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Abstract: In this paper, a neural-network-based control method to achieve trajectory tracking and
balancing of a ball-balancing robot with uncertainty is presented. Because the ball-balancing robot
is an underactuated system and has nonlinear couplings in the dynamic model, it is challenging
to design a controller for trajectory tracking and balancing. Thus, various approaches have been
proposed to solve these problems. However, there are still problems such as the complex control
system and instability. Therefore, the objective of this paper was to propose a solution to these
problems. To this end, we developed a virtual angle-based control scheme. Because the virtual angle
was used as the reference angle to achieve trajectory tracking while keeping the balance of the ball-
balancing robot, we could solve the underactuation problem using a single-loop controller. The radial
basis function networks (RBFNs) were employed to compensate uncertainties, and the controller
was designed using the dynamic surface control (DSC) method. From the Lyapunov stability theory,
it was proven that all errors of the closed-loop control system were uniformly ultimately bounded.
Therefore, the control system structure was simple and ensured stability in achieving simultaneous
trajectory tracking and balancing of the ball-balancing robot with uncertainty. Finally, the simulation
results are given to verify the performance of the proposed controller through comparison results. As
a result, the proposed method showed a 19.2% improved tracking error rate compared to the existing
method.

Keywords: ball-balancing robot; underactuated system; virtual angle; dynamic surface control;
neural network

1. Introduction

Mobile robots have been attracting attention in many fields due to their various
applications. Therefore, various techniques have been proposed to operate mobile robots,
such as automatic control and a brain–computer interface (BCI) that connects the brain
and a computer to control the robot [1]. In this paper, we focused on the automatic control
of a ball-balancing robot, which is a type of mobile robot. The ball-balancing robot is an
omnidirectional mobile robot, the body of which is placed over a spherical wheel. Because
of this characteristic, a control strategy different from traditional methods for mobile
robots was required to achieve simultaneous trajectory tracking and balancing. However,
designing the controller was challenging due to several problems such as underactuation
and nonlinear coupling.

Early studies used single-loop control methods such as proportional–integral–derivative
(PID) [2] and a linear quadratic regulator (LQR) [3], which was only possible for balanc-
ing the robot. To enable both trajectory tracking and balancing of the robot, multi-loop
control methods such as PI-LQR [4] and PD-PID [5] were presented using independent
inner- and outer-loops. However, the above papers were based on the linearized model,
which requires a narrow operating range. Although the partial feedback linearization (PFL)
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technique [6] was proposed to relax this restriction, the control system using the multi-loop
method becomes complex due to additional feed-forward controllers for robustness against
uncertainties [7].

Sliding mode control (SMC) is a representative nonlinear control method that is robust
to uncertainty. Thus, the hierarchical sliding mode control (HSMC) method [8], which
is composed of combinations of independent sliding surfaces, was proposed to address
underactuated systems. The HSMC method based on the two-dimensional model of the
ball-balancing robot was presented in [9] and then applied to the aggregated model to
consider the combined effects [10]. An integral backstepping technique using the HSMC
structure was proposed in [11], and an artificial neural network-based method [12] was
presented to deal with uncertainty and input saturation. The hierarchical structure used in
the above papers can solve the underactuation problem and has robustness for uncertainties.
However, the hierarchical structure has the local minimum problem [13], which may not
guarantee the convergence of all errors.

Therefore, a different approach was needed to achieve simultaneous trajectory tracking
and balancing for the ball-balancing robot. In this regard, we proposed a virtual angle-
based approach [14]. The virtual angle composed of the tracking errors was used as
a reference angle to achieve simultaneous trajectory tracking and balancing using the
single-loop control system. However, the upper bounds of uncertainties for robustness
should be known, which may be impossible in the real world. Artificial intelligence can
be a solution to address this problem. In [15], deterministic artificial intelligence (DAI)
was used for underactuated systems with nonlinear couplings. In [16], a artificial neural
network was employed to deal with model uncertainty and the external disturbance of
underactuated surface vessels. The field of non-stochastic or DAI involves the assertion of
self-awareness statements and uses optimal learning to compensate the deleterious effects
of error sources [15]. On the other hand, an artificial neural network (ANN), which is in the
field of stochastic artificial intelligence, does not need to devise an algorithm to perform a
particular task because the learning process of a neural network takes place by itself [17].

Motivated by these observations, we proposed a neural network-based control for
trajectory tracking and balancing of the ball-balancing robot with uncertainty. A virtual
angle-based control method was used to design a single-loop control system to achieve
trajectory tracking and balancing of the robot. Unlike in [14], the radial basis function
networks (RBFNs) [18], a kind of ANN, were used to compensate the uncertainties without
knowing their upper bounds, and the dynamic surface control (DSC) method [19] was
employed to design the controller. From the Lyapunov stability theory, it was proven that
all errors of the closed-loop control system were uniformly ultimately bounded. Finally, the
performance of the proposed method was demonstrated through the simulation results.

The main contributions of this paper are summarized as follows:

1. The trajectory tracking and balancing of the ball-balancing robot was achieved using
a single-loop controller;

2. It was possible to implement a control system without any knowledge of the upper
bounds of uncertainties.

This paper is organized as follows. In Section 2, the dynamics of the ball-balancing
robot and the RBFNs are described, and the neural network-based controller is developed
for trajectory tracking and balancing of the ball-balancing robot. In Section 3, the simulation
results are presented to demonstrate the performance of the proposed method, and the
discussion is given in Section 4.

2. Materials and Methods

In this section, we describe the system model of the ball-balancing robot for formulat-
ing the problems and introduce the RBFNs for compensating the uncertainty.
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2.1. Dynamics of the Ball-Balancing Robot

Consider the ball-balancing robot shown in Figure 1. Assuming that there is no slip
between the sphere and the floor and between the driving wheels and the sphere, the
dynamic equation of the ball-balancing robot can be expressed as [12]:

M(q)q̈ + C(q̇, q)q̇ + f (q̇) + g(q) = B(q)u. (1)

Figure 1. Spatial model of the ball-balancing robot [10].

Here, M(q) ∈ R4×4 is the symmetric inertia matrix, C(q̇, q) ∈ R4×4 represents the
Coriolis and centripetal matrix, f (q̇) ∈ R4 is the friction matrix, g(q) ∈ R4 is the gravity
vector, B(q) ∈ R4×2 denotes control input matrix, and u ∈ R2 represents the control input
vector. These terms are given by:

M(q) =


m1 m2 m3 m4
m2 m5 m6 m7
m3 m6 m8 0
m4 m7 0 m9

,

C(q̇, q) =


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 0 c44

,

f (q̇) =
[
ζx ẋ, ζyẏ, ζθ θ̇, ζϕ ϕ̇

]>,

g(q) =
[
0, 0, g3, g4

]>, u =
[
ux, uy

]>,

B(q) =
[
B>s , B>b

]>
, q =

[
x, y, θ, ϕ

]>,

Bs =
1

rw

[
0 − cos ϕ

cos θ sin ϕ cos θ

]>
, Bb =

rs

rw

[
0 1
1 0

]>
,

where the X- and Y-axis positions of the ball are denoted by x and y, respectively, pitch and
roll are denoted by θ and ϕ, respectively, and ux and uy denote the control inputs of the
virtual acting wheels by the three omnidirectional wheels, respectively. The terms in ζi (i =
x, y, θ, ϕ) are viscous coefficients. rs and rw denote the ball radius and omnidirectional
wheel radius, respectively. It is noted that control input matrices Bs and Bb are invertible
with |θ|, |ϕ| < π/2. The terms in M(q), C(q̇, q), and g(q) are given in Appendix A.
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The dynamic equation in (1) can be decoupled into two subsystems of the position
and the angle as follows:

q̈s = Fs + ∆Fs + Gsu, (2)

q̈b = Fb + ∆Fb + Gbu. (3)

In these expressions, qs =
[
x, y
]>, qb =

[
θ, ϕ
]>, and the matrices F j, ∆F j and Gj

(j = s, b) are given in Appendix B. ∆F j represents the model uncertainties including
viscous damping coefficients ζi (i = x, y, θ, ϕ).

The control objective was to design the control input u satisfying that limt→∞ ‖qs −
qsr‖ = µ0 and limt→∞ ‖qb − qbr‖ = µ1, where qsr =

[
xr, yr

]> and qbr =
[
0, 0
]> are the

reference vectors for trajectory tracking and balancing, respectively, and µ0 and µ1 are
arbitrary positive constants.

2.2. Radial Basis Function Networks

We employed the RBFNs [20] to approximate ∆Fb, and it can be expressed as:

∆Fb =
[
∆Fb1, ∆Fb2

]>
=
[
Φ1(χ1)ω

∗
1 + ε1, Φ2(χ2)ω

∗
2 + ε2

]>, (4)

where χi ∈ Rn (i = 1, 2) is the input vector of the RBFN, ω∗i ∈ Rm is the optimal
weight vector, m is the node number, εi denotes the reconstruction error, and Φi(χi) =[
Φi1(χi), . . . , Φim(χi)

]
with:

Φij(χi) =exp
(−‖χi − µij‖2

η2
ij

)
, j = 1, 2, . . . , m. (5)

Here, µij ∈ Rn is the center of the receptive field and ηij is the width of the Gaus-
sian function.

Assumption 1. There exists an ideal constant weight vector ω∗i such that |εi| ≤ εM with a
positive constant εM for i = 1, 2, and the optimal weight vector is defined as the value of ω̂i that
minimizes |εi|, i.e.,

ω∗i =arg min
ω̂i∈Rm

{
sup

χi∈Rn
|∆Fbi −Φi(χi)ω̂i|

}
. (6)

Assumption 2. The optimal weight vector is bounded such that ‖ω∗i ‖ ≤ ωM with a positive
constant ωM.

2.3. Controller Design

The ball-balancing robot model given in (2) and (3) is underactuated and has uncer-
tainties. To deal with these problems, we introduced a virtual angle that can achieve both
the trajectory tracking and balancing of the robot and designed a neural-network-based
controller using the DSC method step-by-step.

Let us define the following errors:

es =
[
ex, ey

]>
= qs − qsr, (7)

z1 = tanh qb − θ f ,

z2 =
[
z21, z22

]>
= q̇b − α f , (8)
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where θ f and α f are the signals filtered by τ2
1 θ̈ f + 2τ1θ̇ f + θ f = θv and τ2α̇ f + α f = α with

positive design parameters τ1 and τ2. In these expressions, α denotes the virtual control
input and θv denotes the virtual angle for the underactuation problem given by:

θv = λθs, s = ės + λes, (9)

where λθ is a diagonal matrix and λ > 0 is a design parameter.

Remark 1. In (8), the boundedness of z1 implies that θ f and θv are bounded. This leads to the
boundedness of the tracking error es from (9). If the tracking error converges to zero, it is easily
shown that the body angle qb of the robot also converges to zero from (8) and (9). Therefore, we can
solve the underactuation problem.

Remark 2. The first and second derivatives of the virtual angle θv are required to design a controller.
By the definition of the virtual angle in (9), it includes the control input u, which is impossible to
implement the controller. To avoid this problem, we used the virtual angle θ f passed through the
second-order filter.

Differentiating both sides of (8) using (3) gives the following error dynamics:

ż1 =H1(z2 + α f )− θ̇ f , (10)

ż2 =Fb + ∆Fb + Gbu− α̇ f , (11)

where H1 = diag(sech2θ, sech2 ϕ) and diag(·) denotes a diagonal matrix. Note that H1
is invertible.

Step 1: Consider the Lyapunov function candidate as:

V1 =
1
2

z>1 z1. (12)

Let v be the filter error of the virtual control input, i.e., v = α− α f . Differentiating
both sides of (12) along (10) yields:

V̇1 = z>1 (H1(z2 + α−v)− θ̇ f ). (13)

From (13), we chose the virtual control input vector α to be:

α = H−1
1 (θ̇ f − K1z1), (14)

where K1 is a diagonal positive definite matrix.
Step 2: Consider the Lyapunov function candidate as:

V2 =
1
2
(z>2 z2 + v>v). (15)

The time derivative of (15) along (11) is:

V̇2 =z>2 (Fb + ∆Fb + Gbu− α̇ f ) + v>(α̇− τ−1
2 v). (16)

From (16), we chose the actual control vector u to be:

u = G−1
b

(
− Fb −

[
Φ1(χ1)ω̂1, Φ2(χ2)ω̂2

]>
+ α̇ f − K2z2 − H>1 z1

)
, (17)

where K2 is a diagonal positive definite matrix and ω̂i(i = 1, 2) denotes the estimate of the
optimal weight vector ω∗i for the RBFNs.
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Remark 3. Because the ball-balancing robot is operated by the three driving motors acting on the
spherical wheel, it needs torque conversion between the control input u and the actual motors for
the implementation (see the details in [7]).

Step 3: Consider the total Lyapunov function candidate as:

VT =V1 + V2 +
1
2

2

∑
i=1

ω̃>i Γ−1
i ω̃i, (18)

where ω̃i = ω∗i − ω̂i and Γi is a diagonal positive definite matrix.
The time derivative of (18) along (13), (14), (16), and (17) is:

V̇T =− z>1 K1z1 − z>2 K2z2 + z>2

[
Φ1(χ1)ω̃1 + ε1
Φ2(χ2)ω̃2 + ε2

]
− τ−1

2 v>v− z>1 H1v + v>α̇−
2

∑
i=1

ω̃>i Γ−1
i

˙̂ωi. (19)

From (19), we chose the update law ˙̂ωi to be:

˙̂ωi = Γi(Φi(χi)
>z2i − σiω̂i), i = 1, 2, (20)

where σi is a positive design parameter.
Substituting (20) into (19) yields:

V̇T =−
2

∑
i=1

[
z>i Kizi + σiω̃

>
i (ω̃i −ω∗i )

]
− τ−1

2 v>v− z>1 H1v− z>2 ε + v>α̇, (21)

where ε =
[
ε1, ε2

]>.

3. Results

In this section, the stability of the control system designed in Section 2 is analyzed
using the Lyapunov stability theory, and the main result of this paper is given. Moreover,
the simulation results are provided to verify the performance of the proposed method.

3.1. Stability Analysis

The main result of this paper is given by the following theorem.

Theorem 1. Consider the ball-balancing robot model given in (2) and (3). Under Assumptions 1 and 2,
if the control inputs α and u given in (14) and (17) with the update law (20) are applied to the
ball balancing model, then for any initial conditions satisfying VT(0) ≤ p, where p is a positive
constant, it is ensured that all error signals in the closed-loop system are uniformly ultimately
bounded and can be made arbitrarily small.

Proof. From (14), one can show that ‖α̇‖ ≤ η(z1, z2, v, θ f , θ̇ f , θ̈ f ) for some continuous
functions η. Consider a set Q := {(θ f , θ̇ f , θ̈ f ) : ‖θ f ‖ + ‖θ̇ f ‖ + ‖θ̈ f ‖ ≤ K0} and a set
A := {(z1, z2, v, ω̃1, ω̃2) : z>1 z1 + z>2 z2 + v>v + ω̃>1 Γ−1

1 ω̃1 + ω̃>2 Γ−1
2 ω̃2 ≤ 2p} where K0

is a positive constant. Since Q and A are compact sets, there exists a positive constant ηM
such that η(·) ≤ ηM on A×Q. Then, by Assumptions 1 and 2 and Young’s inequality, (21)
can be rewritten as:

V̇T ≤−
2

∑
i=1

[
z>i

(
Ki −

1
2

I2

)
zi +

1
2

σiω̃
>
i ω̃i

]
−v>

(
τ−1

2 − 1
2

)
I2v + ε2

M +
1
2

σ1ω2
M +

1
2

σ2ω2
M +

1
2

η2
M, (22)
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where I2 ∈ R2×2 denotes the identity matrix.

Choosing K1 =
1
2

I2 + K∗1 , K2 =
1
2

I2 + K∗2 , and τ−1
2 =

1
2
+ τ∗2 with K∗1 , K∗2 , τ∗2 > 0

results in:

V̇T ≤− c0VT + c1, (23)

where c0 = min{λK∗1
, λK∗2

, τ∗2 , σ1λ
Γ−1

1
, σ2λ

Γ−1
2
}, c1 = ε2

M + 1
2 σ1ω2

M + 1
2 σ2ω2

M + 1
2 η2

M, and

λ(·) denotes the minimum eigenvalue of the matrix (·).
Integrating both sides of (23) yields:

V(t)T ≤
(

VT(0)−
c1

c0

)
e−c0t +

c1

c0
, (24)

From (24), the boundedness of z1 is guaranteed, and it leads to the boundedness of
the virtual angle θv.

Integrating both sides of (9) yields:

‖es(t)‖ ≤ min{‖es(0)‖, ‖λ−1λ−1
θ θv‖}. (25)

Therefore, all errors in the closed-loop system are uniformly ultimately bounded and
can be made arbitrarily small by properly choosing the design parameters. This completes
the proof.

3.2. Simulation Results

This section presents the simulation results on the proposed method. The model
parameters are given in Table 1. The design parameters were chosen as K1 = diag(10, 10),
K2 = diag(10, 10), λ = 2, λθ = diag(−0.1, 0.1), σ1 = σ2 = 0.1, and τ1 = τ2 = 0.1. The
initial states of the robot were taken as q =

[
−0.2, 0.2, 0, 0

]>. The friction parameters
were chosen as ζx = ζy = 2 N · s/m and ζθ = ζϕ = 1 N · s/rad. To consider perturbed
dynamics, we assumed that we knew the nominal parameters as follows: mb = 116 kg,
l = 0.23 m, Ibx = 16.25 kg ·m2, and Iby = 15.85 kg ·m2. To verify the performance of the
proposed method, the reference trajectory was composed of straight lines and curves, and
the proposed controller (PC) was compared with the integral backstepping hierarchical
sliding mode control (IBHSMC) method [12].

Table 1. Parameters of the ball-balancing robot [12].

Symbol Parameter Value

mb Body mass 116 kg
l Body length 0.23 kg

Ibx
Moment of inertia of the body

about the roll axis 16.25 kg ·m2

Iby
Moment of inertia of the body

about the pitch axis 15.85 kg ·m2

rw Omnidirectional wheel radius 0.1 kg
mw Omnidirectional wheel mass 0.56 kg

Iw
Moment of inertia of the
omnidirectional wheel 0.26 kg

ms Ball mass 11.4 kg
rs Ball radius 0.19 kg
Is Moment of inertia of the ball 0.165 kg
α Zenith angle 56◦

The simulation results on the trajectory tracking are shown in Figure 2. It can be
seen that both methods had precise tracking performance for straight paths and slight
errors for curved paths. Figure 3 shows the detailed simulation results. The trajectory
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tracking errors of the ball-balancing robot are shown in Figure 3a,b, and the body angles
of the robot are depicted in Figure 3c,d. It can be seen that neither method made a
significant difference in balancing performance. On the other hand, in trajectory tracking,
the proposed method showed a 19.2% improved error rate compared to the IBHSMC
method. Figure 4a,b shows the control inputs and estimates of the optimal weights for the
RBFNs, respectively. Table 2 shows the root mean square (RMS) of the tracking errors for
various control gains. This result sufficiently validated that the tracking and balancing
errors can be made arbitrarily small by properly choosing the design parameters. From
these results, we could demonstrate that the proposed method was effective in achieving
simultaneous trajectory tracking and balancing of the ball-balancing robot.

Table 2. RMS of tracking errors according to the control gain.

Gain Nominal Perturbed

K1 = diag(0.1, 0.1) 0.1299 0.2108
K1 = diag(1, 1) 0.1278 0.1355

K1 = diag(10, 10) 0.1271 0.1244

-20 -10 0 10 20
X [m]

0

2

4

6

8

10

Y
 [m

]

PC
IBHSMC
Reference

Figure 2. Simulation results on the trajectory tracking performances of the ball-balancing robot.
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Figure 3. Simulation results (a) tracking error ex; (b) tracking error ey; (c) body angle θ; (d) body angle ϕ.
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Figure 4. Simulation results (a) control inputs; (b) estimates of the optimal weights of the RBFNs (solid: ‖ω̂1‖, dotted:
‖ω̂2‖).

4. Discussion

In this paper, a neural-network-based control method was proposed for trajectory
tracking and balancing of a ball-balancing robot. We introduced a virtual angle to solve
the underactuation problem and designed a single-loop controller using the DSC method
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for a simple control system. Moreover, we employed the RBFNs to compensate for the
uncertainties and derived the update laws for the RBFNs in the Lyapunov sense. From
the Lyapunov stability theorem, it was proven that all errors in the closed-loop control
system were uniformly ultimately bounded and could be made arbitrarily small. The
simulation results, including comparisons with the previous method, were provided
to verify the performance of the proposed method. It was shown that the proposed
method had a 19.2% improved tracking error rate compared to the previous method. In
addition, it was confirmed that all errors could be made arbitrarily small as the choice
of the design parameters shown in Table 2. Therefore, unlike other previous studies,
the proposed method had a simple control system structure and guaranteed stability in
achieving simultaneous trajectory tracking and balancing.

In this paper, it was assumed that all states, such as the position, body angle, and
velocity of the robot, were measurable and exact. However, this may not be practical
because it requires many sensors and can be contaminated by noise. The output-feedback
control method using the observer can be a solution to this problem. Therefore, as future
research, we will provide a control method that minimizes the use of sensors, such as
output-feedback control.
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Appendix A

The terms of the Lagrange equation are as follows [12]:

m1 = mbs + 1.5(3S2
αS2

ϕ − S2
α + C2

ϕ)Iwr,

m2 = 0.75c1S2ϕSθ ,

m3 = 1.5(c1C2
ϕ − 2S2

ϕ)rs + lmbCϕCθ ,

m4 = −lmbSϕSθ ,

m5 = mbs + 1.5(C2
αC2

θ + C2
αS2

ϕS2
θ + 2C2

ϕS2
αS2

θ)Iwr,

m6 = −1.5c1CϕSϕSθ Iwrrs,

m7 = 1.5rsC2
αCθ Iwr − lmbCϕ,

m8 = IbyC2
ϕ + mbl2C2

ϕ + 1.5(3S2
αS2

ϕ − S2
α + C2

ϕ)Iwrrs,

m9 = Ibx + mbl2 + 1.5r2
s C2

α Iwr,

c11 = −3S2ϕ(3C2α − 1)Iwr ϕ̇/8,

c12 = 0.75c1 Iwr(SθC2ϕ ϕ̇ + c2θ̇),

c13 = 0.75c1S2ϕ Iwr ẋ + 0.75c1C2ϕSθ Iwr ẏ− lmbCϕSθ ϕ̇− (1.5rsCϕc1 − lmbCθ)Sϕ Iwr θ̇,

c14 = 0.75c1c2 Iwr ẏ− (1.5c1 IwrrsCϕ + lmbCθ)Sϕ ϕ̇− lmbCϕSθ θ̇,

c21 = 0.75c1C2ϕSθ Iwr ϕ̇ + 0.75c1CϕCθSθ Iwr θ̇,

c22 = 1.5c1C2
ϕCθSθ Iwr θ̇ − 1.5c1CϕS2

θSϕ Iwr ϕ̇,

c23 = 0.75c1C2ϕSθ Iwr ẋ− 0.75c1S2ϕS2
θ Iwr ẏ + lmbSϕ ϕ̇− 0.5(c1C2

ϕ + 2C2ϕ)rsSθ Iwr θ̇,

c24 = 0.75c1CϕCθSϕ Iwr ẋ + 1.5c1C2
ϕCθSθ Iwr ẏ + (3− 3c1C2

ϕ − 2C2
α)Sθ Iwrrs ϕ̇/2

−1.5c1c2 Iwrrs θ̇,

(A1)
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c31 = 3(3C2α − 1)S2ϕCθ Iwr ẏ/16 + 3(3C2α − 1)S2ϕ Iwrrs ϕ̇/8,

c32 = 3Iwr(c3Sθrs ϕ̇/2− c1c2 ẋ/4− c1C2
ϕCθSθ ẏ/2),

c33 = −0.75c1S2ϕ Iwrrs ẋ + 1.5c3Sθ Iwrrsẏ + (3r2
s c1 − 2mbl2 − 2Iby)S2ϕ Iwr θ̇/4,

c34 = −(4mbl2 + 4Iby + 3(3C2α − 1)S2ϕ Iwrr2
s )ϕ̇/8,

c41 = −3c1S2ϕ Iwr ẋ− 3c1SθC2ϕ Iwr ẏ + 0.75c1S2ϕ Iwrrs θ̇,

c42 = 0.75Iwr(c1S2
θS2ϕẏ− c1C2ϕSθ ẋ− 2c3Sθrs θ̇),

c44 = 0.75c1S2ϕrs Iwr ẋ− 1.5c3Sθrs Iwr ẏ + (2mbl2 − 3c1 Iwrr2
s + 4Iby)S2ϕ θ̇/4,

g3 = −glmbCϕSθ ,

g4 = −glmbCθSϕ,

where C(·) and S(·) denote cos (·) and sin (·), respectively, and c1 = (2− 3C2
α), c2 = CϕCθSϕ,

c3 = (S2
α − c1C2

ϕ), Iwr = 3IwC2
α/(2r2

w), and mbs = mb + ms + Is/r2
s .

Appendix B

The terms in (2) and (3) are defined as:

Fs = M−1
1 (C11q̇s + C12q̇b + g1),

Fb = M−1
2 (C21q̇s + C22q̇b + g2),

∆Fs = M−1
1 f 1, ∆Fb = M−1

2 f 2,

Gs = M−1
1 B1, Gb = M−1

2 B2,

M1 = M−1
sb M−1

ss −M−1
bb M−1

bs ,

M2 = M−1
ss M−1

sb −M−1
bs M−1

bb ,

C11 = M−1
bb Cbs −M−1

sb Css, C12 = M−1
bb Cbb −M−1

sb Csb,

C21 = M−1
bs Cbs −M−1

ss Css, C22 = M−1
bs Cbb −M−1

ss Csb,

f 1 = M−1
bb f b −M−1

sb f s, f 2 = M−1
bs f b −M−1

ss f s,

g1 = M−1
bb gb, g2 = M−1

bs gb,

B1 = M−1
sb Bs −M−1

bb Bb, B2 = M−1
ss Bs −M−1

bs Bb,

Mss =

[
m1 m2
m2 m5

]
, Mbb =

[
m8 0
0 m9

]
,

Msb = MT
bs =

[
m3 m4
m6 m7

]
,

Css =

[
c11 c12
c21 c22

]
, Csb =

[
c13 c14
c23 c24

]
,

Cbs =

[
c31 c32
c41 c42

]
, Cbb =

[
c33 c34
0 c44

]
,

f s =
[

ζx ẋ ζyẏ
]T , f b =

[
ζθ θ̇ ζϕ ϕ̇

]T , gb =
[

g3 g4
]T ,

Bb =
1

rw

[
0 −Cϕ

Cθ SϕSθ

]
, Bs =

rs

rw

[
0 1
1 0

]
.
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