
applied
sciences

Article

A Model with Iterative Trials for Correcting Logic Errors in
Source Code

Taku Matsumoto * , Yutaka Watanobe * and Keita Nakamura

����������
�������

Citation: Matsumoto, T.; Watanobe,

Y.; Nakamura, K. A Model with

Iterative Trials for Correcting Logic

Errors in Source Code. Appl. Sci. 2021,

11, 4755. https://doi.org/10.3390/

app11114755

Academic Editor: Santi Caballé

Received: 30 March 2021

Accepted: 18 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Computer Science and Engineering, The University of Aizu, Tsuruga, Ikki-machi,
Aizu-Wakamatsu, Fukushima 965-8580, Japan; keita-n@u-aizu.ac.jp
* Correspondence: d8201105@u-aizu.ac.jp (T.M.); yutaka@u-aizu.ac.jp (Y.W.)

Abstract: It is difficult for students and teachers to detect and correct logic errors in source code.
Compilers and integrated development environments (IDEs) have the ability to detect and correct
syntax errors but it is also difficult for them to detect and correct logic errors. Although many machine
learning approaches have been proposed that can show correction candidates for logic errors, they
do not provide guidance concerning how the user should fix them. In this paper, we propose a model
for correcting logic errors in a given source code. The proposed model realizes debugging of multiple
logic errors in the source code by iterative trials of identifying the errors, correcting the errors, and
testing the source code. In this model, in the first stage, a list of correction candidates is provided
by a deep learning model, and then the list is given to an editing operation predictor that predicts
the editing operation for the correction candidate. To learn the internal parameters of the proposed
model, we use a set of solution codes created to solve the corresponding programming tasks in a real
e-learning system. To verify the usefulness of the proposed model, we apply it to 32 programming
tasks. Experimental results show that the correction accuracy is, on average, 58.64% higher than that
of the conventional model without iterative trials.

Keywords: logic error correction; machine learning; deep learning; e-learning; online judge system;
programming education

1. Introduction

Programming education has become indispensable for fostering engineers who will
be active in today’s advanced information society. One of the ways to develop program-
ming skills is through coding exercises with repetitive problem-solving. Therefore, many
e-learning systems have been developed to support programming education (see, for
example, [1–3]). However, programming, which requires knowledge of syntax and logical
thinking, is a difficult process, and learners still tend to stumble, especially in debugging.
Among them, logic errors in compilable code are particularly troublesome. The logic error
is a token in the source code that causes unexpected behaviors, which can be detected by
runtime errors, wrong output results, and resource limit exceeded. So, since programming
learners may have little knowledge and experience in programming, it is not easy for
them to correct logic errors in source code. This is a problem faced not only by novice
programmers but also by advanced programmers and instructors. If they cannot identify
the logic errors in the source code, they will spend more time debugging and may lose
their motivation in programming. Therefore, we believe that identifying logic errors in the
source code can support programming learners.

To correct logic errors in source code, it is necessary to understand both the specifi-
cations of programming tasks and programming languages. The learner then needs to
iterate over the debugging process until the program meets the specifications of the given
programming task. Generally, in debugging work, logic errors are identified, corrected, and
tested repeatedly. It is important for the testing to consider whether the expected results are
obtained with acceptable time/space computational resources. Although a number of test

Appl. Sci. 2021, 11, 4755. https://doi.org/10.3390/app11114755 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4574-6979
https://www.mdpi.com/article/10.3390/app11114755?type=check_update&version=1
https://doi.org/10.3390/app11114755
https://doi.org/10.3390/app11114755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114755
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4755 2 of 20

cases can enable the learner to confirm the existence of logic errors, it is often difficult to
identify their location. Therefore, if the location of logic errors in the source code could be
automatically identified and the errors then corrected, this would reduce the time required
for debugging. Furthermore, additional support can be provided by identifying the true
error from the correction candidates and showing the appropriate editing operations.

In this paper, to support programmers, especially for learners, we propose a debugging
model for automatically correcting multiple logic errors in given source codes. This model
realizes the detection of logic errors by learning the structure of solution codes stored in
the database (DB) of a certain e-learning system. This system provides the user with many
programming tasks, and the user can submit their solution codes. A set of test cases (and a
special validator) is prepared for each programming task as judge data, and the automatic
assessment system [4] rigorously tests whether the solution code meets the specifications of
the corresponding task. Solution codes passed by the judge are considered as correct codes
and other codes are incorrect with logic errors. The learning cycle using this system can be
considered as test-driven development because it tests the source code using the test cases
that are already prepared in the system. Our proposed model iteratively attempts to detect
and correct errors and test the source code. The model consists of two submodels. The first
is the Correct Code Model (CCM), which generates a sequence of tokens of correct code by
learning the structure of a set of correct codes. By comparing the given source code with
the prediction result, CCM can enumerate multiple correction candidates for logic errors.
The second is the Editing Operation Predictor (EOP), which indicates the editing operation
for the correction candidate obtained by CCM. To train and evaluate the proposed model,
we employed solution codes accumulated in an online judge system [5] that provides many
programming tasks and automatic assessments. The experimental results show that the
correction accuracy of the proposed model is, on average, 58.64% higher across 32 tasks
compared to the conventional model without iterative trials.

The contributions of this paper are as follows.

• Development of a debugging model that iteratively detects and corrects errors and
tests the source code.

• Development of EOP with CCM that can predict the location of the errors, possible
alterations as well as editing operations.

• Experiment of the proposed model conducted with real solution codes oriented to
programming tasks obtained from an online judge system.

• Adaptation to use cases assuming that the user debugs incorrect code using the cor-
rection candidates and editing operations predicted by the proposed model. We also
discuss the adaptation for both programming education and software engineering.

The rest of this paper is organized as follows. Section 2 introduces related research on
logic errors and explores current issues. Section 3 describes the proposed model. Section 4
puts forward an experimental method for verifying the usefulness of the proposed model.
Section 5 describes the experimental results and considerations. Section 6 concludes this paper.

2. Related Works

In this section, first, we should mention current approaches and methods for iden-
tifying and correcting errors focusing on educational scenes. We also consider related
technologies in debugging oriented to software engineering and other purposes.

2.1. Approaches and Methods for Educational Scenes

In traditional learning methods in programming and software engineering exercises,
learners can use compilers and IDEs to detect errors. However, as mentioned in the
Introduction, to correct logic errors, learners need to take steps such as checking the
execution results. Therefore, it is a burden not only for learners but also for instructors who
have many students in the classroom.

Luxton-Reilley et al. report on existing approaches and future challenges in intro-
ductory programming [6]. While many debugging tools have been studied that focus on

Appl. Sci. 2021, 11, 4755 3 of 20

syntax errors in source code, debugging tools that focus on logic errors have also been
increasing. They also reported that although many debugging tools have been developed,
the future issue is whether learners can understand the complexity of these debugging
tools and debug them efficiently.

In order to help learners who cannot debug the source code using compilers and IDEs
completely, many studies have been conducted to enhance the error messages output by
them [7,8]. These studies reported that by analyzing the source code created by the learner
and the error messages produced by the compiler, they were able to reduce the number
of syntax errors encountered by the learner. However, since logic errors depend on the
specifications of the programming task, they do not have the same rules as the syntax of a
programming language. Therefore, debugging of logic errors considering the specifications
of programming tasks is a major issue.

To support the debugging of logic errors by novice programmers in educational
scenes, many studies have been conducted using source code groups created to meet the
specifications of a certain task. Yoshizawa et al. proposed a static analysis method that
considers the structure of the source code [9]. For this, the correct code group is converted
into Abstract Syntax Trees (ASTs). The source code to be debugged is also converted to AST.
By comparing the structure of the converted AST and the prepared ASTs, the position of the
logic error and the type of the logic error can be obtained with high accuracy. In machine
learning-based approaches, Teshima et al. proposed a CCM based on the LSTM Language
Model (LSTM-LM) and correct codes [10]. LSTM-LM can indicate the position of logic
errors in a given incorrect code and suggest possible words by learning the structure of the
correct code. Rahman et al. improved this model by applying the Attention Mechanism
with LSTM (LSTM-AttM) [11,12]. They also employed a bidirectional LSTM to detect logic
errors and to present suggestions for corrections [13]. The models can also be applied to
code completion [14]. Although the machine learning model used for error detection is
different, logic error detection and correction are realized by learning the structure of the
correct code.

These methods can predict the location of logic errors in the source code and their
proposed fixes, but they cannot suggest to the learner how to correct the source code using
this information. Moreover, even if the source code can be corrected using the predicted
results, the corrected source code may still contain logic errors. Therefore, these methods
cannot guarantee that the learner will be able to fix all the logic errors in the source code.

Our model can provide step-by-step information needed to debug logic errors: the
location of the logic errors, its proposed fix, its editing operation, and whether the source
code is correctable. This means that learners and instructors are given step-by-step oppor-
tunities to consider what kind of debugging they should carry out, depending on their
proficiency in programming skills. Therefore, our model can provide pedagogical support
that takes into account the learner’s learning process, unlike the direct and immediate
debugging support found in common software development tools.

2.2. Technologies in Debugging

Pre-trained models have been widely used to solve natural language processing
tasks [15]. OpenAI proposed Generative Pre-Trained Transformer 3 (GPT-3) as state-of-
the-art language model in 2020 [16]. The model is capable of generating sentences that are
comparable to those written by humans. GPT-3 was realized by using a huge number of
parameters of the model and a large amount of training data.

In recent years, machine learning techniques have been utilized to solve complex
programming-related problems [17]. First, we should emphasize the recent evolution of IDE
extensions. Functions such as error highlighting, completion, and refactoring are essential
for software development. Such support can be realized by machine learning approaches
with data analysis. For example, the latest technology in Visual Studio IntelliCode [18] has
had a major impact on software engineering. In this approach, artificial intelligence uses

Appl. Sci. 2021, 11, 4755 4 of 20

huge GitHub repositories for learning and provides intelligent completion capabilities that
take into account not only listing variables and functions but also other situations.

Many automatic bug fixing methods have been proposed for quickly fixing software
bugs [19]. Drain et al. realizes the detection and fix bugs using the standard transformer [20]
as a language model based on source code extracted from GitHub repositories [21]. Ueda
et al. have proposed the fix method by mining the editing histories in GitHub [22]. These
methods make it possible to provide debugging support by using source codes, bug reports,
edit histories, and so on.

Many methods have been proposed to fix source code using the correction candidates
predicted by machine learning models. To correct multiple syntax errors in a source code,
Gupta et al. proposed Deepfix [23], which iteratively corrects the errors in the source code.
In this method, the source code can be modified line-by-line using one correction candidate
predicted by the Sequence to Sequence (Seq2Seq) attention network. Hajipour et al. [24]
proposed Samplefix, which iteratively corrects errors using a Seq2Seq model. Each time
the source code is modified, these methods use a compiler to verify whether an error still
exists. It was shown that the accuracy of correcting syntax errors in the source code can be
improved by making repeated corrections. However, although source code verification
using a compiler can correct syntax errors, it is difficult to find and correct logic errors.

Gupta et al. proposed a method for predicting logic error locations using the tree
convolutional neural network and AST [25]. Experimental results showed that the per-
centage of source code that contains true errors in the lines predicted by this model was
less than 30% when the number of candidate lines is one, and 80% when the number
of candidate lines is 10. However, a large number of detection candidates can make it
difficult for the user to find the true logic error. Therefore, there is a tradeoff between
accuracy and increased number of detection candidates, as too high a number can cause
the user to be overloaded with information. Vasic et al. proposed a program modification
method leveraging a joint model using an Long Short-Term Memory (LSTM) network
and an attention mechanism to solve the variable misuse problem [26]. Publicly available
data were used to verify the accuracy of identifying and correcting variable misuse points.
However, although variable misuse can be considered as one type of logic error, it cannot
be used to identify other types of logic errors.

There is an approach called Fault Localization [27] that predicts the location of errors
in the source code by using tests. The bug position is predicted using execution route
information from the test cases. However, although it is possible to predict the location
of the error using these methods, they do not provide instructions concerning how to
correct the error. Lee et al. presented a method for correcting logic errors based on fault
localization to support learners of functional languages [28].

Matsumoto et al. [29] considered a hybrid architecture of static analysis [9] and CCM
for logic error detection [10]. They concluded that CCM is advantageous as it can detect
more logic errors. Furthermore, they proposed a method for determining the threshold
value for controlling the number of candidates indicated by the CCM to reduce the over-
load [30]. A set of incorrect codes was applied for CCM training to determine the threshold.
The authors suggested that a threshold suitable for each individual programming task
should be determined as this threshold can fluctuate for different tasks.

In summary, many methods have been proposed to detect errors in source code.
Various researchers use machine learning-based models to detect errors in source code and
use that information to modify the code. However, although there are many methods for
correcting syntax errors, there are few debugging models for logic errors.

3. Proposed Model

This section introduces a proposed model using the LSTM-LM and Support Vector
Machine (SVM). First, we explain CCM used to identify logic errors in the source code.
Next, the proposed EOP will be described.

Appl. Sci. 2021, 11, 4755 5 of 20

3.1. Overview of Proposed Model

Figure 1 outlines the proposed model for correcting multiple logic errors in a given
source code. The model debugs by iteratively identifying and correcting logic errors and
testing the modified code. This model consists of CCM and EOP. The EOP predicts the
editing operation from the correction candidates obtained by CCM. Based on the obtained
operations, EOP seeks to correct the logic error in the source code. Then, the model tests
whether the modified source code is correct or not. If the source code is incorrect, it again
becomes input data for CCM. In this way, the model can debug source code containing
multiple logic errors.

Tokenization

of the source code

Correct Code Model

(Sec. 3.2)

Database

Enumeration of logic errors

(Algorithm 1)

Correction

of the source code

Correctable

Editing Operation Predictor

(Sec. 3.3)

A source code

with logic errors

Non-

correctable

Testing

Localize errors?

Correct codes

Yes

AcceptReject

No

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d" , x*x*x);

return 0;

}

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d¥n" , x*x*x);

return 0;

}

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d¥n ", x*x*x);

return 0;

}

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d¥n" , x * x * x);

return 0;

}

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d!" , x * x * x);

return 0;

}

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d¥n" , x * x * x);

return 0;

}

…

User 1

User 2

User 𝑛

add

'¥' and 'n'

delete

' '(space)

replace

! to '¥' and 'n'

Learning

Learning

Source codes

created for meeting

the specifications of

a given task

Proposed model

pairs of incorrect code and correct code

Figure 1. Overview of the proposed model.

To build the proposed model, a set of source codes oriented to the specification of a
programming task is required. CCM is constructed by LSTM-LM, which has learned the
structure of a set of correct codes to predict the position of logic errors. EOP can predict the
editing operation for the correction candidate by learning the editing operation performed
between the incorrect code and the corresponding correct code.

3.2. Correct Code Model (CCM)
3.2.1. Long Short-Term Memory Language Model (LSTM-LM)

The LSTM-LM is one of the RNNs that can handle time-series data. LSTMs [31] have
the useful characteristic of being able to prevent gradient disappearance and gradient
explosion. The language model [32] enables sentence generation and machine translation

Appl. Sci. 2021, 11, 4755 6 of 20

based on the structure of the learned data. An LSTM-LM can be constructed by combining
the following three layers: an embedding layer, an LSTM layer, and a softmax layer
(Figure 2).

ID: 𝒙𝒕

Embedding layer

LSTM layer

Probabilities: 𝒑𝒕

Softmax layer

𝒉𝒕−𝟏 𝒉𝑡

Figure 2. LSTM language model (LSTM-LM).

The source code is tokenized based on the vocabulary table. Variables, functions,
reserved words, characters, and so on are considered vocabulary entries for each pro-
gramming language. A unique identifier (ID) is assigned to each vocabulary entry. Since
the token sequence is still a string, it is converted into a sequence of numerical values
x = [x1, x2, . . . , xt, . . . , xn] based on the vocabulary table.

The embedding layer embeds a given input sequence x into the vector e = [e1, e2,
. . . , et, . . . , en]. Then, the LSTM layer uses the given vector e as an input to calculate the
hidden output h = [h1, h2, . . . , ht, . . . , hn]. The hidden output ht obtained from the LSTM
layer is converted into a word-by-word probability distribution p by the softmax layer.

CCM is constructed by learning the internal parameters of LSTM-LM using a set of
correct codes. CCM learns the internal parameter by using the sequence x as the learning
data. The probability pt outputted by CCM indicates the probability distribution of the
next token. By using the function argmax for the probabilities, CCM can output predicted
sequence x̂ = [x̂1, x̂2, . . . , x̂t, . . . , x̂n] from the input sequence x.

3.2.2. Localization of Logic Errors by CCM

Algorithm 1 localizes logic errors in a given source code by comparing the input
sequence x with the prediction result obtained by CCM. If the sequence x follows the
correct code, the token xt+1 at the time t + 1 and the token x̂t+1 predicted by CCM are
equal. On the other hand, if the sequence x is an incorrect code, the token xt+1 at the time
t + 1 and the token x̂t+1 predicted by CCM may be different. This means that the token
xt+1 of the sequence is unlikely to appear as a sequence of tokens in the set of correct codes.
Therefore, the token detected by Algorithm 1 and its position are likely to be logic errors.
The procedure ListCorrection in the Algorithm 1 shows the positions of three tokens which
are correction candidates: xt, xt+1, and x̂t+1.

Appl. Sci. 2021, 11, 4755 7 of 20

Algorithm 1 listCorrection = Localization of logic errors (x).

p← CCM(x)
listCorrection← []
for t = 0 . . . x. length do

x̂t+1 ← arg max(pt)
if xt+1 6= x̂t+1 then

listCorrection.append([arg min(pt), xt, xt+1, x̂t+1, t, t + 1, t + 2])
listCorrection.sort() by probabilities
return listCorrection

3.3. Editing Operation Predictor (EOP)

If the token x̂t+1 predicted by Algorithm 1 and the original token xt+1 do not match,
the source code needs to be edited using the predicted token x̂t+1 for the position of the
token xt and the token xt+1. The editing operations are considered as follows using the
three tokens.

insert insert the predicted token x̂t+1 between token xt and the next token xt+1.
delete delete the next token xt+1 between token xt and x̂t+1.
replace replace the next token xt+1 with the predicted token x̂t+1.

Editing operations can be predicted by using the tokens xt, xt+1 and x̂t+1. This assumes
that the programmer can edit the source code if he/she knows the token and position to
modify. EOP predicts the editing operation from the structure of the source code x and the
three tokens xt, xt+1 and x̂t+1.

Figure 3 shows how the model edits the source code based on the correction candidates
obtained from Algorithm 1. The correction candidate with the highest possibility of a logic
error is selected from the correction candidates list obtained from Algorithm 1. The selected
correction candidate is converted into feature vectors using the vocabulary table used for
tokenizing. Four feature vectors of the same size as the vocabulary table are created. They
are a vector for the position of token xt, a vector for the position of token xt+1, a vector for
the position of token x̂t+1, and a total number of each vocabulary in the source code. The
concatenation of these four vectors is used as the EOP input.

Construction of EOP

Editing operations of source code can be classified into three categories: insertion,
deletion, or replacement of tokens. Therefore, we considered the prediction of edit op-
erations for source code as a multi-classification problem. To construct the EOP, we use
SVM [33], which is often used to solve multi-classification problems.

To learn the internal parameters of EOP, feature vectors and teacher labels are extracted
using a set of source codes obtained from the DB. The submission logs of all users are
extracted from the set of source codes, and a set of pairs, each of which consists of a correct
and an incorrect code, are employed as learning data. The extracted pair corresponds to an
editing process from an incorrect code to a correct code. By calculating the Shortest Editing
Script (SES) that provides the editing operations between two source codes, it is possible to
obtain the editing operations for the candidates to be corrected. The SES is calculated from
the incorrect and correct codes by dynamic programming. Incorrect code and correct code
are converted into an ID sequence in advance using the vocabulary table. By comparing
the ID sequence of the incorrect code with the position of the SES, it is possible to label
what kind of editing operation the token in the SES can perform on the editing position.
EOP learns these feature vectors and labels for editing operations using SVM.

Appl. Sci. 2021, 11, 4755 8 of 20

EOP

add/delete/replace

int main (){

int x;

scanf ("%d" ,& x);

printf ("%d" , x * x);

return 0;

}

A source code

with logic errors

Position

𝒕
Candidate

𝒙𝒕

Next token

𝒙𝒕+𝟏

Predicted token

ෝ𝒙𝒕+𝟏

Probability of the next token

𝒑(𝒙𝒕+𝟏)

𝑡 𝑘1 𝑘2 𝑘3 0.00001

𝑡 0 0 0 0 0 𝑡 + 2 00 𝒕 + 𝟏 0 02 3 4 5

A correction candidate

Word ID

𝒌𝟏 1

𝒌𝟐 2

𝒌𝟑 3

𝒌𝟒 4

+++

Vocabulary

1 2 3 41 2 3 4 1 2 3 4 1 2 3 4

2 3 4 5 𝒕 0 0 0 0 𝒕 + 𝟏 0 0 0 0 𝒕 + 𝟐 0

Standardization

Figure 3. Role of the EOP.

3.4. Iterative Trials

The source code can be automatically corrected by combining CCM and EOP with
Algorithm 1. If the source code modified by the model does not meet the specifications of
the given programming task, it may need to be corrected again. In this model, the source
code is tested using test cases to check whether the modified source code contains logic
errors. If the modified source code passes the test, the debugging process is terminated
assuming that all logic errors in the source code have been corrected. On the other hand, if
the modified source code does not pass the test, the source code will be corrected again. If
the target source code is written in a programming language that requires a compiler (e.g.,
C language), the model uses the compiler to convert it to an executable code before testing.

4. Experiment

To train the proposed model and conduct an experiment to verify its usefulness,
we used source codes in C language that were written by programming learners for
32 programming tasks. We used a 64-bit Windows 10 computer with an Intel Core i9-9900K
CPU (3.60 GHz), 32 GB RAM, and Nvidia GeForce RTX 2070 SUPER GPU.

The source codes used in the experiment were obtained from Aizu Online Judge
(AOJ) [4,34,35], which is an e-learning system for programming. Table 1 shows details
of the specifications of the 32 selected programming tasks. AOJ is a system that appeals
to people of different abilities, from beginners to experts, and is currently used by more
than 85,000 individuals. The system supports around 15 programming languages such as
C/C++, Java, and Python. Users can freely select and challenge programming tasks from
around 2500 tasks. They can submit their solution code to AOJ, and then it is automatically

Appl. Sci. 2021, 11, 4755 9 of 20

judged by the AOJ system. This is so the user can know whether the source code they
created meets the specifications of the selected programming task. About 5 million source
codes submitted by users and their concomitant judgment results have been collected in
AOJ’s DB.

Table 1. Details of 32 selected tasks.

Task ID Task Specification

ITP1_1_A Outputs “Hello World” to standard output.
ITP1_1_B Outputs the cube of a given integer x.
ITP1_1_C Outputs the area and perimeter of a given rectangle.
ITP1_1_D Receives an S seconds and converts it to h : m : s.
ITP1_2_A Outputs small/large/equal relation of two given integers a and b.
ITP1_2_B Receives three integers a, b, and c and outputs “Yes” if a < b < c, otherwise “No”
ITP1_2_C Receives integers and outputs them in ascending order.
ITP1_2_D Receives a rectangle and a circle, and determines whether the circle is arranged inside the rectangle.
ITP1_3_A Outputs “Hello World” 1000 times.
ITP1_3_B Receives an integer x and outputs it as is for multiple test cases.
ITP1_3_C Receives two integers x and y, and outputs them in ascending order for multiple test cases.
ITP1_3_D Receives three integers a, b, and c, and outputs the number of divisors of c in [a, b]
ITP1_4_A Receives two integers a and b, and outputs a/b in different types.
ITP1_4_B Receives a radius r, outputs the area and circumference of a circle.
ITP1_4_C Receives two integers, a and b, and an operator op, and then outputs the value of aopb
ITP1_4_D Receives a sequence of n integers ai (i = 1, 2, . . . n), and outputs the minimum value, maximum

value, and sum of the sequence.
ITP1_5_A Draws a rectangle which has a height of H cm and a width of W cm. Draws the rectangle by ‘#’
ITP1_5_B Draws a frame which has a height of H cm and a width of W cm.
ITP1_5_C Draws a chessboard which has a height of H cm and a width of W cm.
ITP1_5_D Structured programming without goto statement.
ITP1_6_A Receives a sequence and output
ITP1_6_B Given a deck of cards, finds any missing cards.
ITP1_6_C Counts the number of elements in a three-dimensional array.
ITP1_6_D Receives an n×m matrix A and an m× 1 vector b, and prints their product Ab
ITP1_7_A Receives a list of student test scores and evaluates the performance of each student.
ITP1_7_B Identifies the number of combinations of three integers which satisfy 1) you should select three

distinct integers from 1 to n, and 2) the total sum of the three integers is x.
ITP1_7_C Receives the number of rows r, columns c, and a table of r× c elements, and prints a new table,

which includes the total sum for each row and column.
ITP1_7_D Receives an n×m matrix a and an m× l matrix B, and prints their product, an n× l matrix C.
ITP1_8_A Converts uppercase/lowercase letters to lowercase/uppercase letters for a given string.
ITP1_8_B Receives an integer and prints the sum of its digits.
ITP1_8_C Counts and reports the number of each letter. Ignores characters.
ITP1_8_D Finds a pattern p in a ring-shaped text s.

To focus on solution codes that include logic errors, we excluded those that could
not be properly compiled because of syntax errors or warnings. Moreover, source codes
including functions and function macros defined by users were excluded. Comments, tabs,
and spaces in the source codes were also deleted to remove unnecessary tokens.

4.1. Training and Training Accuracy

The source code used for training was tokenized to the sequence x based on Table 2.
In LSTM-LM, if the sequence x becomes long, memory leak may occur due to the increase
in internal parameters. Therefore, we applied Hotelling’s theory [36] to the length of the
sequence x and statistically determined outliers. When the chi-square value of the length
of each sequence exceeds 99% of the χ2 distribution with one degree of freedom, the source
code is regarded as an abnormal value. Source codes judged to be outliers were rejected

Appl. Sci. 2021, 11, 4755 10 of 20

from the training data using the significance probability (p-value) χ2
0.99(1) = 0.00016. This

means that source codes were rarely rejected.

Table 2. Vocabulary.

ID Word ID Word ID Word ID Word ID Word ID Word

0 (masking value) 70 auto 92 ’ 114 = 126 T 160 m
1–20 (variables) 71 case 93 (115 > 127 U 161 n
21–50 (functions) 72 char 94) 116 @ 128 V 162 o

51 continue 73 else 95 * 117 A 129 W 163 p
52 unsigned 74 enum 96 + 118 B 130 X 164 q
53 default 75 goto 97 , 119 C 131 Y 165 r
54 typedef 76 long 98 - 120 D 132 Z 166 s
55 define 77 main 99 . 121 E 133 [167 t
56 double 78 void 90 / 122 F 134 \ 168 u
57 extern 79 for 101 0 123 G 135] 169 v
58 signed 80 int 102 1 124 H 136 ^ 170 w
59 sizeof 81 do 103 2 125 I 137 ‘ 171 x
60 static 82 if 104 3 126 J 138 a 172 y
61 struct 83 (space) 105 4 127 K 139 b 173 z
62 switch 84 ! 106 5 128 L 140 c 174 {
63 return 85 ? 107 6 129 M 141 d 175 |
64 break 86 _ 108 7 130 N 144 g 176 }
65 const 87 " 109 8 131 O 155 h 177 ∼
66 float 88 # 110 9 132 P 156 i
67 short 89 $ 111 : 133 Q 157 j
68 union 90 % 112 ; 134 R 158 k
69 while 91 & 103 < 135 S 159 l

CCM was constructed using Tensorflow (2.4.0) [37]. To train CCM, we set the batch
size to 4, the number of hidden neurons to 256, and the number of epochs to 100 as hyper-
parameters. We selected categorical entropy as the loss function. To prevent overfitting of
CCM, we used the Adam optimizer with four parameters based on the recommendation
of [38]: learning rate α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e− 8. As another counter-
measure against overfitting, we set the dropout rate to be 0.5 based on the recommendation
of [39].

Table 3 shows the accuracy of the CCM trained using the correct codes of 32 pro-
gramming tasks. Task ID is the Problem ID of 32 programming tasks in AOJ, respectively.
Number of training data is the number of correct codes used for training, excluding dupli-
cate correct codes. Number of training data shows that solution codes accumulated in AOJ
are available for each programming task.

Table 3. Training accuracy of CCM.

Task ID # Training Data Perplexity Training Accuracy (%)

ITP1_1_A 73 1.08 93.28
ITP1_1_B 528 1.08 93.72
ITP1_1_C 1035 1.07 94.41
ITP1_1_D 1905 1.07 94.88
ITP1_2_A 886 1.06 96.24
ITP1_2_B 627 1.06 96.01
ITP1_2_C 1380 1.05 95.79
ITP1_2_D 1513 1.05 96.11
ITP1_3_A 380 1.04 94.10
ITP1_3_B 1241 1.07 94.09
ITP1_3_C 1530 1.06 95.05
ITP1_3_D 1266 1.06 95.29

Appl. Sci. 2021, 11, 4755 11 of 20

Table 3. Cont.

Task ID # Training Data Perplexity Training Accuracy (%)

ITP1_4_A 223 1.07 94.98
ITP1_4_B 212 1.06 94.01
ITP1_4_C 1148 1.05 96.61
ITP1_4_D 332 1.09 94.15
ITP1_5_A 946 1.06 96.17
ITP1_5_B 1673 1.07 95.82
ITP1_5_C 1712 1.05 95.44
ITP1_5_D 338 1.08 94.31
ITP1_6_A 1141 1.07 95.21
ITP1_6_B 760 1.07 95.19
ITP1_6_C 765 1.05 96.17
ITP1_6_D 1119 1.06 96.40
ITP1_7_A 934 1.05 96.50
ITP1_7_B 904 1.08 94.11
ITP1_7_C 769 1.09 94.98
ITP1_7_D 213 1.08 95.72
ITP1_8_A 569 1.08 94.02
ITP1_8_B 432 1.10 91.58
ITP1_8_C 455 1.04 94.21
ITP1_8_D 173 1.16 87.89

EOP was constructed using Scikit-learn (0.23.2) [40]. Ten-fold cross validation was
used to evaluate the performance of EOP. Number of training data was divided into
10 parts, nine of which were used for training, and one was used as test data. From this
process, 10 models were constructed and the accuracy of each of them was calculated.

Table 4 shows the accuracy of the trained EOP. Here, Task ID is the Problem ID of
the 32 programming tasks. Number of training data is the number of features based on
the editing information between the incorrect code and the corresponding correct code
in the 32 programming tasks. We excluded duplicate data from number of training data.
Training accuracy and test accuracy of EOP are averages of 10 models obtained using k-fold
cross validation.

Since the training accuracy and verification accuracy is 80% or more in many program-
ming tasks, the EOP is considered to have sufficient predictive performance for editing
operations using the editing position and its token. This means that the EOP can likely be
effectively used to correct incorrect code.

Table 4. Training and test accuracy of EOP.

Task ID # Training Data Training Accuracy (%) Test Accuracy (%)

ITP1_1_A 1085 92.82 84.89
ITP1_1_B 5600 91.68 87.13
ITP1_1_C 5585 89.63 86.05
ITP1_1_D 5946 87.80 81.90
ITP1_2_A 6267 94.74 91.86
ITP1_2_B 3784 93.67 89.46
ITP1_2_C 16635 88.64 85.39
ITP1_2_D 7249 88.59 84.15
ITP1_3_A 1503 93.62 86.10
ITP1_3_B 6190 89.95 86.49
ITP1_3_C 8137 90.80 87.18
ITP1_3_D 2972 89.42 81.86

Appl. Sci. 2021, 11, 4755 12 of 20

Table 4. Cont.

Task ID # Training Data Training Accuracy (%) Test Accuracy (%)

ITP1_4_A 608 94.15 82.74
ITP1_4_B 891 96.53 87.88
ITP1_4_C 5286 90.36 85.60
ITP1_4_D 2331 85.59 79.58
ITP1_5_A 5829 94.87 91.13
ITP1_5_B 4936 90.83 85.96
ITP1_5_C 5400 90.65 85.89
ITP1_5_D 3560 93.53 98.99
ITP1_6_A 6393 94.73 91.69
ITP1_6_B 12291 86.17 81.26
ITP1_6_C 5586 90.59 85.97
ITP1_6_D 4654 86.16 80.28
ITP1_7_A 8937 89.75 85.48
ITP1_7_B 6718 88.97 83.22
ITP1_7_C 7805 87.85 82.93
ITP1_7_D 2125 90.01 84.28
ITP1_8_A 4316 89.58 82.95
ITP1_8_B 6700 82.52 75.30
ITP1_8_C 5080 86.56 79.92
ITP1_8_D 492 94.94 88.41

4.2. Evaluation

To verify the usefulness of the proposed model, we compared it with the conventional
model without iterative trials. In the conventional model, only one trial of correction is
performed using the correction candidates predicted by CCM. It is necessary to define
metrics for evaluating the usefulness of the proposed model. We evaluated the performance
of the proposed model by focusing on the correction accuracy of logic errors, the number
of trials, and the execution time. We defined the correction accuracy as the ratio of the
source codes in which all logic errors are corrected in the experimental data. We defined
the number of corrections as the average number of corrections until the correct code is
obtained in the experimental data. We defined the execution time as the time until the
given source code becomes correct by the proposed model. However, if the model could
not correct the given source code, it was not included in this result.

Table 5 shows the experimental data used to evaluate the proposed model. Here,
targets is the number of incorrect codes that contain logic errors for each programming
task. We selected the target codes with an edit distance of five or less and iterated until the
code was corrected. Moreover, we categorized the source codes by the number of tokens
that cause logic errors. The proposed model tries to correct logic errors until the given code
is corrected. If the source code cannot be edited using the proposed model, modifications
may be repeated infinitely as long as there are correction candidates. To avoid this situation,
we set a termination condition in the proposed model. The model terminates its trials when
the number of correction candidates indicated by Algorithm 1 becomes 0 or the number of
iterations of the model exceeds 30.

Appl. Sci. 2021, 11, 4755 13 of 20

Table 5. Details of experimental data.

Datasets The Number of Logic Errors

Task ID Targets 1 2 3 4 5

ITP1_1_A 1524 281 1094 53 80 16
ITP1_1_B 630 42 536 13 31 8
ITP1_1_C 694 51 519 18 99 7
ITP1_1_D 500 16 365 20 88 11
ITP1_2_A 494 113 108 8 59 206
ITP1_2_B 727 17 466 15 160 69
ITP1_2_C 308 33 243 4 26 2
ITP1_2_D 350 28 72 11 236 3
ITP1_3_A 558 285 236 15 17 5
ITP1_3_B 336 105 175 18 27 11
ITP1_3_C 255 32 108 54 55 6
ITP1_3_D 379 123 202 15 35 4
ITP1_4_A 56 0 32 23 0 1
ITP1_4_B 42 8 7 7 7 13
ITP1_4_C 85 27 43 7 5 3
ITP1_4_D 63 10 30 6 17 0
ITP1_5_A 59 13 28 3 15 0
ITP1_5_B 132 10 93 2 26 1
ITP1_5_C 81 14 39 4 24 0
ITP1_5_D 50 8 24 3 14 1
ITP1_6_A 83 31 37 3 9 3
ITP1_6_B 70 41 20 5 1 3
ITP1_6_C 142 85 32 11 12 2
ITP1_6_D 89 24 44 4 17 0
ITP1_7_A 123 39 37 21 21 5
ITP1_7_B 183 8 41 5 127 2
ITP1_7_C 89 24 50 8 6 1
ITP1_7_D 23 2 6 1 14 0
ITP1_8_A 66 30 26 5 1 4
ITP1_8_B 46 15 10 6 14 1
ITP1_8_C 51 9 27 5 5 5
ITP1_8_D 5 2 1 0 2 0

5. Experimental Results and Discussion
5.1. Results

Table 6 shows the correction performance of the proposed model. The proposed
model improves the correction accuracy of source code in all programming tasks. To ensure
that the result was not due to a statistical chance, statistical tests were performed on the
correction accuracy of the conventional and proposed models. The calculated p-value is
6.27 × 10−16, which satisfies the general significance level of p-value < 0.05, indicating that
these results are not chance results. The average correction accuracy of the conventional
model for each programming task was 13.90%. On the other hand, the average correction
accuracy of the proposed model was 72.55%. The average correction accuracy of the
proposed model is 58.64% higher than the conventional model without iterative trials. This
shows that the accuracy of correcting logic errors can be improved substantially by using
the proposed model that introduces iterative trials. This means that the proposed model
was able to correct hidden logic errors that could not be detected in the first trial.

Appl. Sci. 2021, 11, 4755 14 of 20

Table 6. Correction performance.

Datasets Correction Accuracy (%) Number of Edits Execution Time (s)

Task ID Targets Conventional Model Proposed Model Users Proposed Model Average Min Max

ITP1_1_A 1524 18.11 99.54 2.00 2.12 0.38 0.23 2.62
ITP1_1_B 630 5.08 97.14 2.15 6.72 0.82 0.25 4.51
ITP1_1_C 694 4.18 93.08 2.44 4.87 0.60 0.22 4.27
ITP1_1_D 500 4.00 88.60 2.74 3.01 0.51 0.34 5.17
ITP1_2_A 494 24.09 89.07 3.68 9.85 1.47 0.25 4.28
ITP1_2_B 727 1.38 93.95 2.90 4.33 0.56 0.26 5.12
ITP1_2_C 308 6.49 72.73 2.88 4.82 0.52 0.27 3.82
ITP1_2_D 350 9.43 79.14 4.20 4.08 0.86 0.54 3.67
ITP1_3_A 558 30.47 97.49 1.65 4.98 0.62 0.20 8.10
ITP1_3_B 336 23.81 85.42 2.34 2.91 0.38 0.21 3.44
ITP1_3_C 255 6.27 69.41 3.73 5.08 0.58 0.21 8.11
ITP1_3_D 379 7.65 94.46 2.04 2.45 0.60 0.46 3.75
ITP1_4_D 63 7.94 77.78 3.18 3.39 0.74 0.48 5.16
ITP1_4_B 42 16.67 64.29 5.04 5.00 0.55 0.23 5.34
ITP1_4_C 85 14.12 80.00 2.49 3.66 0.70 0.27 6.38
ITP1_4_D 63 7.94 77.78 3.18 3.39 0.74 0.48 5.16
ITP1_5_A 59 27.12 83.05 2.82 3.06 0.42 0.26 1.58
ITP1_5_B 132 3.03 66.67 3.53 5.62 0.45 0.23 3.50
ITP1_5_C 81 3.70 60.49 4.08 6.16 0.47 0.26 3.44
ITP1_5_D 50 16.00 80.00 3.15 3.30 0.63 0.31 4.71
ITP1_6_A 83 16.87 81.93 2.43 5.04 0.56 0.26 1.90
ITP1_6_B 70 27.14 44.29 3.71 4.32 0.35 0.27 3.24
ITP1_6_C 142 16.90 58.45 2.89 8.11 0.73 0.27 6.09
ITP1_6_D 89 19.10 56.18 3.84 4.58 0.49 0.46 4.01
ITP1_7_A 123 22.76 69.92 3.31 3.45 0.56 0.26 10.07
ITP1_7_B 183 1.09 64.48 5.28 6.36 0.63 0.27 7.26
ITP1_7_C 89 6.74 26.97 7.38 3.79 0.17 0.28 2.10
ITP1_7_D 23 13.04 47.83 6.64 2.91 0.41 0.48 1.66
ITP1_8_A 66 18.18 40.91 4.48 2.56 0.16 0.26 1.90
ITP1_8_B 46 6.52 34.78 7.12 3.81 0.44 0.26 2.73
ITP1_8_C 51 47.06 72.55 3.32 3.00 0.38 0.26 2.04
ITP1_8_D 5 20.00 60.00 4.00 3.00 0.56 0.68 1.06

Average 13.90 72.55 3.57 4.42 0.56 0.30 4.16

Appl. Sci. 2021, 11, 4755 15 of 20

We compared the number of edit operations in the proposed model with the number
of edit operations by the user. The number of edit operations by the user is the edit distance
between the experimental data created by each user and the corresponding correct code.
The average number of edit operations of the proposed model is slightly larger than that
of the user. This means that the correction candidates indicated by the proposed model
include correction candidates that do not need to be edited.

The experimental results show the average, minimum, and maximum execution time
of the proposed model for each programming task. The average execution time for all
programming tasks is less than 1.5 (s). At the shortest, a given code can be corrected within
0.2 (s). At the longest, a given code can be corrected in 10.07 (s). These results show that the
proposed model can debug logic errors in the source code within a reasonable timeframe.

Table 7 shows the correction accuracy for each number of logic errors in the source
code for all programming tasks. The proposed model can correct all logic errors in the
source code, even if there are multiple logic errors. This means that any logic errors that
could not be detected in a first attempt were corrected in a later attempt. Therefore, this
shows that the proposed model, which leverages iterative trials, is suitable as a debugging
model for correcting multiple logic errors.

Table 7. Correction performance for each number of logic errors of all problems.

Datasets Correction Performance

The Number of Logic Errors Targets Conventional Model (%) Proposed Model (%)

1 1526 898 (58.8) 1304 (85.5)
2 4751 130 (2.7) 4305 (90.6)
3 373 6 (1.6) 291 (78.0)
4 1250 7 (0.6) 962 (77.0)
5 393 1 (0.3) 321 (81.7)

5.2. Limitations

These results show that the correction performance of the proposed model is high.
However, focusing on detection performance and the number of trials, there is still room
for improvement. We defined detection performance as the percentage of source codes in
which a true logic error exists among the correction candidates obtained in the first trial.
In the proposed model, a correction candidate most likely to be a logic error is selected
and corrected. This means that if the top k correction candidates include true logic errors,
it will be easier to correct those errors. Table 8 shows the detection performance of the
proposed model. Task ID and Targets are the ID of each programming task and the number
of experimental data. This shows the detection performance when the number of correction
candidates is narrowed down to the top k. Where top k = ∞, this corresponds to all the
correction candidates enumerated by the proposed model.

The detection performance of the proposed model is 95.54% when the top k = ∞. On
the other hand, when the correction candidates are narrowed down to the top one, the true
logic error can sometimes be missed. This means that true logic errors are less likely to
appear when the correction candidates are narrowed down to the top k. The probabilities
obtained from CCM are sufficient as a metric for detecting true logic errors in the source
code. However, the probabilities may not be sufficient as a metric for selecting a correction
candidate. The correction candidates indicated by CCM are likely to be logic errors, but
they are not always logic errors. To navigate this issue, one approach could be to narrow
down the correction candidates by analyzing what kind of logic errors are likely to occur
in each programming task.

Appl. Sci. 2021, 11, 4755 16 of 20

Table 8. Detection performance.

Datasets Top-k (%)

Task ID Targets k = ∞ k = 1 k = 2 k = 3

ITP1_1_A 1524 99.34 50.72 46.85 38.32
ITP1_1_B 630 99.84 90.79 85.08 43.17
ITP1_1_C 694 98.27 55.04 41.35 26.22
ITP1_1_D 500 99.60 47.00 28.40 8.20
ITP1_2_A 494 100.00 34.62 23.08 9.92
ITP1_2_B 727 100.00 54.61 44.70 30.12
ITP1_2_C 308 98.38 35.39 25.00 12.99
ITP1_2_D 350 98.57 24.00 9.43 2.57
ITP1_3_A 558 99.82 74.91 65.41 40.32
ITP1_3_B 336 98.51 45.54 22.92 7.44
ITP1_3_C 255 96.08 40.39 21.96 8.24
ITP1_3_D 379 100.00 57.26 33.77 14.78
ITP1_4_A 56 100.00 57.14 41.07 21.43
ITP1_4_B 42 92.86 19.05 11.90 2.38
ITP1_4_C 85 97.65 40.00 20.00 5.88
ITP1_4_D 63 98.41 12.70 3.17 0.00
ITP1_5_A 59 96.61 37.29 23.73 8.47
ITP1_5_B 132 96.21 19.70 9.09 1.52
ITP1_5_C 81 93.83 25.93 16.05 4.94
ITP1_5_D 50 100.00 14.00 6.00 2.00
ITP1_6_A 83 100.00 22.89 9.64 4.82
ITP1_6_B 70 90.00 7.14 2.86 1.43
ITP1_6_C 142 100.00 28.17 10.56 3.52
ITP1_6_D 89 96.63 10.11 3.37 1.12
ITP1_7_A 123 98.37 17.89 8.13 3.25
ITP1_7_B 183 98.91 17.49 14.21 7.10
ITP1_7_C 89 95.51 26.97 21.35 11.24
ITP1_7_D 23 100.00 4.35 0.00 0.00
ITP1_8_A 66 87.88 22.73 12.12 3.03
ITP1_8_B 46 95.65 26.09 21.74 13.04
ITP1_8_C 51 100.00 5.88 0.00 0.00
ITP1_8_D 5 100.00 0.00 0.00 0.00

Average 95.54 33.85 22.70 11.12

5.3. Use-Cases

Figure 4 shows an example of logic error correction using the proposed model for a
sample programming task. The selected programming task is to find and output the cube of
a given integer. An example of incorrect code shown in the upper left of the figure outputs
the square of the given integer. The logic error in this source code is “x*x” on the fifth line.
Therefore, if “*x” is inserted in the source code, the source code will become correct.

The table on the upper right in Figure 4 lists the prediction results for one application
of the proposed model to the incorrect code. The candidate with the lowest probability of
occurrence for the next word is the position of “)”, and the proposed revision is “*”. This
demonstrates that the model can correctly predict this logic error. In addition, the proposed
model predicts “insert * between x and)” from this information. The table at the bottom
right of the figure shows the correction candidates when the proposed model is applied a
second time to the source code that has already been corrected once. The candidate with
the lowest probability of appearance is the position of “)”, and the proposed amendment is
“x”. From the obtained information, the overall prediction by the proposed model is thus
“insert x between * and)”. Therefore, it is possible to correct all logic errors in this source
code by applying the proposed model.

Appl. Sci. 2021, 11, 4755 17 of 20

Candidate Next word Predicted word Probability

1) void 0.4504

2 printf if 0.1961

3) * 0.7211e-04

4 0 (0.1797

Candidate Next word Predicted word Probability

1) void 0.4504

2 if printf 0.1961

3) x 0.6900e-8

4 ;) 0.0187

Incorrect code

The source code after the 1st trial

The source code after the 2nd trial

1st trial

2nd trial

Insert * between x and)

Insert x between * and)

The incorrect code is correctable by correcting it

twice using the proposed model

Figure 4. Example of logic error correction using proposed model.

In contrast, for the conventional model without iterative trials, the source code is
modified using only the correction candidates obtained from the first trial. In the first trial,
“insert *” between “x" and “)” is performed, as in the case of the proposed model. However,
since “x” is not present in the correction candidates in this first trial, not all logic errors in
the source code can be corrected. Therefore, the conventional model can only correct some
and not all of the logic errors in the incorrect code.

The aim of debugging support in programming education is to provide learners with
hints for correcting their source codes. However, giving too many hints to the learner
can be problematic. Yi et al. [41] reported that novice programmers do not know how
to modify programs efficiently using hints for correcting errors in the source code. This
means that the hints must be adjusted according to the skills of the learner. Therefore, we
suggest that it is possible to help individuals learn how to debug by showing not only
correction candidates but also their editing operations.

In the proposed model, the source code is automatically modified based on the results
obtained from each machine learning model. The modification of the source code can be
replaced as a process to be performed by the user. Gradual hints related to the correction
candidates and their editing operations by the proposed model can give the learners oppor-
tunities to think. Therefore, the quality of hints can be controlled by displaying information
obtained from our model according to the programming proficiency of the learner.

Appl. Sci. 2021, 11, 4755 18 of 20

Novice programmers need debugging support in many situations. There are situations
where such individuals do not know what or how to debug when they get the verdict that
the source code is incorrect. The proposed model can show novice programmers whether
the source code can be corrected by iterative modification. When the source code can
be corrected, the correction candidates, the editing operations, and the number of edits
obtained in each trial can be presented as hints to these individuals. They can then use these
hints to correct the source code. On the other hand, debugging support for intermediate
programmers can be achieved by giving partial hints obtained from the proposed model.
For example, it may be sufficient to disclose only the position of the logic error as a hint. In
this way, the intermediate learner needs to think about the editing operation for the given
position. Instructors and other expert programmers could, for example, be provided with
feedback from the proposed model with all details at the very beginning, and then use this
to help students at their discretion depending on their assessment of individual needs. To
apply the proposed model and obtained feedback to educational sites, we should carefully
consider learning efficiency. Generally, the feedback should not be direct and immediate
supports such as those of conventional IDEs so that we can provide learners with chances
to think and try to resolve the problem by themselves. The degree of such support should
be controlled by learners or instructors according to their experience and learning modes.

The proposed model can also be used for software development. Generally, software
consists of modules, packages, and subroutines. Implementations of these subroutines carry
out numerical calculations and algorithm-level implementations to meet the specifications
of a given task. It is necessary to use testing to verify whether the implemented subroutine
is correct for the corresponding specification. If there is a programming task with the same
or similar specifications as the subroutine implemented in a certain educational system,
our model can be employed to modify the source code.

6. Conclusions

In this paper, we proposed a debugging model for correcting logic errors in a given
source code. The model could correct multiple logic errors by repeatedly identifying and
correcting errors, and testing the source code. In the experiment, to verify the advantage of
the proposed model, 32 programming tasks and the corresponding solution codes in an
online judge system were applied. By comparing the proposed model with another model
without iterative trials, the results showed that the correction accuracy of the proposed
model improved by 58.64% on average. In addition, this model can suggest operations for
fixing code depending on the features around the detection location in the process of the
iterative trials. The proposed model can also control the granularity of hints according to
the proficiency of programmers and learners. Therefore, the proposed model takes into
account educational effectiveness and can be applied to e-learning systems that support
education not only in programming, but also in related subjects.

In future work, to improve the correction performance of our model, we would like to
analyze what logic errors are likely to occur in each programming task. By comparing the
results of this analysis with the candidates, we expect to increase the likelihood that the
correcting candidates contain true logic errors.

Author Contributions: Conceptualization, T.M., Y.W. and K.N.; methodology, T.M. and Y.W.; soft-
ware, T.M.; validation, T.M.; formal analysis, T.M.; investigation, T.M. and Y.W.; resources, T.M.; data
curation, T.M.; writing—original draft preparation, T.M.; writing—review and editing, T.M., Y.W.
and K.N.; visualization, T.M.; supervision, Y.W. and K.N.; funding acquisition, Y.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Japan Society for the Promotion of Science (JSPS) under
KAKENHI grant number 19K12252.

Appl. Sci. 2021, 11, 4755 19 of 20

Data Availability Statement: We collected all the training and test datasets from the Aizu On-
line Judge (AOJ) system. The resources were accessed through the APIs for the websites https:
//onlinejudge.u-aizu.ac.jp/, accessed on 21 May 2021 and http://developers.u-aizu.ac.jp/index,
accessed on 21 May 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Staubitz, T.; Klement, H.; Renz, J.; Teusner, R.; Meinel, C. Towards practical programming exercises and automated assessment in

Massive Open Online Courses. In Proceedings of the 2015 IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE), Zhuhai, China, 10–12 December 2015; pp. 23–30.

2. Crow, T.; Luxton-Reilly, A.; Wuensche, B. Intelligent tutoring systems for programming education: A systematic review. In
Proceedings of the 20th Australasian Computing Education Conference, Brisbane, Australia, 30 January–2 February 2018;
pp. 53–62.

3. Wasik, S.; Antczak, M.; Badura, J.; Laskowski, A.; Sternal, T. A survey on online judge systems and their applications. ACM
Comput. Surv. (CSUR) 2018, 51, 1–34. [CrossRef]

4. Watanobe, Y.; Intisar, C.; Cortez, R.; Vazhenin, A. Next-Generation Programming Learning Platform: Architecture and Challenges.
In SHS Web of Conferences;lEDP Sciences: Les Ulis, France, 2020; Volume 77, p. 01004.

5. Watanobe, Y. Aizu Online Judge. Available online: https://onlinejudge.u-aizu.ac.jp/ (accessed on 30 March 2021).
6. Luxton-Reilly, A.; Albluwi, I.; Becker, B.A.; Giannakos, M.; Kumar, A.N.; Ott, L.; Paterson, J.; Scott, M.J.; Sheard, J.; Szabo, C.

Introductory programming: A systematic literature review. In Proceedings of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, Larnaca, Cyprus, 2–4 July 2018; pp. 55–106.

7. Becker, B.A.; Goslin, K.; Glanville, G. The effects of enhanced compiler error messages on a syntax error debugging test. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education, Baltimore, MD, USA, 21–24 February 2018;
pp. 640–645.

8. Denny, P.; Luxton-Reilly, A.; Carpenter, D. Enhancing syntax error messages appears ineffectual. In Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education, Uppsala, Sweden, 22–24 June 2014; pp. 273–278.

9. Yoshizawa, Y.; Watanobe, Y. Logic Error Detection System based on Structure Pattern and Error Degree. Adv. Sci. Technol. Eng.
Syst. J. 2019, 4, 1–15. [CrossRef]

10. Teshima, Y.; Watanobe, Y. Bug detection based on LSTM networks and solution codes. In Proceedings of the 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 3541–3546.

11. Rahman, M.M.; Watanobe, Y.; Nakamura, K. Source Code Assessment and Classification Based on Estimated Error Probability
Using Attentive LSTM Language Model and Its Application in Programming Education. Appl. Sci. 2020, 10, 2973. [CrossRef]

12. Rahman, M.M.; Watanobe, Y.; Nakamura, K. A Neural Network Based Intelligent Support Model for Program Code Completion.
Sci. Program. 2020, 2020. [CrossRef]

13. Rahman, M.M.; Watanobe, Y.; Nakamura, K. A Bidirectional LSTM Language Model for Code Evaluation and Repair. Symmetry
2021, 13, 247. [CrossRef]

14. Terada, K.; Watanobe, Y. Code Completion for Programming Education based on Recurrent Neural Network. In Proceedings of
the 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA), Hiroshima, Japan, 9–10
November 2019; pp. 109–114.

15. Qiu, X.; Sun, T.; Xu, Y.; Shao, Y.; Dai, N.; Huang, X. Pre-trained models for natural language processing: A survey. Sci. China
Technol. Sci. 2020, 63, 1872–1897. [CrossRef]

16. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

17. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A survey of machine learning for big code and naturalness. ACM Comput. Surv.
(CSUR) 2018, 51, 1–37. [CrossRef]

18. Visual Studio IntelliCode. Available online: https://visualstudio.microsoft.com/services/intellicode/ (accessed on 30
March 2021).

19. Cao, H.; Meng, Y.; Shi, J.; Li, L.; Liao, T.; Zhao, C. A Survey on Automatic Bug Fixing. In Proceedings of the 2020 6th International
Symposium on System and Software Reliability (ISSSR), Chengdu, China, 24–25 October 2020; pp. 122–131.

20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

21. Drain, D.; Wu, C.; Svyatkovskiy, A.; Sundaresan, N. Generating Bug-Fixes Using Pretrained Transformers. arXiv 2021,
arXiv:2104.07896.

22. Ueda, Y.; Ishio, T.; Ihara, A.; Matsumoto, K. Devreplay: Automatic repair with editable fix pattern. arXiv 2020, arXiv:2005.11040.
23. Gupta, R.; Pal, S.; Kanade, A.; Shevade, S. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the

AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
24. Hajipour, H.; Bhattacharya, A.; Fritz, M. SampleFix: Learning to Correct Programs by Sampling Diverse Fixes. arXiv 2019,

arXiv:1906.10502.

https://onlinejudge.u-aizu.ac.jp/
https://onlinejudge.u-aizu.ac.jp/
http://developers.u-aizu.ac.jp/index
http://doi.org/10.1145/3143560
https://onlinejudge.u-aizu.ac.jp/
http://dx.doi.org/10.25046/aj040501
http://dx.doi.org/10.3390/app10082973
http://dx.doi.org/10.1155/2020/7426461
http://dx.doi.org/10.3390/sym13020247
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1145/3212695
https://visualstudio.microsoft.com/services/intellicode/

Appl. Sci. 2021, 11, 4755 20 of 20

25. Gupta, R.; Kanade, A.; Shevade, S. Neural Attribution for Semantic Bug-Localization in Student Programs. In Proceedings of
the 2019 Conference on Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019;
pp. 11861–11871.

26. Vasic, M.; Kanade, A.; Maniatis, P.; Bieber, D.; Singh, R. Neural program repair by jointly learning to localize and repair. arXiv
2019, arXiv:1904.01720.

27. Wong, W.E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. A survey on software fault localization. IEEE Trans. Softw. Eng. 2016,
42, 707–740. [CrossRef]

28. Lee, J.; Song, D.; So, S.; Oh, H. Automatic diagnosis and correction of logical errors for functional programming assignments.
Proc. ACM Program. Lang. 2018, 2, 1–30. [CrossRef]

29. Matsumoto, T.; Watanobe, Y. Towards hybrid intelligence for logic error detection. In Advancing Technology Industrialization
through Intelligent Software Methodologies, Tools and Techniques, Proceedings of the 18th International Conference on New Trends in
Intelligent Software Methodologies, Tools and Techniques (SoMeT_19), Kuching, Malaysia, 23–25 September 2019; IOS Press: Amsterdam,
The Netherlands, 2019; Volume 318, p. 120.

30. Matsumoto, T.; Watanobe, Y. Logic Error Detection Algorithm Based on RNN with Threshold Selection. In Knowledge Innovation
through Intelligent Software Methodologies, Tools and Techniques, Proceedings of the 19th International Conference on New Trends in
Intelligent Software Methodologies, Tools and Techniques (SoMeT_20), Kitakyushu, Japan, 22–24 September 2020; IOS Press: Amsterdam,
The Netherlands, 2020; Volume 327, p. 76.

31. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
32. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res. 2003, 3, 1137–1155.
33. Vapnik, V. Pattern recognition using generalized portrait method. Autom. Remote Control 1963, 24, 774–780.
34. Watanobe, Y. Development and Operation of an Online Judge System. IPSJ Mag. 2015, 56, 998–1005.
35. Aizu Online Judge. Developers Site (API). Available online: http://developers.u-aizu.ac.jp/index (accessed on 30 March 2021).
36. Hotelling, H. The Generalization of Student’s Ratio. Ann. Math. Stat. 1931, 2, 360–378. [CrossRef]
37. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 30
March 2021).

38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
39. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
40. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
41. Yi, J.; Ahmed, U.Z.; Karkare, A.; Tan, S.H.; Roychoudhury, A. A feasibility study of using automated program repair for

introductory programming assignments. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
Paderborn, Germany, 4–8 September 2017; pp. 740–751.

http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1145/3276528
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://developers.u-aizu.ac.jp/index
http://dx.doi.org/10.1214/aoms/1177732979
https://www.tensorflow.org/

	Introduction
	Related Works
	Approaches and Methods for Educational Scenes
	Technologies in Debugging

	Proposed Model
	Overview of Proposed Model
	Correct Code Model (CCM)
	Long Short-Term Memory Language Model (LSTM-LM)
	Localization of Logic Errors by CCM

	Editing Operation Predictor (EOP)
	Iterative Trials

	Experiment
	Training and Training Accuracy
	Evaluation

	Experimental Results and Discussion
	Results
	Limitations
	Use-Cases

	Conclusions
	References

