular on the studies published since 2008. We have identified the main objectives of
dynamic toll pricing in keeping free-flow conditions, minimizing travel times and reducing
externalities. We have observed that control-based price definition rules focus more on
satisfying the first objective, while optimization-based algorithms, which represent the
prevalent method, are built upon the maximization of some performance index of the
system. We have identified a common structure in dynamic toll pricing studies, formed by
a price definition rule together with a simulation framework composed by a model of the
driver behavior, a traffic flow model and, possibly, externalities quantification models.

The scope of dynamic toll pricing varies from single infrastructures, as in the case
of managed lanes facilities, where in some cases it is already implemented, to large scale
networks, for which there are no known implementations at present. Managed lanes
constitute the scope of most of the dynamic toll pricing schemes reviewed in this paper,
followed by networks and tolled facilities.

Implemented dynamic toll pricing schemes are indeed still very few worldwide
but the evolution of information technology, which allows increasingly fast and massive
exchange of information, together with the progress in computation capabilities and the
advancement of AI paradigms are certainly paving the way to the ideation of more complex
and efficient dynamic toll pricing schemes and to new implementations, as dynamic pricing
keeps emerging as a practice in multiple domains of Intelligent Transportation Systems.
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Abbreviations
Abbreviations used specifically in Table 3 are referred in its caption. The following abbreviations are
used in the rest of this manuscript:

AI artificial intelligence
HOT High Occupancy Toll
VOT Value of Time
ABC Artificial Bee Colony
veh equivalent passenger vehicles
h hour
km kilometer
LWR Lighthill-Whitham-Richards
CTM Cell Transmission Model

References
1. Saharan, S.; Bawa, S.; Kumar, N. Dynamic pricing techniques for Intelligent Transportation System in smart cities: A systematic

review. Comput. Commun. 2020, 150, 603–625. [CrossRef]
2. de Palma, A.; Lindsey, R. Traffic congestion pricing methodologies and technologies. Transp. Res. Part C Emerg. Technol. 2011,

19, 1377–1399. [CrossRef]
3. Pigou, A.C. The Economics of Welfare; Macmillan: London, UK, 1920.
4. Seik, F.T. An advanced demand management instrument in urban transport. Electronic road pricing in Singapore. Cities 2000,

17, 33–45. [CrossRef]
5. Managed Lanes Project Database. Available online: https://managedlanes.wordpress.com/category/projects (accessed on 16

November 2020).
6. Figueiras, P.; Gonçalves, D.; Costa, R.; Guerreiro, G.; Georgakis, P.; Jardim-Gonçalves, R. Novel Big Data-supported dynamic toll

charging system: Impact assessment on Portugal’s shadow-toll highways. Comput. Ind. Eng. 2019, 135, 476–491. [CrossRef]
7. Bracher, B.; Bogenberger, K. A dynamic prizing scheme for a congestion charging zone based on a network fundamental diagram.

In Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems,
MT-ITS 2017—Proceedings, Naples, Italy, 26–28 June 2017; pp. 669–674. [CrossRef]

8. Lou, Y. A unified framework of proactive self-learning dynamic pricing for high-occupancy/toll lanes. Transp. A Transp. Sci.
2013, 9, 205–222. [CrossRef]

9. Supernak, J.; Steffey, D.; Kaschade, C. Dynamic value pricing as instrument for better utilization of high-occupancy toll lanes:
San Diego I-15 case. Transp. Res. Rec. 2003, 1839, 55–64. [CrossRef]

10. Systematics, C. I-394 MnPASS Technical Evaluation: Final Report; Minnesota Department of Transportation: St. Paul, MN, USA,
2006.

11. Zhang, G.; Wang, Y.; Wei, H.; Yi, P. A Feedback-Based Dynamic Tolling Algorithm for High-Occupancy Toll Lane Operations.
Transp. Res. Rec. J. Transp. Res. Board 2008, 2065, 54–63. [CrossRef]

12. Gardner, L.M.; Bar-gera, H.; Boyles, S.D. Development and comparison of choice models and tolling schemes for high-
occupancy/toll (HOT) facilities. Transp. Res. Part B Methodol. 2013, 55, 142–153. [CrossRef]

13. Yin, Y.; Lou, Y. Dynamic Tolling Strategies for Managed Lanes. J. Transp. Eng. 2009, 135, 45–52. [CrossRef]
14. Li, W.; Cheng, D.; Bian, R.; Ishak, S.; Osman, O.A. Accounting for travel time reliability, trip purpose and departure time choice

in an agent-based dynamic toll pricing approach. IET Intell. Transp. Syst. 2018, 12, 58–65. [CrossRef]
15. Cheng, D.; Li, W.; Ishak, S. Accounting for travel time reliability and trip purpose in an agent-based approach to toll pricing with

dynamic feedback control: Case study on 1-95 managed-lanes corridor. Transp. Res. Rec. 2014, 2470, 131–141. [CrossRef]
16. Cheng, D.; Ishak, S. Maximizing toll revenue and level of service on managed lanes with a dynamic feedback-control toll pricing

strategy. Can. J. Civ. Eng. 2015, 43, 18–27. [CrossRef]
17. Phan, T.; Annaswamy, A.M.; Yanakiev, D.; Tseng, E. A model-based dynamic toll pricing strategy for controlling highway traffic.

In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016; pp. 6245–6252. [CrossRef]
18. Zheng, N.; Rérat, G.; Geroliminis, N. Time-dependent area-based pricing for multimodal systems with heterogeneous users in an

agent-based environment. Transp. Res. Part C Emerg. Technol. 2016, 62, 133–148. [CrossRef]
19. Gu, Z.; Shafiei, S.; Liu, Z.; Saberi, M. Optimal distance- and time-dependent area-based pricing with the Network Fundamental

Diagram. Transp. Res. Part C Emerg. Technol. 2018, 95, 1–28. [CrossRef]
20. Zhang, G.; Ma, X.; Wang, Y. Self-adaptive tolling strategy for enhanced high-occupancy toll lane operations. IEEE Trans. Intell.

Transp. Syst. 2014, 15, 306–317. [CrossRef]
21. Zou, G.; Alvaro, G.; Kulkarni, R. Dynamic Pricing Algorithm with Embedded Controller for High Occupancy Toll Lanes. In

Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Gran Canaria, Spain, 15–18
September 2015; pp. 2384–2389. [CrossRef]

22. Annaswamy, A.M.; Guan, Y.; Tseng, H.E.; Zhou, H.; Phan, T.; Yanakiev, D. Transactive Control in Smart Cities. Proc. IEEE 2018,
106, 518–537. [CrossRef]

http://doi.org/10.1016/j.comcom.2019.12.003
http://dx.doi.org/10.1016/j.trc.2011.02.010
http://dx.doi.org/10.1016/S0264-2751(99)00050-5
https://managedlanes.wordpress.com/category/projects
http://dx.doi.org/10.1016/j.cie.2019.06.043
http://dx.doi.org/10.1109/MTITS.2017.8005597
http://dx.doi.org/10.1080/18128602.2011.559904
http://dx.doi.org/10.3141/1839-05
http://dx.doi.org/10.3141/2065-08
http://dx.doi.org/10.1016/j.trb.2013.06.006
http://dx.doi.org/10.1061/(ASCE)0733-947X(2009)135:2(45)
http://dx.doi.org/10.1049/iet-its.2017.0004
http://dx.doi.org/10.3141/2470-14
http://dx.doi.org/10.1139/cjce-2015-0004
http://dx.doi.org/10.1109/ACC.2016.7526651
http://dx.doi.org/10.1016/j.trc.2015.10.015
http://dx.doi.org/10.1016/j.trc.2018.07.004
http://dx.doi.org/10.1109/TITS.2013.2279484
http://dx.doi.org/10.1109/ITSC.2015.385
http://dx.doi.org/10.1109/JPROC.2018.2790841


Appl. Sci. 2021, 11, 4778 16 of 19

23. Gutman, P.O. Dynamic Pricing for Toll Lanes - a Case Study. IFAC-PapersOnLine 2016, 49, 25–30. [CrossRef]
24. Kachroo, P.; Gupta, S.; Agarwal, S.; Ozbay, K. Optimal Control for Congestion Pricing: Theory, Simulation, and Evaluation. IEEE

Trans. Intell. Transp. Syst. 2017, 18, 1234–1240. [CrossRef]
25. Kachroo, P.; Özbay, K.M. Feedback routing via congestion pricing. In Feedback Control Theory for Dynamic Traffic Assignment;

Springer International Publishing AG: Cham, Switzerland, 2018; Chapter 10, pp. 249–266._10. [CrossRef]
26. Agarwal, S.; Kachroo, P. On the Economic Control of Cyber-physical Systems. In Proceedings of the 2017 IEEE 7th Annual

International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017, Honolulu, HI,
USA, 31 July–4 August 2017; pp. 86–90. [CrossRef]

27. Sheu, J.B.; Yang, H. An integrated toll and ramp control methodology for dynamic freeway congestion management. Phys. A
Stat. Mech. Its Appl. 2008, 387, 4327–4348. [CrossRef]

28. Hassan, A.; Abdelghany, K.; Semple, J. Dynamic road pricing for revenue maximization. Transp. Res. Rec. 2013, 2345, 100–108.
[CrossRef]

29. El Khoury, J.; Srour, F.J. Value of Dynamic Revenue-Maximizing Congestion Pricing in a Highly Congested Corridor. J. Transp.
Eng. 2015, 141, 04015029–1–04015029–11. [CrossRef]

30. Zhang, Y.; Atasoy, B.; Akkinepally, A.; Ben-akiva, M. Dynamic Toll Pricing using Dynamic Traffic Assignment System with
Online Calibration. Transp. Res. Rec. 2019, 2673, 532–546. [CrossRef]

31. Lou, Y.; Yin, Y.; Laval, J.A. Optimal dynamic pricing strategies for high-occupancy/toll lanes. Transp. Res. Part C Emerg. Technol.
2011, 19, 64–74. [CrossRef]

32. Laval, J.A.; Daganzo, C.F. Lane-changing in traffic streams. Transp. Res. Part B Methodol. 2006, 40, 251–264. [CrossRef]
33. Tan, Z.; Yang, H.; Guo, R.Y. Dynamic congestion pricing with day-to-day flow evolution and user heterogeneity. Transp. Res. Part

C Emerg. Technol. 2015, 61, 87–105. [CrossRef]
34. Xiao, F.; Zhang, H.M. Pareto-improving and self-sustainable pricing for the morning commute with nonidentical commuters.

Transp. Sci. 2014, 48, 159–169. [CrossRef]
35. Ban, X.; Liu, H.X. A link-node discrete-time dynamic second best toll pricing model with a relaxation solution algorithm. Netw.

Spat. Econ. 2009, 9, 243–267. [CrossRef]
36. Wei, B.; Sun, D. A Two-Layer Network Dynamic Congestion Pricing Based on Macroscopic Fundamental Diagram. J. Adv. Transp.

2018, 2018. [CrossRef]
37. Cheng, Q.; Liu, Z.; Szeto, W.Y. Transportmetrica B: Transport Dynamics A cell-based dynamic congestion pricing scheme

considering travel distance and time delay. Transp. B Transp. Dyn. 2019, 7, 1286–1304. [CrossRef]
38. Chung, B.D.; Yao, T.; Friesz, T.L.; Liu, H. Dynamic congestion pricing with demand uncertainty: A robust optimization approach.

Transp. Res. Part B Methodol. 2012, 46, 1504–1518. [CrossRef]
39. Rambha, T.; Boyles, S.D. Dynamic pricing in discrete time stochastic day-to-day route choice models. Transp. Res. Part B Methodol.

2016, 92, 104–118. [CrossRef]
40. Pandey, V.; Boyles, S.D. Dynamic pricing for managed lanes with multiple entrances and exits. Transp. Res. Part C Emerg. Technol.

2018, 96, 304–320. [CrossRef]
41. Pandey, V.; Boyles, S.D. Multiagent Reinforcement Learning Algorithm for Distributed Dynamic Pricing of Managed Lanes. In

Proceedings of the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Maui, HI, USA, 4–7 November
2018; pp. 2346–2351. [CrossRef]

42. Pandey, V.; Wang, E.; Boyles, S.D. Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple
access locations. Transp. Res. Part C Emerg. Technol. 2020, 119, 102715, [1909.04760]. [CrossRef]

43. Kang, W.; Liu, X.; Li, L. Study on traffic congestion pricing for large scale multimodal networks in city. Adv. Mater. Res. 2013,
779, 805–809. [CrossRef]

44. Jang, K.; Song, M.K.; Choi, K.; Kim, D.K. A bi-level framework for pricing of high-occupancy tool lanes. Transport 2014,
29, 317–325. [CrossRef]

45. Jang, K.; Chung, K.; Yeo, H. A dynamic pricing strategy for high occupancy toll lanes. Transp. Res. Part A Policy Pract. 2014,
67, 69–80. [CrossRef]

46. Yang, L.; Saigal, R.; Zhou, H. Distance-based dynamic pricing strategy for managed toll lanes. Transp. Res. Rec. 2012, 2283, 90–99.
[CrossRef]

47. Chu, K.C.; Yang, L.; Saigal, R.; Saitou, K. Validation of stochastic traffic flow model with microscopic traffic simulation. In
Proceedings of the IEEE 7th International Conference on Automation Science and Engineering, Trieste, Italy, 24–27 August 2011.
[CrossRef]

48. Toledo, T.; Mansour, O.; Haddad, J. Simulation-based Optimization of HOT Lane Tolls. Transp. Res. Procedia 2015, 6, 189–197.
[CrossRef]

49. Jin, W.L.; Wang, X.; Lou, Y. Stable dynamic pricing scheme independent of lane-choice models for high-occupancy-toll lanes.
Transp. Res. Part B Methodol. 2020, 140, 64–78. [CrossRef]

50. Zheng, N.; Waraich, R.A.; Axhausen, K.W.; Geroliminis, N. A dynamic cordon pricing scheme combining the Macroscopic
Fundamental Diagram and an agent-based traffic model. Transp. Res. Part A Policy Pract. 2012, 46, 1291–1303. [CrossRef]

51. Amirgholy, M.; Gao, H.O. Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental
diagram: User equilibrium, system optimum, and pricing strategies. Transp. Res. Part B Methodol. 2017, 104, 215–237. [CrossRef]

http://dx.doi.org/10.1016/j.ifacol.2016.07.005
http://dx.doi.org/10.1109/TITS.2016.2601245
http://dx.doi.org/10.1007/978-3-319-69231-9_10
http://dx.doi.org/10.1109/CYBER.2017.8446613
http://dx.doi.org/10.1016/j.physa.2008.02.049
http://dx.doi.org/10.3141/2345-13
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000798
http://dx.doi.org/10.1177/0361198119850135
http://dx.doi.org/10.1016/j.trc.2010.03.008
http://dx.doi.org/10.1016/j.trb.2005.04.003
http://dx.doi.org/10.1016/j.trc.2015.10.013
http://dx.doi.org/10.1287/trsc.1120.0450
http://dx.doi.org/10.1007/s11067-009-9100-4
http://dx.doi.org/10.1155/2018/8616120
http://dx.doi.org/10.1080/21680566.2019.1602487
http://dx.doi.org/10.1016/j.trb.2012.07.007
http://dx.doi.org/10.1016/j.trb.2016.01.008
http://dx.doi.org/10.1016/j.trc.2018.09.017
http://dx.doi.org/10.1109/ITSC.2018.8569317
http://xxx.lanl.gov/abs/1909.04760
http://dx.doi.org/10.1016/j.trc.2020.102715
http://dx.doi.org/10.4028/www.scientific.net/AMR.779-780.805
http://dx.doi.org/10.3846/16484142.2014.952248
http://dx.doi.org/10.1016/j.tra.2014.05.009
http://dx.doi.org/10.3141/2283-10
http://dx.doi.org/10.1109/CASE.2011.6042479
http://dx.doi.org/10.1016/j.trpro.2015.03.015
http://dx.doi.org/10.1016/j.trb.2020.07.008
http://dx.doi.org/10.1016/j.tra.2012.05.006
http://dx.doi.org/10.1016/j.trb.2017.07.006


Appl. Sci. 2021, 11, 4778 17 of 19

52. Michalaka, D.; Yin, Y.; Hale, D. Simulating high-occupancy toll lane operations. Transp. Res. Rec. 2013, 2396, 124–132. [CrossRef]
53. He, X.; Chen, X.; Xiong, C.; Zhu, Z.; Zhang, L. Optimal time-varying pricing for toll roads under multiple objectives: A

simulation-based optimization approach. Transp. Sci. 2017, 51, 412–426. [CrossRef]
54. Aboudina, A.; Abdelgawad, H.; Abdulhai, B.; Nurul Habib, K. Time-dependent congestion pricing system for large networks:

Integrating departure time choice, dynamic traffic assignment and regional travel surveys in the Greater Toronto Area. Transp.
Res. Part A Policy Pract. 2016, 94, 411–430. [CrossRef]

55. Small, K.A.; Verhoef, E.T. The Economics of Urban Transportation; Routledge: Abingdon, UK, 2007.
56. Aboudina, A.; Abdulhai, B. A bi-level distributed approach for optimizing time-dependent congestion pricing in large networks :

A simulation-based case study in the Greater Toronto Area. Transp. Res. Part C 2017, 85, 684–710. [CrossRef]
57. Laval, J.A.; Cho, H.W.; Muñoz, J.C.; Yin, Y. Real-time congestion pricing strategies for toll facilities. Transp. Res. Part B Methodol.

2015, 71, 19–31. [CrossRef]
58. Hong, K.S.; Lee, C.; Lee, K. Dynamic toll pricing model for an intelligent transportation system with individual high occupancy

toll lanes. In Proceedings of the 2015 5th International Conference on IT Convergence and Security, ICITCS 2015—Proceedings,
Kuala Lumpur, Malaysia, 24–27 August 2015. [CrossRef]

59. Figueiras, P.; Costa, R.; Guerreiro, G.; Antunes, H.; Rosa, A.; Jardim-Gonçalves, R. User interface support for a big ETL data
processing pipeline an application scenario on highway toll charging models. In Proceedings of the 2017 International Conference
on Engineering, Technology and Innovation (ICE/ITMC), Madeira Island, Portugal, 27–29 June 2017; pp. 1437–1444. [CrossRef]

60. Friesz, T.L.; Han, K.; Liu, H.; Yao, T. Dynamic Congestion and Tolls with Mobile Source Emission. Procedia-Soc. Behav. Sci. 2013,
80, 818–836. [CrossRef]

61. Friesz, T.L.; Bernstein, D.; Smith, T.E.; Tobin, R.L.; Wie, B.W. A Variational Inequality Formulation of the Dynamic Network User
Equilibrium Problem. Oper. Res. 1993, 41, 179–191. [CrossRef]

62. Zhang, K.; Zhou, Z.; Qi, Y.; Wang, Y. Dynamic pricing strategy for high occupancy toll lanes based on random forest and nested
model. IET Intell. Transp. Syst. 2019, 13, 636–643. [CrossRef]

63. Nikolic, G.; Pringle, R.; Jacob, C.; Mendonca, N.; Bekkers, M.; Torday, A.; Rinelli, P. Dynamic tolling of HOT lanes through
simulation of expected traffic conditions. In Proceedings of the Conference of the Transportation Association of Canada, Montreal,
ON, Canada, 28 September–1 October 2014; pp. 2188–2205.

64. Hourdos, J.; Janson, M.; Levinson, D.; Parikh, G. MnPASS Modeling and Pricing Algorithm Enhancement; Technical Report May;
Minnesota Department of Transportation: St. Paul, MN, USA, 2015.

65. Buckeye, K.R. Performance evaluation of I-394 MnPASS express lanes in Minnesota. Transp. Res. Rec. 2012, 2278, 153–162.
[CrossRef]

66. Buckeye, K.R. Express lanes performance evaluation: Interstate 35W in Minnesota. Transp. Res. Rec. 2014, 2450, 36–43. [CrossRef]
67. Ferrara, A.; Sacone, S.; Siri, S. Freeway Traffic Modelling and Control; Springer International Publishing AG: Cham, Switzerland,

2018.
68. Papageorgiou, M.; Kotsialos, A. Freeway Ramp Metering: An Overview. IEEE Trans. Intell. Transp. Syst. 2002, 3, 271–281.

[CrossRef]
69. Horowitz, R.; Sun, X.; Muñoz, L.; Zhang, M. Design, Field Implementation and Evaluation of Adaptive Ramp Metering Algorithms.

California PATH Research Report UCB-ITS-PRR-2005-2; Technical Report January; University of California: Berkeley, CA, USA,
2005.

70. Papageorgiou, M.; Kosmatopoulos, E.; Papamichail, I. Effects of variable speed limits on motorway traffic flow. Transp. Res. Rec.
2008, 2047, 37–48. [CrossRef]

71. Soriguera, F.; Martínez, I.; Sala, M.; Menéndez, M. Effects of low speed limits on freeway traffic flow. Transp. Res. Part C Emerg.
Technol. 2017, 77, 257–274. [CrossRef]

72. Soole, D.W.; Watson, B.C.; Fleiter, J.J. Effects of average speed enforcement on speed compliance and crashes: A review of the
literature. Accid. Anal. Prev. 2013, 54, 46–56. [CrossRef] [PubMed]

73. Vanlommel, M.; Houbraken, M.; Audenaert, P.; Logghe, S.; Pickavet, M.; De Maeyer, P. An evaluation of section control based on
floating car data. Transp. Res. Part C Emerg. Technol. 2015, 58, 617–627. [CrossRef]

74. Jenior, P.; Dowling, R.; Nevers, B.; Neudorff, L. Use of Freeway Shoulders for Travel—Guide for Planning, Evaluating, and Designing
Part-Time Shoulder Use as a Traffic Management Strategy; Technical Report; U.S. Department of Transportation—Federal Highway
Administration: Washington, DC, USA, 2016.

75. Ben-Akiva, M.; Bottom, J.; Ramming, M.S. Route guidance and information systems. Proc. Inst. Mech. Eng. Part I 2001,
215, 317–324. [CrossRef]

76. Schmitt, E.J.; Jula, H. Vehicle route guidance systems: Classification and comparison. In Proceedings of the IEEE Intelligent
Transportation Systems Conference, Toronto, ON, Canada, 17–20 September 2006; pp. 242–247. [CrossRef]

77. Baskar, L.D.; De Schutter, B.; Hellendoorn, J.; Papp, Z. Traffic control and intelligent vehicle highway systems: A survey. IET
Intell. Transp. Syst. 2011, 5, 38–52. [CrossRef]

78. Annaswamy, A.M.; Malekpour, A.R.; Baros, S. Emerging research topics in control for smart infrastructures. Annu. Rev. Control
2016, 42, 259–270. [CrossRef]

79. Papageorgiou, M.; Hadj-Salem, H.; Blosseville, J.M. ALINEA: A Local Feedback Control Law for On-Ramp Metering. Transp. Res.
Rec. J. Transp. Res. Board 1991, 1320, 58–64. [CrossRef]

http://dx.doi.org/10.3141/2396-14
http://dx.doi.org/10.1287/trsc.2015.0661
http://dx.doi.org/10.1016/j.tra.2016.10.005
http://dx.doi.org/10.1016/j.trc.2017.10.004
http://dx.doi.org/10.1016/j.trb.2014.09.015
http://dx.doi.org/10.1109/ICITCS.2015.7292976
http://dx.doi.org/10.1109/ICE.2017.8280052
http://dx.doi.org/10.1016/j.sbspro.2013.05.044
http://dx.doi.org/10.1287/opre.41.1.179
http://dx.doi.org/10.1049/iet-its.2018.5230
http://dx.doi.org/10.3141/2278-17
http://dx.doi.org/10.3141/2450-05
http://dx.doi.org/10.1109/TITS.2002.806803
http://dx.doi.org/10.3141/2047-05
http://dx.doi.org/10.1016/j.trc.2017.01.024
http://dx.doi.org/10.1016/j.aap.2013.01.018
http://www.ncbi.nlm.nih.gov/pubmed/23474237
http://dx.doi.org/10.1016/j.trc.2014.11.008
http://dx.doi.org/10.1177/095965180121500404
http://dx.doi.org/10.1109/itsc.2006.1706749
http://dx.doi.org/10.1049/iet-its.2009.0001
http://dx.doi.org/10.1016/j.arcontrol.2016.10.001
http://dx.doi.org/10.1002/cncr.11316


Appl. Sci. 2021, 11, 4778 18 of 19

80. Lombardi, C.; Annaswamy, A.; Picado Santos, L. Model-based dynamic toll pricing scheme for a congested suburban freeway
with multiple access locations. (unpublished)

81. Sharon, G.; Hanna, J.P.; Rambha, T.; Levin, M.W.; Albert, M.; Boyles, S.D.; Stone, P. Real-time Adaptive Tolling Scheme for
Optimized Social Welfare in Traffic Networks. In Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2017), São Paulo, Brazil, 8–12 May 2017; pp. 828–836.
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