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Abstract: (1) Background: Deep learning has become ubiquitous due to its impressive performance
in various domains, such as varied as computer vision, natural language and speech processing, and
game-playing. In this work, we investigated the performance of recent deep learning approaches
on the laryngopharyngeal reflux (LPR) diagnosis task. (2) Methods: Our dataset is composed of
114 subjects with 37 pH-positive cases and 77 control cases. In contrast to prior work based on either
reflux finding score (RFS) or pH monitoring, we directly take laryngoscope images as inputs to neural
networks, as laryngoscopy is the most common and simple diagnostic method. The diagnosis task
is formulated as a binary classification problem. We first tested a powerful backbone network that
incorporates residual modules, attention mechanism and data augmentation. Furthermore, recent
methods in transfer learning and few-shot learning were investigated. (3) Results: On our dataset,
the performance is the best test classification accuracy is 73.4%, while the best AUC value is 76.2%.
(4) Conclusions: This study demonstrates that deep learning techniques can be applied to classify
LPR images automatically. Although the number of pH-positive images used for training is limited,
deep network can still be capable of learning discriminant features with the advantage of technique.

Keywords: laryngopharyngeal reflux; laryngoscope; diagnosis; deep learning

1. Introduction

Laryngopharyngeal reflux disease (LPR) may involve about 50% of all patients with
laryngeal or voice disorders [1]. Misdiagnosis and over-diagnosis of LPR are common
phenomena in general otolaryngology clinics. To diagnose LPR both conveniently and
effectively is a big challenge for the laryngologists. The Reflux Score Index (RSI) and Reflux
Finding Score (RFS) are the subjective diagnostic tools that applied widely today. As for
the objective method, the gold standard is the multichannel intraluminal impedance 24 h
pH monitoring (MII-24 h pH) currently. However, pH monitoring has several drawbacks,
such as aggressive approach, the inconvenience and discomfort for a patient, and the
disagreement on the placement of proximal probe. Hence, both scales and MII-24 h pH
monitoring are not ideal diagnostic methods, so analyzing laryngoscope images appears to
be a promising direction that is convenient, effective and low-cost.

Du et al. proposed to extract color and texture features from seven specific regions
in laryngoscope images for distinguishing LPR [2]. However, their approach relies on
manually drawn regions to extract features, so large variations might occur during this kind
of manual works and this is not an end-to-end approach. Moreover, the single hidden-layer
network used in their approach may not capture hierarchical structures in laryngoscope
images. Litjens et al. showed that deep learning with multilayer neural networks had
permeated the entire field of medical image analysis [3]. Therefore, in this work, we focus
on leveraging deep learning methods in an end-to-end fashion for an LPR diagnostic
system [4]. However, it is well-known that deep learning requires massive data to be
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effective, which may pose a great challenge for this medical image application due to
the time-consuming and costly endeavor of collecting data and making annotations for
the dataset. This work explored how recent deep-learning approaches perform on this
small-sample problem.

2. Materials and Methods
2.1. Data Collection

This experiment was conducted with the approval from the ethics committee of the
hospital. 152 subjects from the hospital were studied prospectively from March 2015 to
April 2019. All subjects were evaluated subjectively by a reflux symptom index (RSI) and a
laryngoscopy. The subjects holding no LPR-related symptoms served as our control group.
With their consents, the subjects with LPR-related symptoms also underwent 24 h pH
probe monitoring.

The pH monitoring results indicate that 37 subjects were confirmed with LPR, and 38
subjects were suspected with LPR but negative. The control group was composed of 77
healthy subjects. All subjects in this study were of Chinese descent and divided into three
groups as follows.

The pH-positive group consisted of 37 subjects such that proximal acid episodes ≥3,
or proximal acid exposure time >1%, or impedance detected proximal acid exposure ≥4.
There was no specific RSI cutoff for this group.

The pH-negative group consisted of 38 subjects such that proximal acid episodes < 3,
or proximal acid exposure time ≤1%, or impedance detected proximal acid exposure < 4.
There was no specific RSI cutoff for this group.

The control group consisted of 77 subjects who were administered laryngoscopy for
routine test before thyroid surgery and without LPR-related symptoms and who had an
RSI ≤ 13.

Laryngeal images were obtained during a laryngoscopy through a flexible high-
resolution laryngoscope (model EVNE; XION; Berlin, Germany). The images were taken
near the middle of the larynx, and the white balance function was employed to exclude
other potential factors that may interfere with the true image colors. All the images were
encoded with the JPEG format. In the study, we only consider the two-class problem of
pH-positive cases versus control cases, which is the most distinguishable scenario with
total number of examples n = 114.

2.2. Backbone Network

A residual network (ResNet) [5], a famous convolutional neural network architecture,
was used as our backbone network. A ResNet stacks several same building blocks (see
Figure 1) as the feature extractor and employs a fully connected layer as its final classifier.
A ResNet can be constructed with different depth depending on the number of building
blocks. In our study, each residual block conducts the following computation:

y = f (x, {W1, W2}) + x

where x and y indicate the input and output of the block. The function f (x, {W1, W2}) :=
W2σ(W1x), where the activation function σ is a rectified linear unit (ReLU) [6]. The batch
normalization (BN) [7] was adopted between the convolution layer and the ReLUs and the
weights of BN were omitted in the former equation for simplifying notations.

Most of our experiments used ResNet18 (with 18 layers) as the backbone network.
Each image was resized and cropped into the size of 224 × 224 as inputs. The network
finally outputted a single value ∈ [0, 1], treated as the confidence in that the input was
pH positive. Instead of using a predefined fixed threshold, a varying threshold that
determines the prediction of each image was adopted so that the prediction accuracy could
be calculated. By manipulating the threshold value, a receiver operating characteristic
(ROC) curve was gotten to measure the sensitivity of our model.
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2.3. Attention Modules

We attempted to enhance the backbone with two recently proposed attention ap-
proaches: Squeeze-and-Excitation module (SE) [8] and convolution block attention module
(CBAM) [9], which enabled the network to focus on particular channels or spatial areas of
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Figure 2. (a). A Squeeze-and-Excitation (SE) block. (b). A spatial sub-module of the convolution
block attention module (CBAM).

Specifically, average pooling AvgPool() was adopted for obtaining channel-wise statis-
tics. Then the statistics of all channels were passed to a two-layer fully connected network
MLP and transformed into an output vector indicating the importance of each channel.
Finally, Fscale referred to a channel-wise multiplication with the obtained importance vector.

A CBAM block estimated the importance of each channel and each spatial area by
inferring a 1D channel attention map AC ∈ RC×1×1 and a 2D spatial attention map AS ∈



Appl. Sci. 2021, 11, 4753 4 of 9

R1×H×W(see Figure 2b). Here H, W and C denoted the numbers of height, width and channels
of the feature maps, respectively. A CBAM module conducted the following computations:

AC(x) = σ(MLP(AvgPool(x)) + MLP(MaxPool(x))),

AS(x) = Conv7×7([AvgPool(x), MaxPool(x)]),

y′ = FCS(AC(x), x),

y = FSS
(

AS
(
y′
)
, y′
)
.

where σ denoted the sigmoid function and Conv7×7 referred to a convolution layer with
kernel size of 7× 7. FCS and FSS meant the functions performing element-wise scaling using
two type of attention values. It was worth noting that the average pooling and the maximum
pooling function in two attention maps were also performed across different dimensions.

2.4. Dealing with Data Deficiency

During the training phase, our datasets were augmented by sequentially applying
random rotation, color jittering, random flip and random crop. During the testing phase,
our datasets were augmented by the same type of transformations but in a deterministic
manner, obtaining 55 images for each original image. Then all the augmented images were
fed to the classification network and 55 predictions were obtained for each original image.
The final decision was based on majority voting of these multiple predictions. Empirically
we found that such majority voting scheme could enhance the classification performance.

Besides data augmentation and majority voting, transfer learning [10,11] and metric-
based few-shot learning [12] were also adopted to our task for overcoming data scarcity.
Transfer learning intends to use the knowledge or data from another relative domain to
ease the learning of the target domain. Few-shot learning methods focus particularly on
the learning problem with very limited data.

In the study, two transfer learning strategies were adopted. One strategy was simply
using a pretrained network as a feature extractor, while another attempted to fine-tune the
pretrained network on the target domain further. In transfer learning experiments, our
models were pretrained using the ImageNet dataset from ILSVRC-2012 [13].

For few-shot learning, a feature extractor trained from the miniImageNet dataset [14]
was used and applied on our images with the same procedure proposed by Snell et al. [12].
For generating a prediction, the input image and a support set from training images
were mapped to a common feature space, and then the distance from the input feature
to prototype representations of each class was computed for classification. This few-shot
learning method could be summarized as follows:

ck =
1

NK
∑

x∈SK

f (x),

p(y = k|x) = exp(−dist( f (x), ck))

∑k′ exp(−dist( f (x), ck′))
.

where the prototype representation ck of the class k is the mean of features of support set
samples from class k, while f denotes the feature map. The distance function dist (· , ·)
denoted squared Euclidean distance. The probability of the input image belonging to class
k was computed by a softmax function based on the distance vector.

3. Results
3.1. Backbone Network with Attention Modules

In this backbone experiment, nine models were trained: ResNet18, ResNet50, ResNet101
and their enhancement versions with SE or CBAM attention modules. Multiple residual
blocks were stacked to construct our backbone network. We attempted to find a proper
backbone network in two directions: modifying the depth of network and enhancing the
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network with newly invented attention modules. ResNet18 (with 18 layers), ResNet50
(with 50 layers) and ResNet101 (with 101 layers) were trained for finding the proper net-
work depth. The SE module and CBAM module were integrated to the backbone network
for testing the usefulness of attention modules. Architectures of some models are shown in
Table 1.

Table 1. The architectures of main backbone models.

Feature Size ResNet18 ResNet18_SE ResNet18 _CBAM ResNet50 ResNet101

112 × 112 7 × 7, 64, stride 2

56 × 56
max pooling, 3 ×3, stride 2[

3× 3, 64
3× 3, 64

]
× 2

 3× 3, 64
3× 3, 64
fC, [4, 64]

× 2


3× 3, 64
3× 3, 64
fC, [4, 64]

7× 7

× 2

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

28 × 28
[

3× 3, 128
3× 3, 128

]
× 2

 3× 3, 128
3× 3, 128
fC, [8, 128]

× 2


3× 3, 128
3× 3, 128
fC, [8, 128]

7× 7

× 2

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

×
4

14 × 14
[

3× 3, 256
3× 3, 256

]
× 2

 3× 3, 256
3× 3, 256

fC, [16, 256]

×
2


3× 3, 256
3× 3, 256

fC, [16, 256]
7× 7

×
2

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

×
23

7 × 7
[

3× 3, 512
3× 3, 512

]
× 2

 3× 3, 512
3× 3, 512

fC, [32, 512]

×
2


3× 3, 512
3× 3, 512

fC, [32, 512]
7× 7

×
2

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

×
3

1 × 1 average pooling, 1D fc, softmax

The brackets indicate the content of each basic building block, while the numbers
outside the brackets mean the duplication times of stacked blocks. The number of full-
connection (fc) layer indicates the output dimension of channel attention module, and the
7 × 7 layer indicates the kernel size of a spatial attention module.

Five-fold cross-validation was adopted to report the test performance of these models.
That was, each time, all images were randomly partitioned into five chunks with equal
sizes, where four chunks (80% images) were taken as training data and the remaining
chunk (20% images) was left as test data. We ran three times of five-fold cross validation to
get the averaged classification accuracy and AUC value of each model. All of our models
were trained via stochastic gradient descent (SGD). The adaptive learning rate method
Adam [15] was used with an initial learning rate of 10−3. Each model was trained for 500
episodes. The batch size was chosen to be 8.

The results are shown in Table 2. We can see that, without any attention module,
ResNet50 performed better than ResNet18 and ResNet101. When attention module was
allowed to incorporate into the backbone network, ResNet50 with the CBAM module
achieved the best classification accuracy, at 73.4%, while ResNet18 with the CBAM module
offered the best AUC value, at 73.9%.
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Table 2. Test performance of the backbone models (mean ± SD).

Model Accuracy AUC Value

ResNet18 0.688 ± 0.089 0.704 ± 0.095
ResNet18_SE 0.697 ± 0.086 0.715 ± 0.123

ResNet18_CBAM 0.729 ± 0.050 0.739 ± 0.068

ResNet50 0.707 ± 0.126 0.719 ± 0.117
ResNet50_SE 0.659 ± 0.088 0.680 ± 0.116

ResNet50_CBAM 0.734 ± 0.101 0.719 ± 0.132

ResNet101 0.672 ± 0.108 0.678 ± 0.115
ResNet101_SE 0.656 ± 0.074 0.682 ± 0.103

ResNet101_CBAM 0.679 ± 0.110 0.691 ± 0.096

Figure 3 depicted the accuracy curves during training procedures. The left subfigure
compared the performance of different depth. We could see that with more epochs the
training accuracy of each model keeps improving, while the test accuracy starts to fluctuate
from 150 epochs. Moreover, ResNet50 and RetNet18 performed similarly on test data at
most epochs, but they offered higher accuracy than ResNet101. The right subfigure shows
the training procedures of ResNet18 with and without attention modules. Clearly the
ResNet18 with CBAM attention modules achieved the best test accuracy when compared
to the ResNet18 backbone and the ResNet18 with SE attention modules.
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According to the above observations, the ResNet18 was chosen as our backbone
network in the following, since it was lightweight and performed decently compared with
other deep networks.

3.2. Transfer Learning

The transfer learning techniques was leveraged to enhance the performance of the
backbone network ResNet18 and ResNet18 CBAM. The backbone network was pretrained
on the image classification task with the large ImageNet dataset. Then we fine-tuned it on
our laryngeal image dataset in two distinct ways: (1) The first residual block was frozen
as the feature extractor and learned the weights of following layers with relatively small
learning rate 10−4(denoted as ResNet18 + freeze and ResNet18 CBAM + freeze). (2) All the
weights of the entire network were modified with learning rate 10−4(denoted as ResNet18
+ finetune and ResNet18 CBAM + finetune).

In this setting, six models were trained: ResNet18, ResNet18 CBAM and their freeze
or finetune versions. Except for the learning rate, all hyperparameters were set in the same
way as the previous backbone network experiments. The results of accuracy and AUC
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value are shown in Table 3. The ResNet18 + freeze model yielded a higher accuracy and
AUC value than its original ResNet18. However, both freeze and finetune variants could
not improve the performance of ResNet18 CBAM, as seen with the training procedure
shown in Figure 4.

Table 3. Test performance of transfer learning models.

Model Accuracy AUC Value

ResNet18 0.688 ± 0.089 0.704 ± 0.095
ResNet18 + freeze 0.702 ± 0.112 0.762 ± 0.106

ResNet18 + finetune 0.676 ± 0.078 0.694 ± 0.078
ResNet18_CBAM 0.729 ± 0.050 0.739 ± 0.068

ResNet18_CBAM + freeze 0.593 ± 0.158 0.659 ± 0.122
ResNet18_CBAM + finetune 0.626 ± 0.096 0.724 ± 0.103
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3.3. Few-Shot Learning

The few-shot learning was also employed to cope with the small sample problem in
the laryngoscopic image classification task. We argue that, due to the limited size of training
data, only a feature extractor (a shallow network) could be trained rather than a complete
classifier (a deep network). In our experiment, the shallow network was composed of four
convolution layers and a fully connected output layer, as in a previous work [12].

Two models were trained: ProtoNet and ProtoNet + finetune. The weights of the
former model were trained by using the miniImageNet dataset, while the weights of the
latter were fine-tuned by using LPR images additionally. The results are shown in Table 4.
Although fine-tuning enhanced the performance, the second model was still outperformed
by previous backbone models. This experiment shows that prototype-based few-shot
learning cannot succeed in improving LPR diagnosis performance.
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Table 4. Test performance of few shots learning models.

Model Accuracy AUC Value

ProtoNet 0.578 0.610
ProtoNet + finetune 0.632 0.623

4. Discussion

Deep learning techniques have been applied to several mainstream medical images,
such as CT, MRI and ultrasound. However, only a few methods are devoted to endoscope
images or laryngoscope images particularly. The hypothesis was that raw laryngoscope
images can be used to diagnose LPR directly and conveniently, which has been verified
by previous works [2,16]. Following those works, MII-24 h pH monitoring was adopted
as the gold standard to diagnose LPR, which was more accurate and objective than the
RFS method.

The results of Tables 2 and 3 indicate that deep neural networks are promising to
capture discriminant representations for the LPR task. Although an overall classification
accuracy of 73.4% may be inadequate for real settings of clinical diagnosis, a relatively small
image dataset would be responsible, which included 114 subjects with only 37 pH-positive
cases. As the database is enlarged in the future, deep learning techniques will achieve a
better performance.

Another contribution of this work is that the extensive experiments were conducted
to test the performance of some prominent deep neural networks on this particular task.
A bunch of baselines were set up for future study, to build LPR diagnostic system with
deep learning techniques. Unfortunately, based on the data of this research, the popular
techniques in transfer learning and few-shot learning were found to be unable to enhance
the performance further. On the other hand, the deep learning technique is a kind of quick
diagnostic tool for LPR, which can be applied before and after therapy to evaluate the effect
more conveniently than MII-24 h pH monitoring.

Du et al. proposed an LPR diagnostic method where predefined texture and color
features were extracted on seven manually drawn regions [2]. In our work, discriminant
features are learned automatically in an end-to-end fashion, which allows a clinician to
sidestep the tedious work and eliminate the subjective bias due to manual drawing jobs.
With the technology development of deep learning, the features of laryngoscope image
could be recognized from every angle of view, not just with only two features, as color and
texture. Furthermore, as the datasets were augmented by sequentially applying random
rotation, color jittering, random flip and random crop during the training and testing phase,
the effect of interference factors, such as the distance, angle of the camera and white balance
of laryngoscope images, would be eliminated. The future work will involve testing more
powerful network architectures, particularly those new models in attention mechanism,
transfer learning and few-shot learning.

When the data are enough for the deep learning system, the performance of the
technique will be better. The collection of images from multi-center is a good choice.

5. Conclusions

This study demonstrates that deep learning techniques can be applied to classify LPR
images automatically. Although only with limited pH-positive images for training, deep
networks can still be capable of learning discriminant features to generalize on unseen
images. One advantage of deep learning techniques over traditional techniques is that,
as we collect more images to enlarge our dataset in the future, the performance might be
improved with the same training procedure with little extra efforts.
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