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Abstract: Grover search algorithm is the most representative quantum attack method that threatens
the security of symmetric key cryptography. If the Grover search algorithm is applied to symmetric
key cryptography, the security level of target symmetric key cryptography can be lowered from n-bit
to n

2 -bit. When applying Grover’s search algorithm to the block cipher that is the target of potential
quantum attacks, the target block cipher must be implemented as quantum circuits. Starting with the
AES block cipher, a number of works have been conducted to optimize and implement target block
ciphers into quantum circuits. Recently, many studies have been published to implement lightweight
block ciphers as quantum circuits. In this paper, we present optimal quantum circuit designs of
symmetric key cryptography, including PRESENT and GIFT block ciphers. The proposed method
optimized PRESENT and GIFT block ciphers by minimizing qubits, quantum gates, and circuit depth.
We compare proposed PRESENT and GIFT quantum circuits with other results of lightweight block
cipher implementations in quantum circuits. Finally, quantum resources of PRESENT and GIFT block
ciphers required for the oracle of the Grover search algorithm were estimated.

Keywords: Grover search algorithm; quantum circuits; PRESENT block cipher; GIFT block cipher

1. Introduction

With the development of embedded technology, the use of many wearable devices and
smart devices has increased [1]. IoT devices exchange abundant network packets with each
other, including personal information. This needs to keep the privacy. To prevent leakage
of data and information, we need to send and receive data securely without information
leakages. For this reason, cryptographic algorithms are required to protect the security
of data transmitted and received between devices. However, many IoT devices have low
computing power, low memory, and low computing power, which can make it difficult to
apply cryptographic algorithms to these devices.

Under these circumstances, the lightweight cryptography targeting low-end devices
has been actively researched [2]. Lightweight cryptography algorithms are designed to use
resources efficiently. They are working on devices with limited performances. In CHES’07,
the lightweight block cipher, namely PRESENT block cipher, was proposed [3]. It was
designed with a substitution–permutation–network structure. In CHES’17, the lightweight
block cipher, namely GIFT block cipher, was proposed, which improved the PRESENT
block cipher, with improved performance and security level [4].

Quantum computers using the Grover search algorithm can reduce the security of
the block cipher with 2n-bit security level to O(2

n
2 ) [5]. Block ciphers can be attacked by

quantum computers using the Grover’s search algorithm. As the development of large-
scale quantum computers is still underway, it is very important to minimize quantum
resources required for the target block cipher algorithm. With this motivation, research has
been conducted to optimize the AES block cipher into quantum circuits [6–9]. Grassl et al.
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implemented the AES block cipher as a quantum circuit to evaluate the quantum re-
sources required by the Grover’s search algorithm[6]. Later, Jaques et al. and Langen-
berg et al. implemented more compact quantum circuits than the Grassl’s implementation
result [7,8]. This is the result obtained by optimizing the Sbox operation that previously
used a large amount of quantum resources. In addition to the AES block cipher, many
studies on lightweight block ciphers have been conducted. Anand et al. implemented
the SIMON block cipher and evaluated quantum resources required by the Grover search
algorithm [9,10]. Jang et al. implemented the SPECK block cipher as a quantum circuit
to evaluated quantum gates for applying the Grover search algorithm. In [11], the author
implemented the Gimli cipher, as a quantum circuit to estimate the required quantum
resources. In [12], Jang et al. implemented the Korean lightweight block ciphers, including
CAHM, LEA, and HIGHT as quantum circuits and estimated quantum resources.

In this paper, we efficiently implemented PRESSINT and GIFT block ciphers as quan-
tum circuits. Both PRESENT and GIFT block ciphers use Sbox to convert input values
to other values. Classical computers can use a predefined Sbox that directly matches the
output value depending on the input value. In quantum computers, all input values should
coexist and it is impossible to use a predefined Sbox. Therefore, the operation of Sbox
should be designed as quantum gates. In order to optimize the quantum circuit, it is impor-
tant to optimize the Sbox operation. In order to implement the Sbox operation of PRESENT
block cipher, the LIGHTER-R tool [13] was used to optimize the operation. The LIGHTER-R
tool is described in Section 2. For GIFT block cipher, we chose the hardware-friendly Sbox
to optimize the Sbox operation that requires a number of quantum resources. As a result
of comparing the quantum circuit of SIMON (i.e., hardware friendly block cipher) and
SPECK (i.e., software friendly block cipher) [9,10], we confirmed that the hardware-friendly
operation is also optimal for quantum computers. We saved a lot of qubits by implementing
a hardware-friendly Sbox. In addition to the Sbox operation of PRESENT and GIFT block
ciphers, AddRoundkey and Keyschedule were also optimized.

Finally, we compare proposed PRESNET and GIFT quantum circuit implementations
with other lightweight block cipher quantum circuit implementations with similar parame-
ters and security levels. We estimated resources for applying the oracle of Grover’s algo-
rithm to PRESENT and GIFT symmetric key cryptography based on the proposed method.

Contribution

• First design of quantum gates for PRESENT and GIFT symmetric key cryptography.
As far as we know, we firstly implemented PRESENT and GIFT block ciphers as
quantum circuits. We present a method of implementing PRESENT and GIFT block
ciphers as quantum circuits for application to the oracle of the Grover search algorithm.

• Quantum circuits with optimized qubits for PRESENT and GIFT block ciphers. One of
the most important factors when evaluating quantum circuits is optimizing the num-
ber of qubits. When designing quantum circuits, new qubits are allocated to temporal
storage or new values. However, we use an on-the-fly approach to recycle the initially
allocated qubits until the encryption is finished. By using efficient Sbox quantum
implementation, we did not allocate qubits except for the initial key and plaintext.

• Quantum gates and circuit depth analysis for PRESENT and GIFT block ciphers.
Proposed PRESENT and GIFT implementations are evaluated using the IBM Pro-
jectQ framework, a quantum computer emulator (https://github.com/ProjectQ-
Framework/ProjectQ, accessed on 10 May 2021) [14]. IBM ProjectQ uses a vari-
ety of quantum compilers that allow us to simulate quantum computers or draw
quantum circuits. Among them, the resource counter compiler, which is a quantum
resource estimator, measures quantum resources by analyzing qubits, quantum gates,
and circuit depth. Compared with quantum implementation results of other block
ciphers, we implemented low-cost PRESENT and GIFT quantum circuits.

https://github.com/ProjectQ-Framework/ProjectQ
https://github.com/ProjectQ-Framework/ProjectQ
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2. Related Work
2.1. PRESENT Block Cipher

The compact symmetric key cryptography, namely PRESENT block cipher, was pre-
sented in CHES’07 [15]. The PRESENT is a block cipher using the Substitution Permutation
Network (SPN) method and consists of 31 rounds. The PRESENT has a block size of
64 bits and supports 80-bit and 128-bit key sizes. In the PRESENT block cipher, each round
consists of three steps: AddRoundKey, Sbox, and Permutation. The encryption algorithm
of PRESENT block cipher is described in Figure 1. Each round consists of AddRoundkey,
Sbox, and Permutation in the order. When the plain text is entered, the round is repeated
by 31 times. In the end, AddRoundkey is performed.

Plaintext

Sbox

Permutation

AddRoundkey

Key

Keyschedule

Keyschedule

.

.

.

Sbox

Permutation

.

.

.

Ciphertext

AddRoundkey

Figure 1. Encryption process of PRESENT block cipher.

2.1.1. AddRoundkey of PRESENT Block Cipher

Given the 64-bit round key RKi = rk63, ..., rk0 is exclusive-ored to the 64-bit block
Bi = b63, ..., b0 for 1 ≤ i ≤ 32. The notation ⊕means XOR operation.

bj ←− bj ⊕ rk j, j = 0, ..., 63 (1)

2.1.2. Sbox of PRESENT Block Cipher

The 64-bit block is split into 4 bits and becomes the input value of the 4-bit Sbox. The
Sbox of PRESENT block cipher is given in Table 1.

Table 1. Sbox of PRESENT block cipher.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sbox(x) c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

2.1.3. Permutation of PRESENT Block Cipher

In the PRESENT block cipher, the permutation replaces the P64(i)-th bit of block B
with the i-th bit of block B. Details on the permutation of PRESENT block cipherare shown
in Table 2.
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Four bits (0, 21, 42, and 63), which are colored in red, do not change their positions.
On the other hand, three bits (1, 4, and 16), which are colored in blue, exchange positions
with each other. This is explained in detail in Section 3.

Table 2. Bit permutation of PRESENT block cipher.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P64(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P64(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P64(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

2.1.4. Keyschedule of PRESENT Block Cipher

In the version using the 80-bit key, round key RK is the leftmost 64 bits of the 80-bit key.

RK = rk63, ...rk0 = k79, ..., k16 (2)

In the version using 128-bit key, round key RK is the leftmost 64 bits of 128-bit key.

RK = rk63, ...rk0 = k127, ..., k64 (3)

After extracting the round key RK, keys (K = k79, ..., k0 for 80-bit security level
or K = k127, ..., k0 128-bit security levels) are updated with Rotation, Sbox, and XOR
operations. Round key generation of 80-bit security level and 128-bit security level are
given in Equations (4) and (5), respectively.

k79, k78, ...k1, k0 ←− k18, k17, ...k20, k19
k79, k78, k77, k76 ←− Sbox(k79, k78, k77, k76)
k19, k18, k17, k16, k15 ←− k19, k18, k17, k16, k15 ⊕ round i

(4)

k127, k126, ...k1, k0 ←− k66, k65, ...k68, k67
k127, k126, k125, k124 ←− Sbox(k127, k126, k125, k124)
k123, k122, k121, k120 ←− Sbox(k123, k122, k121, k120)
k66, k65, k64, k63, k62 ←− k66, k65, k64, k63, k62 ⊕ round i

(5)

2.2. GIFT Block Cipher

The GIFT block cipher is a symmetric key cryptography using the Substitution Per-
mutation Network (SPN) method. There are GIFT-64/128 (64-bit block and 128-bit key)
and GIFT-128/128 (128-bit block and 128-bit key). In the GIFT block cipher, each round
performs four steps: Sbox, Permutation, AddRoundKey and Constant XOR. The encryption
operation of GIFT block cipher is described in Figure 2.

2.2.1. Sbox of GIFT Block Cipher

The n-bit block (n = 64, 128) is split into 4 bits and becomes the input value of the
4-bit Sbox. The Sbox of GIFT block cipher is given in Table 3.

Table 3. Sbox of GIFT block cipher.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sbox(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e



Appl. Sci. 2021, 11, 4776 5 of 16

Plaintext

Permutation

Sbox

Keyschedule

.

.

.

Permutation

Constant XOR

Sbox

.

.

.

Constant XOR

Key

AddRoundkey

AddRoundkey

Ciphertext

Figure 2. Encryption process of GIFT block cipher.

2.2.2. Permutation of GIFT Block Cipher

In the permutation, GIFT-64/128 replaces the P64(i)-th bit of block B with the i-th
bit of block B. Details on the permutation of GIFT-64/128 are shown in Table 4. In this
paper, detailed Table on permutation of GIFT-128/128 is omitted. Permutation Table of
GIFT-128/128 can be found in [4].

Table 4. Permutation of GIFT-64 bit.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P64(i) 0 17 34 51 48 1 18 35 23 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

2.2.3. AddRoundkey of GIFT Block Cipher

In the GIFT-64/128 block cipher, k0 and k1 (32-bit total) are selected from the key
(K = k7, ..., k0). k0 and k1 are used as U and V of the round key as follows, RK = U||V =
u15...u0||v15...v0 (U = k1, V = k0). The round key is exclusive-ored with the block B, where
U is XORed to b4i+1 and V is XORed to b4i.

b4i+1 ←− b4i+1 ⊕ ui, b4i ←− b4i ⊕ vi, i = 0, ..., 15 (6)

In the GIFT-128/128 block cipher, k0, k1, k4, and k5 (64-bit in a total) are selected
from the key K. k0, k1, k4 and k5 are used as U and V of the round key as follows,
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RK = U||V = u31...u0||v31...v0 (U = k5||k4, V = k1||k0). The round key is XORed to the
block B, where U is XORed to b4i+2 and V is XORed to b4i+1.

b4i+2 ←− b4i+2 ⊕ ui, b4i+1 ←− b4i+1 ⊕ vi, i = 0, ..., 31 (7)

2.2.4. Constant XOR of GIFT Block Cipher

Round constants C given in Table 5 are used in GIFT-64/128 and GIFT-128/128 block
ciphers. Single bit and round constants (C = c5c4c3c2c1c0) are XORed to block B as in
Equation (8).

bn−1 ←− bn−1 ⊕ 1,
b23 ←− b23 ⊕ c5, b19 ←− b19 ⊕ c4, b15 ←− b15 ⊕ c3,
b11 ←− b11 ⊕ c2, b7 ←− b7 ⊕ c1, b3 ←− b3 ⊕ c0.

(8)

Table 5. Round constants C.

Rounds Constants C

1 to 16 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C 39 33 27 0E
17 to 32 1D 3A 35 2B 16 2C 18 30 21 02 05 0B 17 2E 1C 38
33 to 48 31 23 06 0D 1B 36 2D 1A 34 29 12 24 08 11 22 04

2.2.5. Keyschedule of GIFT Block Cipher

In GIFT-64/128 and GIFT-128/128 block ciphers, the Keyschedule updates key
(K = k7, ..., k0) and extracts the round key from the updated key K. The Keyschedule
is shown in Equation (9). The notation (≫ i) denotes a right rotation operation (i-bit).

k7||k6||...||k1||k0 ←− k1 ≫ 2||k0 ≫ 12||...||k3||k2, (9)

2.3. Quantum Gates and Algorithm
2.3.1. Quantum Gates

To perform the work of classical gates, quantum gates should be implemented. CNOT
gate and Toffoli gate are the most commonly used in quantum circuits. The CNOT gate
receives two qubits and XOR the first qubit to the second qubit (i.e., CNOT (a, b) −→ a =
a, b = a⊕ b). This gate stores the XOR result of the two input qubits in the second qubit.
The quantum circuit of CNOT gate is shown in Figure 3 (left). The Toffoli gate is more
expensive and complex than the CNOT gate. Three qubits are input to the Toffoli gate, and
the AND result of the first and second qubits is XORed to the third qubit (i.e., Toffoli (a, b, c)
−→ a = a, b = b, c = c⊕ (a · b). The quantum circuit of Toffoli gate is shown in Figure 3
(right). The notation (·) indicates AND operation.

X0 1

Figure 3. CNOT gate (left) and Toffoli gate (right).

The logical-OR quantum gate is composed of a combination of of Toffoli gate and X
gate, as shown in Figure 4. The X gate operates on a single qubit and performs a NOT
operation. In the logical OR quantum gate, a and b (input qubits) are changed (0 to 1, 1 to
0) by the X gate (i.e., Quantum OR (a, b, c) −→ a =∼ a, b =∼ b, c = c⊕ (a ∨ b). To return
to the original a or b, reversible gate must be performed by executing the X gate once
more. The OR quantum gate (reversible) is shown in Figure 4. The notation ∨ represents
logical-OR operation.
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||

X0 1

X

X

X

X

X

Reverse

X ∨
Figure 4. Logical-OR quantum gate.

2.3.2. Grover’s Search Algorithm

The Grover’s search algorithm finds unique data in the database. If a brute force
attack requires O(2n) searches, this can be found in O(2

n
2 ) searches using the Grover search

algorithm. There are two core modules in the Grover’s search algorithm (i.e., oracle and
diffusion operator). The circuit structure of Grover’s search algorithm is shown in Figure 5.

|0>
|0>
|0>

|1>

Oracle Diffusion operator
H
H
H

Oracle 
𝑓(𝑥) Diffusion operator

Figure 5. Grover search algorithm.

If the x constitutes the data to be found in the database, the oracle f (x) returns 1. In
oracle, if f (x) returns 1, it flips the sign of the state x. When f (10) = 1, the state after oracle
is shown in Figure 6.

|00 |01 |10 |11

average

Figure 6. State after oracle.

Steps of the diffusion operator are as follows. First, we calculate the average of ampli-
tudes of all data. Then, we calculate the gap between the average obtained earlier and the
amplitude of each data (i.e., average amplitude—(each amplitude—average amplitude)).
Therefore, the probability of the answer data x increases, and the probability of non-answers
decreases. As shown in Figure 7, when operating with 2 qubits, it is possible to find a
solution with 100% probability just by performing diffusion operator once. The Grover’s
search algorithm iterates over the oracle and the diffusion operator to measure the answer
data x with a high probability.

Figure 8 shows the overall key search quantum circuit for a block cipher using the
Grover search algorithm. First, we applied Hadamard gates to key qubits to make them
superposition states. Second, an encryption quantum circuit is implemented in the oracle
to encrypt plain text. Then, it checks whether the known ciphertext matches the generated
ciphertext. If they match, the sign of the key state is inverted. Finally, the diffusion operator
operates only on key qubits to amplify the amplitude of the solution. Afterward, we iterate
the oracle and diffusion operator to increase the amplitude of the solution key, and then
measure the key qubits.



Appl. Sci. 2021, 11, 4776 8 of 16

Figure 7. State after diffusion operator.

The most important part in quantum attack using the Grover’s search algorithm is how
to implement the oracle and how to optimize the quantum circuit for the encryption part.

Plaintext qubits

Key qubits

...

...

Oracle

H

H

H

Diffusion 
operator

Repeat

Oracle 
𝑓(𝑋)

Encryption
Circuit

Diffusion
Operator

Grover iteration

Key

Plaintext

Figure 8. Grover key search quantum circuit for block cipher.

2.4. LIGHTER-R

In [13], authors presented the 4-bit Sbox implementation generator for quantum comput-
ers, namely LIGHTER-R. LIGHTER-R is an extension of LIGHTER developed for classical
computers, targeting quantum computers [16]. The LIGHTER uses the Meet In The Middle
approach to design the compact result of 4-bit Sbox for classical computers. On the other
hand, the LIGHTER-R which extends the LIGHTER can implement a 4-bit Sbox optimized
for quantum computers using various versions of reversible logic libraries. Details of the
LIGHTER-R are described in [13]. Using the LIGHTER-R tool, we can implement an optimized
Sbox quantum circuit.

3. Proposed Method
3.1. Quantum circuit for PRESENT Block Cipher

In the proposed PRESENT quantum circuit, only qubits for plaintext and key are
allocated. Therefore, no additional qubits were used. All operations, including AddRound-
key, Sbox, Permutation, and Keyschedule, were optimized in terms of qubits and quan-
tum gates.

3.1.1. AddRoundkey of PRESENT Block Cipher

In the AddRoundkey operation, the leftmost 64 qubits of master key are used as the
round key. The round key is exclusive-ored with the 64-qubit block (B(b63, ..., b0)), which
becomes the ciphertext. The XOR operation can be performed using the CNOT gate. At this
time, the qubit whose result value changes should be B. The implementation of PRESENT
AddRoundKey quantum circuit is shown in Algorithm 1.



Appl. Sci. 2021, 11, 4776 9 of 16

Algorithm 1 Quantum circuit for AddRoundKey of PRESENT block cipher

Input: 64-qubit block B(b63, ..., b0), 64-qubit round key RK(rk63, ..., rk0)
Output: 64-qubit block B(b63, ...b0) after AddRoundKey

1: for i = 0 to 63 do
2: bi ←− CNOT (rki, bi)
3: end for
4: return B(b63, ..., b0)

3.1.2. Sbox of PRESENT Block Cipher

Classical computers can utilize a predefined Sbox that directly matches the output
value according to the input value(i.e., Table 1). However, the predefined Sbox cannot be
used in quantum computers where multiple values exist as probabilities due to the qubit
superposition. For quantum computers, we have to implement the Sbox equation as a
quantum circuit with different outputs depending on the input. The Sbox operation of
PRESENT block cipher is shown in Equation (10). The notation x0x1x′2 indicates x0 AND
x1 AND (NOT x2).

To implement this in a quantum circuit, additional qubits and expensive quantum
gates should be used. An additional 4 qubits must be allocated to store the result value
of Sbox (i.e., Sbox(x0), Sbox(x1), Sbox(x2), and Sbox(x3)) and many AND operations in
Equation (10) increase the use of Toffoli gate, which is expensive quantum gates.

Sbox(x0)←− x′3x′2x0 ⊕ x′3x1x0 ⊕ x3x′2x′0 ⊕ x3x1x′0 ⊕ x3x2x′1x0 ⊕ x′3x2x′1x′0
Sbox(x1)←− x′3x′2x1 ⊕ x3x2x0 ⊕ x′3x1x′0 ⊕ x3x′2x′1 ⊕ x3x′2x′0
Sbox(x2)←− x3x2x′1 ⊕ x′2x1x′0 ⊕ x′3x2x1x0 ⊕ x′3x′2x′1 ⊕ x′2x′1x0
Sbox(x3)←− x3x′2x1 ⊕ x3x′2x0 ⊕ x′3x′1x′0 ⊕ x′3x2x1 ⊕ x′3x1x0

(10)

In order to avoid such an inefficient Sbox implementation of Equation (10), we imple-
mented the optimal Sbox quantum circuit using the LIGHTER-R tool. The LIGHTER-R tool
generates quantum circuits using graph-based MITM search algorithm according to the
input and output values. Input qubits of the quantum circuit are used as the output qubits
after the Sbox operation is completed. Therefore, there is no need to allocate additional
qubits, and the graph-based MITM search algorithm matches output values more simply
than the Equation (10). By using the LIGHTER-R tool, we can implement an optimized
PRESENT Sbox quantum circuit with no additional qubits and low gate cost. The optimized
implementation of PRESENT Sbox quantum circuit using the LIGHTER-R is shown in
Algorithm 2.

Algorithm 2 Quantum circuit using LIGHTER-R for Sbox of PRESENT block cipher

Input: 4-qubit input x(x3, x2, x1, x0) (before entering Sbox).
Output: 4-qubit output x(x3, x2, x1, x0) (after performing Sbox).

1: x1 ←− CNOT (x2, x1)
2: x3 ←− Toffoli (x1, x2, x3)
3: x2 ←− Toffoli (x3, x1, x2)
4: x1 ←− Toffoli (x0, x2, x1)
5: x2 ←− CNOT (x3, x2)
6: x3 ←− X (x3)
7: x2 ←− CNOT (x1, x2)
8: x0 ←− CNOT (x3, x0)
9: x1 ←− CNOT (x0, x1)

10: x0 ←− X (x0)
11: x3 ←− Toffoli (x1, x2, x3)
12: return x(x1, x3, x2, x0)
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The arrangement of input quibts and output qubits was changed in Algorithm 2. It
can be performed with Swap gates on x1, x3 and x1, x2. However, this can be done by
qubit relabeling to treat x1 as x2, x2 as x3, and x3 as x1 without Swap gates. Swap gates are
used in the implementation, but not counted as resources. Figure 9 shows PRESENT Sbox
quantum circuit.

𝑥!

𝑥"

𝑥#

𝑥$ X

X

𝑥"

𝑥$

𝑥#

𝑥!

present

Figure 9. Quantum circuits for Sbox of PRESENT block cipher.

3.1.3. Permutation of PRESENT Block Cipher

The permutation operation changes the bit order as shown in Table 2. It can be
implemented using only Swap gates. In Table 2, 4 bits colored in red (0, 21, 42, and 63)
do not change the position, but all 60 bits except 4 bits colored in red change the position.
Moreover, 60 bits are grouped into 20 3-bit (e.g., blue) to exchange bit positions with each
other. This can be done with two Swap gates as follows.

Swap(b1, b4), Swap(b4, b16) (11)

The permutation is completed by performing this step by 19 more times for the
remaining 57 bits. Finally, 40 Swap gates are used. Otherwise, this can be implemented
with qubits relabeling. Therefore, Swap gates are not counted as gate cost. Therefore, the
quantum cost for Permutation of PRESENT block cipher is zero.

3.1.4. Keyschedule of PRESENT Block Cipher

The PRESENT block cipher can use 80-bit key or 128-bit key. Since they are similar,
this paper only describes the 80-bit key schedule version.

The key is rotated by 19 bits to the right and it can be done using only Swap gates.
After the rotation operation, the Sbox of Algorithm 2 is performed on the leftmost 4 qubits
(k79, k78, k77, and k76). Finally, the round i is exclusive-ored to k19, k18, k17, k16, and k15 and
the leftmost 64 qubits are extracted and used as round key. XORing round i can be done
with X gates at the position, where the i-th bit is set to 1. For example, when i = 1, an X
gate is performed on k15, when i = 2, an X gate is performed on k16, and when i = 3, an X
gate is performed on k15 and k16. The detailed process for Keyschedule of PRESENT-80 is
given in Algorithm 3.

Algorithm 3 Quantum circuits for Keyschedule of PRESENT-80

Input: 80-qubit key K(k0, ..., k79).
Output: 64-qubit round key RK(rk63, ..., rk0).

1: k←− k ≫ 19 using Swap gates
2: k79, k78, k77, k76 ←−Sbox (k79, k78, k77, k76)
3: k19, k18, k17, k16, k15 ←−X (k19, k18, k17, k16, k15) according to round i
4: return K(k79, ..., k16)

3.2. Quantum Circuit for GIFT Block Cipher

In the presented GIFT−n/128 quantum circuit, only (n+128)-qubits are allocated
respectively to assign plaintext (n-bit ) and key (128-bit). Therefore, it is optimized without
additional qubits. All operations, including AddRoundkey, Sbox, Permutation, Constant
XOR, and Keyschedule, were optimized in terms of quantum resources.
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3.2.1. Sbox of GIFT Block Cipher

In [4], the author of GIFT block cipher presented two versions of Sbox. One is opti-
mized for implementation in software and the other is optimized for implementation in
hardware. Detailed processes are given in Algorithms 4 and 5 for software-oriented and
hardware-oriented, respectively. Comparing these two Sboxes, the hardware-friendly Sbox
offers more advantages over the software-friendly Sbox when it comes to quantum circuits.

Algorithm 4 Software-oriented implementation of GIFT Sbox

Input: 4-bit input x(x3, x2, x1, x0) (before entering Sbox).
Output: 4-bit output x(x3, x2, x1, x0) (after performing Sbox).

1: x1 ← x1 XOR (x0 AND x2)
2: t ← x0 XOR (x1 AND x3)
3: x2 ← x2 XOR (t OR x1)
4: x0 ← x3 XOR x2
5: x1 ← x1 XOR x3
6: x0 ← NOT x0
7: x2 ← x2 XOR (t AND x1)
8: x3 ← t
9: return x(x3, x2, x1, x0)

In the software-friendly Sbox operation (see Algorithm 4), the input and output of
operations are different (e.g., x0 = x3 XOR x2). Qubits in quantum computers must be
initialized to zero to overwrite the new value. In order to initialize a qubit to zero, the same
value must exist in another qubit. The Algorithm 4 is designed as a quantum circuit Since
the new value cannot be overwritten (e.g., x0 ← x3 XOR x2, we have to allocate a new
qubit and also allocate an additional qubit for temporary storage. On the other hand, we
can see that in the hardware-oriented Sbox design of Algorithm 5, the input and output of
the operation are always the same.

Algorithm 5 Hardware-oriented implementation of GIFT Sbox

Input: 4-bit input x(x3, x2, x1, x0) (before entering Sbox).
Output: 4-bit output x(x3, x2, x1, x0) (after performing Sbox).

1: x1 ← x1 XNOR (x0 NAND x2)
2: x0 ← x0 XNOR (x1 NAND x3)
3: x2 ← x2 XNOR (x0 NOR x1)
4: x3 ← x3 XNOR x2
5: x1 ← x1 XNOR x3
6: x2 ← x2 XNOR (x0 NAND x1)
7: return x(x0, x2, x1, x3)

Therefore, we were able to optimize the quantum circuit by choosing a hardware-
friendly Sbox. The resulting value can be stored in qubits that are entered into the operation.
For example, the quantum circuit for line 4 of Algorithm 5 corresponds to lines 9 and 10 of
Algorithm 6. The operation continues on x3 without allocating additional qubits.

Therefore, no additional qubits are used and an optimized 4-qubit Sbox quantum
circuit can be implemented. The implementation of GIFT Sbox quantum circuit is described
in Algorithm 6.

The NOT operation is performed twice on lines 1, 2, 3 and 6 of the Algorithm 5. Two
NOT operations cancel each other. The arrangement of input and output qubits is altered
in Algorithm 6. It can be performed with one Swap gate on x0, x3. As mentioned earlier,
Swap gates are not considered quantum resources. Quantum circuit for Sbox of GIFT block
cipher is described in Figure 10.
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Algorithm 6 Quantum circuits for Sbox of GIFT block cipher

Input: 4-qubit input x(x3, x2, x1, x0) (before entering Sbox).
Output: 4-qubit output x(x3, x2, x1, x0) (after performing Sbox).

1: x1 ←− Toffoli (x0, x2, x1)
2: x0 ←− Toffoli (x1, x3, x0)
3: x0 ←− X (x0)
4: x1 ←− X (x1)
5: x2 ←− Toffoli (x0, x1, x2)
6: x2 ←− X (x2)
7: x0 ←− X (x0) (reverse)
8: x1 ←− X (x1) (reverse)
9: x3 ←− CNOT (x2, x3)

10: x3 ←− X (x3)
11: x1 ←− CNOT (x3, x1)
12: x1 ←− X (x1)
13: x2 ←− Toffoli (x0, x1, x2)
14: return x(x0, x2, x1, x3)
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Figure 10. Quantum circuit for Sbox of GIFT block cipher.

3.2.2. Permutaiton of GIFT Block Cipher

After the Sbox operation, the permutation of Table 4 is performed. Similar to the
permutation of PRESENT block cipher, bit position changes can be made using Swap
gates and are not counted as quantum resources. Therefore, by relabeling the qubits, the
permutation of GIFT block cipher can be done without quantum resources.

3.2.3. AddRoundkey of GIFT Block Cipher

In the AddRoundkey operation, the round key RK (n/2-bit) is XORed to the block B
(n/2-bit). The XOR operation can be done with the CNOT gate. At this time, the result of
qubit should be B. The AddRoundkey of GIFT-64/128 and GIFT-128/128 block ciphers
are similar, only the number of bits is different. In the GIFT-128/128 block cipher, double
the CNOT gates are used compared to the GIFT-64/128 block cipher. Quantum circuits for
Addroundkey of GIFT-64/128 and GIFT-128/128 block ciphers are shown in Algorithm 7
and Algorithm 8, respectively.

Algorithm 7 Quantum circuit for AddRoundkey of GIFT-64/128 block cipher

Input: 64-qubit block B(b63, ..., b0), 32-qubit round key RK(rk31, ..., rk0).
Output: 64-qubit block B(b63, ..., b0) after AddRoundKey.

1: for i = 0 to 15 do
2: b4i ←− CNOT (rki, b4i)
3: b4i+1 ←− CNOT (rki+16, b4i+1)
4: end for
5: return B(b63, ..., b0)
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Algorithm 8 Quantum circuits for AddRoundkey of GIFT-128/128 block cipher

Input: 128-qubit block B(b127, ..., b0), 64-qubit round key RK(rk63, ..., rk0).
Output: 128-qubit block B(b127, ..., b0) after AddRoundKey.

1: for i = 0 to 31 do
2: b4i+1 ←− CNOT (rki, b4i+1)
3: b4i+2 ←− CNOT (rki+32, b4i+2)
4: end for
5: return B(b127, ..., b0)

3.2.4. Constant XOR of GIFT Block Cipher

The round constant C in Table 5 and the single bit are XORed to block B. Since the
constant C for each round is already set, we performed X gates on b23, b19, b15, b11, b7, and
b3 only for positions where bit of C is one. When the round constant C is 3 in round 2, c0
and c1 are 1. Therefore, the X gate (b3) and X gate (b7) are performed. For a single bit, an
X gate is always performed on bn−1. In this way, no qubits are used for Constant XOR.
Moreover, CNOT gates are not used; only X gates are used. The implementation of the
GIFT-n/128 constant XOR quantum circuit is described in Algorithm 9.

Algorithm 9 Quantum circuits for constant XOR of GIFT-n/128 block cipher

Input: bn−1, b23, b19, b15, b11, b7, b3 of n-bit block B.
Output: bn−1, b23, b19, b15, b11, b7, b3 of n-bit block B after Constant XOR.

1: b23, b19, b15, b11, b7, b3 ←−X (b23, b19, b15, b11, b7, b3) according to round constant C
(c5, c4, c3, c2, c1, c0)

2: bn−1 ←− X (bn−1)
3: return bn−1, b23, b19, b15, b11, b7, b3

3.2.5. Keyschedule of GIFT Block Cipher

In GIFT, the state of the key is updated after the round key is used, which is shown in
Equation (9). The Keyschedule of PRESENT block cipher uses Sbox and round i, while the
GIFT only changes the bit positions of key K. It can be done using only Swap gates, and
using the method of relabeling qubits does not require quantum resources.

4. Evaluation

Proposed PRESENT and GIFT implementations are evaluated by using the quantum
computer emulator IBM ProjectQ. IBM ProjectQ offers a variety of quantum computer
compilers and can estimate quantum resources of quantum circuits. One of the quantum
compilers, the resource counter, analyzes CNOT gates, Toffoli gates, X gates, and the qubits
used in the quantum circuit and estimates the circuit depth. Proposed implementations
focused on optimizing the number of quantum gates, circuit depth, and qubits.

In Table 6, quantum resources to implement PRESENT and GIFT symmetric key
cryptography as quantum gates are evaluated. In addition, the results of quantum im-
plementation of other block ciphers, which have been studied recently, are shown. We
compare proposed PRESNET and GIFT quantum circuit implementations with the SIMON,
SPECK, and CHAM quantum circuit implementations.

First, the optimal number of qubits was achieved, because qubits were only used to
allocate plaintext and key. We generate a round key for each round, directly. By using this
method, we use round key and update it as the next round key. Therefore, we allocate qubits
for only the first key and recycle them to the end. In the implemented quantum circuit,
no qubits were used until the completion of the final round. Since large-scale quantum
computers have not yet been developed, optimizing the number of qubits required for
quantum circuits should be considered.

Second, in terms of quantum gates, PRESENT and GIFT belong to the low-cost group
along with SIMON which is designed to be hardware friendly. When we implement
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quantum circuits, a relatively small number of quantum gates were used to perform the
rounds. Particularly, we were able to save a lot of quantum gate cost by using the LIGHTER-
R tool for PRESENT and hardware-friendly Sbox for the GIFT block cipher. The cost of
quantum gates required for Sbox could be reduced, and as a result, overall quantum circuit
optimization was achieved.

Lastly, in terms of circuit depth, PRESENT and GIFT block ciphers are highly op-
timized compared to other block ciphers. The exact depth of SPECK and CHAM block
ciphers has not been estimated, but it is higher than that of SIMON block cipher. In the
case of AddRoundKey and Constant XOR of GIFT and PRESENT block ciphers, qubits
do not interact with each other. Each can be performed with one parallel gate operation
(depth of 1). The operation that takes up the most depth is Sbox, which is 9 for PRESENT
Sbox and 10 for GIFT Sbox. The GIFT block cipher only performs Sbox for block B of each
round, whereas the PRESENT block cipher uses Sbox for Keyschedule as well as block B.
In the PRESENT block cipher, Sbox operation of Keyschedule and Sbox operation of block
B are independent each other. These operations are executed in parallel way. Therefore,
the depth is the same as that when Sbox was executed once. With these features, GIFT
and PRESENT block ciphers are highly optimized in terms of depth using a small depth
in each round. Reducing the depth of the quantum circuit is important for optimization,
because the overall execution time is shortened [17]. The reason that PRESENT-64/80 and
PRESENT-64/128 block ciphers have the same depth is because the number of rounds is
the same (31 rounds).

Table 6. Comparison of quantum resources to implement PRESENT, GIFT, and other block ciphers.

Quantum Circuit Qubits Toffoli Gates CNOT Gates X Gates Circuit Depth

PRESENT-64/80 (This work) 144 2108 4683 1118 311
PRESENT-64/128 (This work) 192 2232 4838 1164 311

GIFT-64/128 (This work) 192 1792 1792 3261 308
GIFT-128/128 (This work) 256 6144 6144 10,953 528

SIMON-64/128 [9] 192 1408 7396 1216 2643
SIMON-128/128 [9] 256 4352 17,152 4224 8427
SPECK-64/128 [12] 193 3286 9238 57 -
SPECK-128/128 [12] 257 7942 22,086 75 -
CHAM-64/128 [12] 196 2400 12,285 240 -

CHAM-128/128 [12] 268 4960 26,885 240 -

According to [18], to attack block ciphers with Grover’s search algorithm, known plain
text and ciphertext pairs are required. In detail, r = (key length/block size) pairs are used.
In [19], they estimated the quantum gates required to apply Grover’s search algorithm in
parallel to AES quantum circuit implementations. To apply the proposed PRESENT and
GIFT quantum circuits to the Grover search algorithm, (1+ r · q) qubits are used. q is qubits
of Table 6.

The PRESENT block cipher requires 4 instances since r = 2, therefore the number
of gates is four times the Table 6 result. Since the r of GIFT-64/128 block cipher is 2, 4
instances are required, therefore the number of gates is four times the Table 6 result. Since r
of GIFT-64/128 block cipher is 1, 2 instances are required, therefore the number of gates is
two times the Table 6 result. This is why GIFT-64/128 block cipher in Table 7 requires more
qubits than GIFT-128/128 block cipher. For parallel search, 2·(key length)·(r− 1) CNOT
gates are additionally used. In Table 7, quantum resources to apply PRESENT and GIFT
algorithms to the oracle of Grover’s search are shown.
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Table 7. Quantum resources to apply PRESENT and GIFT algorithms to the oracle of Grover’s
search algorithm.

Symmetric Key Cryptography Qubits Toffoli Gates CNOT Gates X Gates

PRESENT-64/80 289 8432 18,892 4472
PRESENT-64/128 385 8928 19,608 4656

GIFT-64/128 385 7168 7424 13,044
GIFT-128/128 257 12,288 12,288 21,906

5. Conclusions

We designed efficient implementations of PRESENT and GIFT block ciphers on quan-
tum computers. Our quantum circuits for PRESNET and GIFT block ciphers achieved an
optimal number by minimizing qubits, quantum gates, and circuit depth. Based on the
proposed method, we estimated quantum resources to apply the Grover search algorithm.

Future work is to implement another block cipher as a quantum circuit to evaluate
quantum resources for the Grover search algorithm. It seems very meaningful to estimate
quantum resources for implementing candidate block ciphers in lightweight cryptography
competition hosted by NIST (https://csrc.nist.gov/projects/lightweight-cryptography,
accessed on 10 May 2021). Many block ciphers have been proposed, and estimating the
quantum resources for these block ciphers would make for interesting research. The result
of FELICS competition (https://www.cryptolux.org/index.php/FELICS, accessed on 10
May 2021) [20] is another candidate. In this competition, a lot of lightweight symmetric
key cryptography algorithms were evaluated on embedded processors. Comparing the
performance of whether there is a relationship between quantum computers and embedded
processors is an attractive research opportunity.
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