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Abstract: The structure of optical dispersive shock waves in nematic liquid crystals is investigated as
the power of the optical beam is varied, with six regimes identified, which complements previous
work pertinent to low power beams only. It is found that the dispersive shock wave structure depends
critically on the input beam power. In addition, it is known that nematic dispersive shock waves are
resonant and the structure of this resonance is also critically dependent on the beam power. Whitham
modulation theory is used to find solutions for the six regimes with the existence intervals for each
identified. These dispersive shock wave solutions are compared with full numerical solutions of the
nematic equations, and excellent agreement is found.
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1. Introduction

Nematic liquid crystals form an ideal medium to study nonlinear optics due to their
“huge” nonlinearity, which is orders of magnitude larger than that of optical fibers, so that
nonlinear effects can be observed over millimeter distances [1–4]. In particular, the re-
fractive index of nematic liquid crystals increases with optical intensity, so that they form
a focusing medium. When a light beam propagates through a nematic liquid crystal,
the electric field of the electromagnetic wave induces dipoles in the nematic molecules,
which then rotate, changing the refractive index. In addition, nematic liquid crystals have a
nonlocal response to an optical beam in that the elastic response of the nematic extends far
beyond the optical forcing [4]. An optical beam propagating through a nematic medium
can then form its own waveguide, resulting in a self-guided beam, an optical solitary wave,
termed a “nematicon” [2,3,5,6], which was first experimentally generated and observed
in 2000 [6]. Since this first observation, nematicons, and related solitary-type waves, such
as optical vortices, have become a theme of intense experimental and theoretical research
effort, driven both by interest in the nonlinear optics of nematic liquid crystals and also by
their potential applications in optical devices [7–10]; see Refs. [2,3,5,11] for general reviews
on the nonlinear optics of nematic liquid crystals.

Solitary waves are generic wave forms for nonlinear dispersive wave equations [12],
first observed and studied in the context of water waves [12,13] and fluid dynamics [12],
but are widespread in nature arising, e.g., in solid mechanics [14], biology [15], ecology [16],
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and the aforementioned context of nonlinear optics [2,17,18], for instance. One of the
appealing features of solitary waves, in addition to their widespread occurrence in nature,
is that they are localized waves with steady profiles, which makes them easier to study
theoretically. In addition to this, many generic nonlinear dispersive wave equations, such as
the Korteweg-de Vries (KdV), nonlinear Schrödinger (NLS), and Sine-Gordon equations, are
completely integrable systems via the Inverse Scattering Transform method [12,18]. Thus,
a general initial condition for these equations will form a finite number of solitary waves,
plus dispersive radiation. In addition, solitary wave solutions of integrable nonlinear
dispersive wave equations, solitons, interact “elastically”, i.e., they emerge unscathed out
of the interaction without any change in their form; hence, due to this particle-like behavior,
solitary waves are termed solitons for such equations.

Another generic wave form supported by nonlinear dispersive wave equations are dis-
persive shock waves (DSWs), also termed undular bores; these structures are as widespread
in nature as solitary waves, with well known examples being tidal bores and tsunamis [19].
In contrast to a solitary wave, a DSW is a non-steady wave form which continuously
expands. A DSW is a dispersive regularization of a discontinuity and is a modulated
periodic wavetrain with solitary waves at one edge and linear, dispersive waves at the
other—see Reference [19] for a general review of DSWs. Since DSWs are non-steady wave-
forms, their study is more difficult than that for solitary waves. The development of DSW
solutions of nonlinear dispersive wave equations relies chiefly on Whitham modulation
theory [12,20–22], which is a version of the asymptotic method of multiple scales that is
used to analyze slowly varying periodic wavetrains. Whitham modulation equations
are a system of partial differential equations which govern the parameters of a slowly
varying wavetrain, such as its amplitude, wavenumber, frequency, and mean height. If this
system is hyperbolic, then the underlying wavetrain is modulationally stable, while, if it
is elliptic, the wavetrain is unstable [12]. A major achievement of Whitham modulation
theory was the development of the modulation equations for the KdV equation [12,21].
These modulation equations form a hyperbolic system, so that the cnoidal wave solution of
the KdV equation is modulationally stable. It was subsequently realized that a simple wave
solution of the KdV modulation equations is a DSW [23], even though the initial condition
is a step, which is not slowly varying. This DSW solution is in excellent agreement with
numerical solutions of the KdV equation [24]. The key to the determination of the simple
wave DSW solution is the ability to set the modulation equations in Riemann invariant
form. If the nonlinear dispersive wave equation governing the DSW is integrable, then its
Whitham modulation equations can be automatically set in Riemann invariant form [25],
so that the DSW solution can easily be found.

As mentioned above, the standard DSW form, termed of KdV type [19], is a modulated
periodic wave with solitary waves at one edge and linear dispersive waves at the other. A
non-standard DSW type is a resonant DSW [26,27], for which the waves of the DSW are in
resonance with (linear) dispersive waves, resulting in a resonant wavetrain being emitted
from the DSW. Resonant DSWs also occur for the KdV equation with next higher-order
dispersion, i.e., fifth-order dispersion, namely for the Kawahara equation [28], and the NLS
equation with next order, third-order dispersion [29–32]. If the emitted resonant wavetrain
is of large enough amplitude, the KdV-type DSW structure can be destroyed; this results
in the so-called traveling dispersive shock wave (TDSW) regime [26,27], consisting of a
resonant wavetrain with a negative polarity solitary wave, which is the remnant of the DSW,
linking this to the level behind [26]— see Figure 2d below for an example of such a TDSW.
A nematic liquid crystal is a focusing medium; thus, optical waves are modulationally
unstable; as a result, an optical DSW is not supported. However, the addition of azo dyes
to the nematic medium changes its response so that it becomes defocusing [33]; in this
case, nematics can support DSWs [34–36]. A nematic DSW is an example of a resonant
DSW [34–36]. In these works, the nematic DSW was studied in the highly nonlocal limit,
for which the nematic elastic response extends far beyond the light beam, with the nematic
DSW generated by a step jump in the optical intensity. While the nematic equations are
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of NLS-type [2], in the highly nonlocal limit the nematic bore is of KdV-type and is well
described by the DSW solution of the KdV equation. The nematic DSW structure is highly
dependent on the size of the jump of the optical electric field intensity generating it, with six
distinct DSW types identified [36].

As stated above, in the highly nonlocal limit the nematic DSW is of KdV-type with
the DSW having positive polarity. However, in the limit of weak nonlocality, the nematic
equations reduce to the NLS equation [2,4], and the nematic DSW becomes the NLS DSW,
which is non-resonant. The degree of nonlocality of the optical response of a nematic is
inversely proportional to the power of the optical beam, with the response being highly
nonlocal for lower power beams, transitioning to local as the beam power increases [2,4],
as will be detailed in Section 2. In this work, the evolution of the nematic DSW structure as
the degree of nonlocality ranges from highly nonlocal (low power beams) [34–36] to local
(high power beams) will be studied. As the nonlocality decreases, the changes in the DSW
structure from those previously found [36] in the limit of high nonlocality to the standard
NLS DSW [37] will be identified, and the solutions for these will be derived. It is found
that there exist two additional DSW regimes over those for large nonlocality, including
the NLS DSW for zero nonlocality. The new DSW regime is a transition between the KdV
DSW behavior for large nonlocality and the NLS DSW behavior for very small nonlocality.
In this regime, the DSW structure consists of a resonant wavetrain headed by a partial
DSW which takes the solution to the initial level ahead, similar to the resonant DSW for the
KdV equation with fifth-order dispersion [27,38]. As the nonlocality decreases, the optical
power increases, the resonant wavetrain contracts with the leading partial DSW expanding
and becoming a full NLS DSW. The analytical solutions for the various DSW types will be
compared with full numerical solutions of the nematic equations.

2. Nematic Equations

Let us consider the propagation of a linearly, extra-ordinarily polarized, coherent light
beam of wavenumber k0, wavelength λ0 = 2π/k0, through a planar cell filled with nematic
liquid crystals. The optical beam is assumed to propagate down the cell along in the Z
direction, with its electric field E polarized in the Y direction. The coordinate X then com-
pletes the coordinate system. Nematic liquid crystals are a uniaxial medium consisting of
elongated molecules, with the long axis termed the molecular director. The refractive index
of the medium is n‖ for optical beams polarized along the molecular director and n⊥ for
fields polarized orthogonal to the director. A fundamental property of nematic liquid crys-
tals is the so-called Freédericksz threshold, whereby a minimum optical power is needed
to rotate the nematic molecules, thus changing the refractive index of the medium [1].
However, high optical powers lead to heating of the nematic medium, which can cause
the loss of the nematic state if the temperature change is high enough [1,6]. One method
to overcome this is to pre-tilt the nematic molecules at an angle θ0 with respect to the
Z-direction upon the application of an external static electric field ELF, so that milli-Watt
power beams can rotate the nematic molecules [6]. Let us denote the optically induced
rotation of the nematic by φ, so that, in the presence of an optical beam, the total angle
of the nematic director to the Z direction is θ = θ0 + φ. This configuration of the nematic
cell is illustrated in Figure 1. The dimensional equations governing the propagation of the
optical beam in the nematic cell are then of the following form:

2ik0ne
∂E
∂Z

+∇2E + k2
0

[
n2
⊥ cos2 θ + n2

‖ sin2 θ − n2
⊥ cos2 θ0 − n2

‖ sin2 θ0

]
E = 0, (1)

for the electric field of the beam, and

K∇2φ +

[
1
4

ε0∆ε|E|2 + 1
2

∆εLFE2
LF

]
sin 2(θ0 + φ) = 0, (2)
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for the nematic response [2–5]. Here, the extraordinary refractive index of the nematic is:

n2
e =

n2
⊥n2
‖

n2
‖ cos2 θ + n2

⊥ sin2 θ
. (3)

θo
X

Y

Z

Z

!"!"!"!"

!
"

!
"

!
"

!
"

!

"

!

"

!"!"!"!"

!
"

!
"

!
"

!
"

!

"

!

"

φ
E

VLF

ELF

Figure 1. Sketch of nematic cell. A coherent light beam (yellow region) in which the electric field E
is polarized in the Y direction propagates in the Z direction through a cell filled with a dye-doped
nematic liquid crystal. Thin film electrodes (black) are deposited on the upper and lower cell walls
(grey). An external low frequency voltage bias VLF creates an electric field ELF to pre-tilt the molecules
at an angle θ0 to Z. The nematic molecules which are located at the boundaries are held tightly by
the virtue of the anchoring films. The far right inset (black) dashed box exhibits the angular rotation
of a nematic molecule with respect to the propagation direction Z in the absence (θ0) and presence
(θ0 + φ) of the optical beam.

In the above equations, ∆ε = n2
‖ − n2

⊥ is the optical anisotropy, ∆εLF is the low-
frequency dielectric anisotropy, and ε0 is the electrical permittivity of free space. In addition,
the constant K is the elastic medium constant in the one constant approximation for which
the elastic constants of bend, twist, and splay are taken equal [1,2].

The nematic Equations (1) and (2) are highly nonlinear and difficult to analyze. How-
ever, for milli-Watt power beams, the optically induced rotation φ is small, |φ| � θ0, so that
these equations can be expanded in Taylor series around θ0. In addition, these equations
can be put in dimensionless form using typical scales LZ down the cell and W transverse
to the down cell direction, as well as a typical scale Ab for the electric field of the optical
beam, so that

Z = Lzz, X = Wx, Y = Wy, E = Abu. (4)

Here, (x, y, z) is the non-dimensional coordinate system, and u is the non-dimensional
electric field of the optical beam. The electric field scale is obtained by assuming that the
input optical beam is a Gaussian beam of power Pb, amplitude Ab, and width Wb, so that

A2
b =

2Pb

πΓW2
b

, Γ =
1
2

ε0cne, n2
e =

n2
‖n

2
⊥

n2
‖ cos2 θ0 + n2

⊥ sin2 θ0
. (5)

Substituting these into the nematic Equations (1) and (2), and expanding in Taylor
series for small |φ|, we find [5,39] that suitable scalings are

LZ =
4ne

∆εk0 sin 2θ0
, W =

2
k0
√

∆ε sin 2θ0
, (6)
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and the resulting non-dimensional equations read

i
∂u
∂z

+
1
2
∇2u + 2φu = 0, (7)

ν∇2φ− 2qφ = −2|u|2. (8)

Here, the dimensionless elasticity and pre-tilting parameters, ν and q, are given by

ν =
8K

ε0∆εA2
bW2 sin 2θ0

=
πKΓk2

0W2
b

ε0Pb
, q =

4∆εLFE2
LF cos 2θ0

ε0∆εA2
b sin 2θ0

. (9)

Typical experimental beam parameter values are power Pb = 2 mW and half-width
Wb = 1.5µm, with a wavelength λ0 = 2π/k0 = 1.064µm in the near infrared [2,5]. For the
liquid crystal E7, a typical elastic constant is K = 1.2× 10−11N. These parameter values
give the elasticity parameter ν = O(100), as found in other studies [5,40,41]. This high
value of ν means that the nematic is operating in the highly nonlocal regime, in that the
elastic response of the nematic extends far beyond the waist of the optical beam [2–4].
However, ν is inversely proportional to the beam power Pb. Note that, for ν = 0, the
nematic Equations (7) and (8) reduce to the standard NLS equation

i
∂u
∂z

+
1
2
∇2u +

2
q
|u|2u = 0. (10)

This is the local response limit for the nematic. Note that, in (2+ 1)-dimensions, beams
governed by this equation are unstable and can show catastrophic collapse above a critical
power [17]. It is known that a nonlocal response, ν large, stabilizes (2 + 1)-dimensional
optical beams [2–5]. This is because the nematic response Equation (2) is elliptic, so its
solution depends on u in the entire domain, the origin of the physical concept of nonlocality.
Hence, by adjusting the beam power Pb, the response of the medium can be adjusted from
nonlocal to local, as long as the induced heating does not destroy the nematic phase at
high power.

The nematic system (7) and (8) is a focusing NLS-type system, that is the refractive
index in the dimensional Equation (1) increases with beam intensity |u|2. Since focusing
NLS equations do not possess (stable) DSW solutions, the equation needs to be defocusing;
in such a case, the refractive index decreases with beam intensity, and DSW solutions do
exist [19]. The nematic medium can feature a defocusing response through the addition
of azo-dyes [33]. The change in the nematic response due to the addition of the azo-dye
is physically complicated, with the “order parameter” change being opposite to that in
the absence of the dye. A simple model of this response change is to modify the electric
field Equation (7) from focusing to defocusing. In addition, the analysis of DSWs is
simplest in (1 + 1)-dimensions as then there are no geometric spreading effects. With these
assumptions and simplifications, the nematic equations become

i
∂u
∂z

+
1
2

∂2u
∂x2 − 2φu = 0, (11)

ν
∂2φ

∂x2 − 2qφ = −2|u|2. (12)

The same system of equations also describes optical beam propagation in thermal
optical media for which the refractive index depends on the temperature of the medium [42].
Such thermal optical media typically have a defocusing response. For these defocusing
nematic equations, a suitable initial condition which will generate a DSW is the intensity
jump initial condition
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u =

{
u−, x < 0
u+, x > 0

, φ =


u2
−
q , x < 0

u2
+
q , x > 0

. (13)

The DSW solution of the defocusing nematic Equations (11) and (12) has been studied
in the highly nonlocal limit ν � 1 in previous work [34–36]. As stated above, in the
local limit ν � 1, this system reduces to a perturbed defocusing NLS equation and
becomes the defocusing NLS equation for ν = 0. The DSW solution of the defocusing
NLS equation is known [37], so that the perturbed local DSW solution can be found using
perturbed Whitham modulation theory [43]. Before studying the behavior of the nematic
DSW as ν varies from large to small, some previously derived results [34–36] will be
briefly summarized.

The analytical DSW solutions derived in this work will be compared with full nu-
merical solutions of the nematic Equations (11) and (12) with the initial condition (13).
The electric field Equation (11) was solved using the pseudo-spectral method of Fornberg
and Whitham [24], as extended [44,45] to improve the stability for high wavenumbers
through the use of an integrating factor. The x derivatives were calculated using the Fast
Fourier Transform (FFT), and the solution was advanced in z in Fourier space employing
the fourth-order Runge-Kutta method, as detailed in previous work [36,46]. The step
initial condition (13) was smoothed using the hyperbolic tangent function, as detailed in
Reference [36,46]. The director Equation (12) was also solved using the FFT, as the equation
does not have a singularity at zero wavenumber due to the 2qθ term.

Figure 2 displays a summary of the nematic DSW types as the nonlocality ν varies
from large ν, corresponding to a highly nonlocal response for low beam power, to small
ν, pertinent to a local medium response for high beam power. The terminology for the
DSW regimes will be taken from previous work on radiating DSWs [26,36]. In particular,
the DSW regimes from nonlocal to local response will now be detailed, for u− = 1 and
u+ = 0.8, with the existence intervals for the various DSW types given in Table 1.

• PDSW (perturbed DSW): This regime is illustrated in Figure 2a. The nematic DSW
is essentially a KdV DSW governed by the Kawahara Equation (44) and its solution
can be found as a perturbed KdV DSW [36,47]. This DSW regime is non-resonant and
there is no resonant wavetrain attached to the leading edge of the DSW.

• RDSW (radiating DSW): As the nonlocality ν decreases, the DSW becomes resonant
with a resonant wavetrain attached to the leading edge of the DSW, as illustrated
in Figure 2b. As all individual waves in the DSW are resonant, resonant waves are
emitted from the DSW, which results in the DSW not being rank ordered [36].

• CDSW (crossover DSW): As the nonlocality decreases and the amplitude of the res-
onant wavetrain grows, the DSW becomes unstable with a total loss of the rank
ordering of the waves of the DSW [26,36]. This regime is illustrated in Figure 2c.

• TDSW (traveling DSW): As the amplitude of the resonant wavetrain grows, the shed-
ding of conserved quantities into resonant radiation eventually destroys the DSW,
leaving a high amplitude resonant wavetrain with a negative polarity solitary wave
linking this wavetrain to the intermediate level [26] as seen in Figure 2d. While there
is a solitary wave linking the resonant wavetrain to the intermediate level, this linking
can be conveniently treated as a Whitham shock [48], a shock wave in the Whitham
modulation equation variables. The resonant wavetrain is brought down to the level
u+ ahead by a partial DSW [36]. This partial DSW has linear dispersive waves at its
leading edge but has a finite wavelength wave at its trailing edge, that is, it is not
bounded by solitary waves at the trailing edge [38,49], as for a standard DSW.

• RNLS DSW (radiating NLS DSW): Further decrease in the nonlocality results in the
amplitude of the linking solitary wave becoming negligible, so that the wave form
consists of a (stable) resonant wavetrain headed by a partial DSW which brings the
wavetrain down to the level u+ ahead, as seen in Figure 2e. This DSW regime does not
occur in the high nonlocality limit as it is a “bridge” to the local NLS DSW for ν = 0.
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• NLS DSW: As the nonlocality ν decreases to ν = 0 and the nematic Equations (11)
and (12) reduce to the NLS equation, the resonant wavetrain length contracts and
the leading partial DSW evolves to a full DSW, with linear dispersive waves at the
leading edge and solitary waves at the trailing edge. The resonant wavetrain then
disappears and the leading DSW bringing the wavetrain down to the level u+ ahead
attaches to the intermediate level with |u| = ui, as in Figure 2f. The resulting DSW is
essentially an NLS DSW, which completes the transition from the KdV-type DSW for
high nonlocality, that is for low power beams, to a NLS DSW for low nonlocality, that
is for high power beams.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-1500 -1000 -500  0  500  1000  1500  2000

φ
, 

|u
|

(a)

x

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-1000 -500  0  500  1000  1500

φ
, 

|u
|

x

(b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-1500 -1000 -500  0  500  1000  1500  2000

φ
, 

|u
|

x

(c)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-1000 -500  0  500  1000  1500

φ
, 

|u
|

x

(d)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-1000 -500  0  500  1000  1500

φ
, 

|u
|

x

(e)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-1000 -500  0  500  1000  1500

φ
, 

|u
|

x

(f)

Figure 2. Numerical solutions of nematic Equations (11) and (12) for initial condition (13) with
u+ = 0.8 and u− = 1.0. Red (solid) lines: |u| at z = 1000; green (dashed) lines: φ at z = 1000; blue
(dotted) lines: |u| at z = 0 (upper) and φ at z = 0 (lower). (a) PDSW with ν = 200, (b) RDSW with
ν = 40, (c) CDSW with ν = 10, (d) TDSW with ν = 3.0, (e) resonant NLS type DSW with ν = 1.0,
(f) NLS type DSW with ν = 0.5. Here, q = 2.

In addition to these six DSW types, when u− − u+ is large enough as u+ → 0,
there is an additional DSW type which is a sub-case of the TDSW regime, the vacuum
DSW (VDSW) [37], for which the electric field u of the resonant radiation vanishes at
a point [35,36]. As the solution for this DSW type has been previously analyzed [36],
and it is a sub-case of the TDSW regime, it will not be considered here. In addition,
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the analytical work of this manuscript is based on u− − u+ being small, which is not valid
in the VDSW regime.

Table 1 shows that the transition regimes of the TDSW and RNLS DSWs which evolve
the DSW from the KdV-type DSW for high nonlocality to the NLS-type DSW for weak
nonlocality exist for very restricted ranges of ν, so that this transition is rapid. Over most
of the range of ν the DSW is of KdV-type, one of the PDSW, RDSW, and CDSW types.
As noted, the first four DSW regimes also occur for the Kahawara equation and the nematic
equations in the low power, high nonlocality limit.

Table 1. Regime boundaries for type classifications of Figure 2. Here, u− = 1.0, u+ = 0.8 and q = 2.

PDSW 88 < ν
RDSW 34 < ν < 88
CDSW 4.1 < ν < 34
TDSW 1.53 < ν < 4.1

RNLS DSW 0.60 < ν < 1.53
NLS DSW 0 ≤ ν < 0.60

The standard method to analyze DSW solutions of nonlinear dispersive wave equa-
tions of defocusing NLS-type is to transform the equation into hydrodynamic form using
the Madelung transformation [19]

u =
√

ρeiψ, v = ψx, (14)

where the real functions ρ and ψ denote the density and phase of the field u, while v is
the fluid velocity. Upon substituting, it is found that the nematic Equations (11) and (12)
become

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (15)

∂v
∂z

+ v
∂v
∂x

+ 2
∂φ

∂x
− ∂

∂x

(
ρxx

4ρ
− ρ2

x
8ρ2

)
= 0, (16)

ν
∂2φ

∂x2 − 2qφ = −2ρ. (17)

The nematic equations are characterized by the linear dispersion relation [34,35]

ω = kv̄ +

√
ρ̄k√

νk2 + 2q

[
νk2 + 2q

4ρ̄
k3 + 4k

]1/2

, (18)

for waves around the mean level ρ̄ for ρ and v̄ for v. In the short wave and high nonlocality
limit, νk2 � 1, this dispersion relation can be approximated by

ω = kv̄ +
1
2

k2 + · · · . (19)

In the opposite local limit with ν small, the dispersion relation can be expanded as

ω = kv̄ + k2
[

1
4

k2 +
2
q

ρ̄

]1/2
− νρ̄k3

2q2

[
1
4

k2 +
2
q

ρ̄

]−1/2
+ · · · . (20)

As expected, at the leading-order, O(1), this dispersion relation is the same as that for
the NLS equation [19,50]. These dispersion relations are needed for the determination of
the resonant wavetrain generated by the nematic DSW by which the linear phase velocity
is matched to the velocity of the DSW front.

As seen from Figure 2, the solution outside of the DSW and the resonant wavetrain
is non-dispersive. On neglecting dispersion, the nematic Equations (15)–(17) become the



Appl. Sci. 2021, 11, 4736 9 of 30

shallow water equations [12], with ρ playing the role of fluid depth and v the (horizontal)
fluid velocity. In Riemann invariant form, the dispersionless nematic equations read:

v +
2
√

2
√

q
√

ρ = R+ = constant on C+ :
dx
dz

= V+ = v +

√
2
√

q
√

ρ, (21)

v− 2
√

2
√

q
√

ρ = R− = constant on C− :
dx
dz

= V− = v−
√

2
√

q
√

ρ. (22)

The initial level behind u− is linked to the intermediate shelf by a simple wave on the
characteristic C−. This simple wave solution has been derived previously [34–36] and is of
the form:

|u| = √ρ =


u−, x

z < −
√

2u−√
q√

q
3
√

2

[
2
√

2u−√
q − x

z

]
, −

√
2u−√

q ≤
x
z ≤

√
2√
q
(
2u− − 3

√
ρi
)
,

√
ρi,

√
2√
q
(
2u− − 3

√
ρi
)
< x

z ≤ si

(23)

with v = 2
√

2(u−−
√

ρ)/
√

q, where si is the velocity of the trailing edge of the DSW which
lies on the intermediate level ui. This level can be determined by the requirement that the
Riemann invariant along the characteristics C−, that is, R−, is conserved across the nematic
DSW [34], giving

ui =
1
2
(u− + u+). (24)

We can see from the above calculations that the phase gradient on the intermediate
level vi is then

vi =
2
√

2
√

q
(u− −

√
ρi). (25)

In the small jump limit |u− − u+| � 1, the nematic Equations (11) and (12) can be
reduced—in the high nonlocality regime (ν� 1) under consideration—to a KdV equation
with fifth-order dispersion [35,51]. This will be justified below upon employing a multiscale
expansion method.

2.1. Derivation of the Extended KdV and Kawahara Equations

We seek solutions of Equations (15)–(17) in the form of the following asymptotic
expansions in the formal small parameter ε ≡

√
ui − u+ (with 0 < ε� 1):

|u|2 = ρ = ρ+ + ε2ρ1(ξ, η) + ε4ρ2(ξ, η) + · · · , (26)

v = ε2V1 + ε4V2 + ε6V3 + · · · , (27)

φ =
ρ+
q

+ ε2φ1 + ε4φ2 + ε6φ3 + · · · , (28)

where ρ+ = u2
+, and the unknown functions ρj, Vj, and φj (j = 1, 2, 3, . . .) depend on the

stretched variables
ξ = ε(x−Uz), η = ε3z. (29)

Here, U will be treated as an unknown velocity, which will be determined self-
consistently.

Substituting the expansions (26)–(28) into Equations (15)–(17), and using the stretched
coordinates (29), we obtain a set of equations at the different orders in ε. In particular, at the
leading order, we derive the following linear equations:

O(ε2) : ρ1 − qφ1 = 0, (30)
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and
O(ε3) : UV1ξ − 2φ1ξ = 0 and Uρ1ξ − u2

+V1ξ = 0, (31)

where subscripts denote partial derivatives. The compatibility of the above equations
suggests that the squared velocity U2 is given by U2 = 2u2

+/q. Next, Equations (15)–(17)
yield a set of nonlinear equations, namely:

O(ε4) : 2ρ2 − 2qφ2 + νφ1ξξ = 0, (32)

and

O(ε5) :
−u2

+V1η + 3Uρ1V1ξ − u2
+V1V1ξ + Uu2

+V2ξ − 6ρ1φ1ξ − 2u2
+φ2ξ +

1
4

ρ1ξξξ = 0

ρ1η + (ρ1V1)ξ −Uρ2ξ + u2
+V2ξ = 0

. (33)

The compatibility condition at this order can be found upon eliminating the fields ρ2,
V2, and φ2 upon using Equations (32) and (33) and the definition of the velocity U. This
yields the following KdV equation:

ρ1η +
3

2u+

√
2
q

ρ1ρ1ξ +

(
1
q

)3/2 4νu2
+ − q2

8
√

2u+
ρ1ξξξ = 0. (34)

To the next order of approximation, we obtain:

O(ε6) : 2ρ3 − 2qφ3 + νφ2ξξ = 0, (35)

and

O(ε7) : − 3u4
+ρ1V1η − u6

+V2η + 3Uu2
+(ρ

2
1 + u2

+ρ2)V1ξ − 3u4
+ρ1V1V1ξ

− u6
+V2V1ξ + 3Uu4

+ρ1V2ξ − u6
+V1V2ξ + Uu6

+V3ξ − 6u2
+ρ2

1φ1ξ

− 6u4
+ρ2φ1ξ − 6u4

+ρ1φ2ξ − 2u6
+φ3ξ −

1
2

u2
+ρ1ξ ρ1ξξ +

1
2

u2
+ρ1ρ1ξξξ

+
1
4

u4
+ρ2ξξξ = 0, and (36)

ρ2η + (ρ1V2 + ρ2V1)ξ −Uρ3ξ + u2
+V3ξ = 0. (37)

It is now possible to follow the procedure used at the previous order and eliminate
the fields ρ3, V3 and φ3 from Equations (35)–(37). Indeed, solving Equation (35) for φ3,
Equation (37) for ρ3ξ and substituting into Equation (36) eliminates every term with index
3 (recall U2 = 2u2

+/q). Furthermore, employing the equations obtained at the previ-
ous orders, we can express the fields φ1,2 and V1,2 in terms of the amplitudes ρ1 and ρ2,
which yields

1
2U
∫

ρ1ηη dξ + ρ1ξ

∫
ρ1η dξ + 5

2 ρ1ρ1η + ρ2η + 3Uρ2
1ρ1ξ +

3c
2 (ρ1ρ2)ξ +

Uν
2q ρ1ξρ1ξξ

− q−2U2ν

8U2q ρ1ξξη −
q−3U2ν

4Uq ρ1ρ1ξξξ −
q−2U2ν

8Uq ρ1ξξξ +
Uν2

8q2 ρ1ξξξξξ = 0.
(38)

To this end, we multiply Equation (38) by ε2 and add it to the KdV equation
Equation (34). Then, introducing the combined amplitude function

P = ρ1 + ε2ρ2, (39)
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we solve for ρ1 = P− ερ2 and substitute the result into the above Equation (38). We, hence,
obtain the nonlinear evolution equation for the field P(ξ, η)

Pη +
3

2u+

√
2
q

PPξ +

(
1
q

)3/2 4νu2
+ − q2

8
√

2u+
Pξξξ

+ ε2
(

b1P2Pξ + b2Pξ Pξξ + b3PPξξξ + b4Pξξξξξ

)
= 0. (40)

The coefficients bj (j = 1, 2, 3, 4) appearing in Equation (40) are given by

b1 = − 3
8u3

+

√
2
q

, b2 = −
(

1
q

)3/2 20νu2
+ − 13q2

32
√

2u3
+

,

b3 =

(
1
q

)3/2 4νu2
+ + q2

16
√

2u3
+

, b4 =

(
1
q

)5/2 48ν2u4
+ + 8νq2u2

+ − q4

256
√

2u3
+

.

Then, we seek an asymptotic expansion in the optical beam intensity |u| as

|u| = u+ + ε2Q + · · · (41)

and use the relation |u| = √ρ. This asymptotically gives P = 2u+Q. The reductive
nonlinear Equation (40) can now be written in terms of the field Q(ξ, η) as

Qη + 3

√
2
q

QQξ +

(
1
q

)3/2 4νu2
+ − q2

8
√

2u+
Qξξξ

+ ε2
(

c1Q2Qξ + c2Qξ Qξξ + c3QQξξξ + c4Qξξξξξ

)
= 0. (42)

The coefficients cj (j = 1, 2, 3, 4) appearing in Equation (42) are given by

c1 = 4u2
+b1, c2 = 2u+b2, c3 = 2u+b3, c4 = b4.

Notice that Equation (42) is the so-called extended KdV equation (eKdV), which can
model the evolution of steeper waves, with shorter wavelengths, than those governed by
the KdV equation. As such, the eKdV equation has been used to describe solitary waves in
plasmas [52] and shallow water waves [53] in the presence of higher order effects. We note
that the coefficient of the third derivative dispersive term changes sign when

ν =
q2

4u2
+

. (43)

Hence, in the high nonlocality, low power, limit, such that ν > q2/(4u2
+), the coef-

ficient of the third derivative in eKdV equation is positive, so that its DSW (and solitary
wave) solutions have positive polarity, with solitary waves at its leading edge and linear
dispersive waves at its trailing edge. On the other hand, in the local limit, ν < q2/(4u2

+),
the coefficient of the third derivative is negative and the DSW has negative polarity, with lin-
ear dispersive waves at its leading edge and solitary waves at its trailing edge, so that it
resembles the standard NLS DSW [37]. The nematic DSW then undergoes a change of form
from a KdV-type DSW to an NLS-type DSW as ν decreases at the value of the nonlocality
parameter given by (43).

At this point, it is useful to make the following remarks. First, in the highly nonlocal
limit, the dominant higher-order coefficient is the one of the fifth-order dispersion term,
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namely c4 ∝ ν2. Thus, in this limit, the eKdV Equation (40) may be approximated by the
Kawahara equation

Pη +
3

2u+

√
2
q

PPξ +

(
1
q

)3/2 (4u2
+ν− q2)

8
√

2u+
Pξξξ + ε2 3

16
√

2

(
1
q

)5/2
u+ν2Pξξξξξ = 0, (44)

as was done in previous work [35,36].

3. Nonlocal to Local Nematic DSWs

The form and details of the DSW solution of the defocusing nematic
Equations (11) and (12) will be found as the nonlocality ν changes from O(100) to 0, that is
from the nematic having a highly nonlocal response to a local response as the optical power
increases. For high nonlocality, the DSW is of KdV type, with the leading edge of the DSW
consisting of solitary waves of elevation [34–36]. The reason for this can be seen from the
eKdV Equation (42) as for ν > q2/(4u2

+) the coefficient of the third derivative is positive,
so that the DSW is of KdV type and has positive polarity. For 0 ≤ ν < q2/(4u2

+), the sign of
the third derivative is negative, and the DSW has negative polarity, with solitary waves at
the trailing edge and linear dispersive waves at the leading edge, as for the NLS DSW [37].
A nematic DSW of NLS type is illustrated in Figure 2e for ν = 0.5. Indeed, for ν = 0,
the nematic Equations (11) and (12) reduce to the standard NLS equation on substituting for
φ from (12) into (11). The DSW solution of the NLS equation is well known [37] as the NLS
equation is integrable and so the solution is completely determined. Hence, the solution
for this regime will not be considered here.

The existence regions for the various nematic DSW types as the nonlocality parameter
ν varies (optical power varies), found from full numerical solutions of the nematic Equa-
tions (11) and (12) are shown in Figure 3 as the initial level ahead u+ varies. The range
0.3 ≤ u+ ≤ 0.9 was chosen as this encompassed all six of the DSW types studied here.
In addition, most of the theoretical expressions for the boundaries between these regions
and the solutions within each region were based on u− − u+ small, for example, the bound-
ary (43), which is based on the eKdV Equation (42). It can be seen that, over most of the
(u+, ν) domain, the nematic DSW is of CDSW or TDSW type, so that it is typically unstable.
In addition, it is deduced that the nematic DSW is of NLS-type only for small values of
the nonlocality parameter ν of 2 and below. The nematic DSW is then nonlocal, except for
high enough optical powers for which ν is small. The nonlocality parameter ν is given
by (9). For the nematic liquid crystal 4-(trans-4-n-hexylcyclohexyl)-isothiocyanato-benzene
(6CHBT), the parameter values are K ∼ 10−11N, n‖ = 1.6335 and n⊥ = 1.4967 [54]. Let us
take the pre-tilt angle θ0 to be π/4 so that the nematic response is maximized [2]. A typical
beam wavelength is 1064 nm, and a typical half width Wb is 1.5µm [54]. With these parame-
ter values, it is found that ν = 2 when the beam power Pb is 288 mW, far in excess of typical
beam powers of a few milliWatts to a few tens of milliWatts [2,54]. Such a large optical
power can result in the nematic medium being heated enough so that its temperature
goes above the critical temperature, 43 ◦C for 6CHBT [54], so that it undergoes a phase
change out of the nematic state. In this regard, it should be noted that experimental nematic
cells are small, of the order of 1 mm in the down cell propagation direction of the beam
and 100 µm × 10 mm in cross-section. The thin cross-section is the direction in which
the pre-tilting electric field is applied, which results in a stable and uniform molecular
pre-tilt. We then deduce that, for experimental beam powers, the nematic bore will be in
the nonlocal response regime with ν large, which is low optical power.
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Figure 3. Numerical existence regions for nematic DSW types in terms of the nonlocality parameter
ν as the initial level u+ varies. (a) Full existence regions from highly nonlocal ν = 200 to local ν = 0,
(b) Detail of (a) for the transition to an NLS-type DSW. Theoretical boundary (72) between RDSW
and CDSW regimes: black (dot-dash) line; theoretical boundary Us = cg, (95), between CDSW and
TDSW regimes: red (solid) line; theoretical boundary (43) between KdV-type and NLS-type DSW:
green (dashed) line. Here, u− = 1.0 and q = 2.

4. PDSW and RDSW Regimes

Typical PDSW and RDSW solutions are illustrated in Figure 2a,b. In the PDSW regime,
the DSW is not in resonance with linear diffractive radiation, so that the DSW is of KdV
type, as seen in the boundary (43), and is a perturbed KdV-type DSW. In the RDSW regime,
the DSW is in resonance with diffractive radiation, so that it consists of a KdV-type DSW
with resonant radiation propagating ahead of it. This resonant radiation is not large enough,
however, as to destroy the KdV-type DSW structure, as in the CDSW regime; see Figure 2c.
As the DSW in the PDSW and RDSW regimes are perturbed KdV DSWs [36], the solutions
in these two regimes can be found using the perturbed KdV DSW solution of Reference [47].
In this previous work, the general eKdV equation, a particular case of which is (42), was
asymptotically transformed to the KdV equation, in which the known DSW solution [19,23]
was then used to find the asymptotic DSW solution of the original eKdV equation. This
asymptotic DSW solution can be used here based on the eKdV equation reduction (42)
of the full nematic equations in the limit u− − u+ small. The work [47] then gives the
following PDSW and RDSW nematic DSW solutions. The amplitude of the DSW is

a = 2m(ui − u+) +
1
3 (ui − u+)2{m(1−m)C1 + m(m− 2)C2

+ mC3 + 2m(8− 3m)C4},
(45)
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its wavenumber is

k =
π
√

2{ui−u+}
K(m)

√
u+

√
ν
q−

q
4u2

+

{
1 + (ui−u+)

12 C1 +
(ui−u+)(4m2−8m+3)

12 C3

− (ui−u+)(8m2−14m+11)
3 C4

}
,

(46)

and its mean level is

¯|u| = 2u+ − ui + (ui − u+)
{

m + 2E(m)
K(m)

}
− (ui − u+)2C1

{
3m2K(m)+4mE(m)−5mK(m)−2E(m)+2K(m)

18K(m)

}
− (ui − u+)2C3

{
(2−m−m2)K2(m)+(4m−10)E(m)K(m)+8E2(m))

6K2(m)

}
+ 2(ui − u+)2C4

{
(m2−7m+6)K2(m)+2(6m−11)E(m)K(m)+16E2(m)

3K2(m)

}
.

(47)

Here, K(m) and E(m) are complete elliptic integrals of the first and second kinds
of modulus squared m, respectively. The modulus squared m is a parameter in these
amplitude, wavelength, and mean height expressions. It is determined in terms of the
simple wave (similarity) variable x/z by

x
z =

√
2√
q u+ +

√
2(ui−u+)√

q

{
1 + m− 2m(1−m)K(m)

E(m)+(m−1)K(m)

}
+ (ui−u+)2

3
√

2q
C1

{
1 + m− 2m(1−m)K(m)

E(m)+(m−1)K(m)

}
+ (ui−u+)2

3
√

2q
C3

{
2m− 1−m2 −

(
1 + m− 2m(1−m)K(m)

E(m)+(m−1)K(m)

)
− 4m(1−m)(2E(m)+(m−1)K(m))

E(m)+(m−1)K(m)

}
+ 4(ui−u+)2

3
√

2q
C4

×
{
−1−m + 2m(1−m)K(m)

E(m)+(m−1)K(m)
+
(

1 + m− 2m(1−m)K(m)
E(m)+(m−1)K(m)

)2

−2(2m−m2 − 1) + 4 m(1−m)[(m−1)K(m)+2E(m)]
E(m)+(m−1)K(m)

}
.

(48)

This expression for x/z derives from the characteristic of the KdV modulation equa-
tions on which the simple wave DSW solution occurs [23,24,47]. The coefficients Cj(j =
1, 2, 3, 4) in the above solutions are connected to cj(j = 1, 2, 3, 4) through the relations

C1 =
√

2qc1, C2 =
8
√

2q3/2u+

(4u2
+ν− q2)

c2, C3 =
8
√

2q3/2u+

(4u2
+ν− q2)

c3, C4 =
64
√

2q5/2u2
+

(4u2
+ν− q2)2

c4. (49)

At the leading, solitary wave edge of the DSW m → 1 and at the trailing, harmonic
wave edge of the DSW m→ 0. It can then be found from the characteristics (48) that the
DSW lies in the range

si =

√
2
q

{
4u+ − 3ui − (ui − u+)

2
(

1
2

C1 + C3 −
64
3

C4

)}

≤ x
z
≤
√

2
q

{
2ui − u+ +

1
3
(ui − u+)

2(C1 − C3 + 4C4)

}
= s+, (50)

where si and s+ are the harmonic and solitary wave edge velocities of the DSW, respectively.
Comparisons between the lead solitary wave amplitude a+ as given by the asymptotic

DSW solution (45), with m = 1, and numerical solutions are given in Figure 4 as the
nonlocality parameter ν varies. The existence regions for the PDSW and RDSW types
depend on both u+ and ν, as shown in Figure 3, so that the comparison curves for each u+

were stopped at the boundary between the RDSW and CDSW regimes. Figure 4 shows the
lead solitary wave amplitude for the full eKdV Equation (42) and the Kawahara equation,
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which is (42) with c1 = c2 = c3 = 0. Previous work on the nematic bore [35,36] was based
on the Kawahara equation, that is only the higher order fifth derivative was included
in the asymptotic eKdV equation, so the lead wave amplitude based on this equation is
given in the figure to determine the effect of the extra higher order terms in the full eKdV
Equation (42). A key observation is that the height of the lead wave of the DSW depends
very weakly on the strength of the nonlocality, with little variation even down to ν = O(10)
from the high nonlocality amplitudes with ν = O(100). In some sense, the nematic DSW
is then nonlocal down to small values of ν in the PDSW and RDSW regimes, which was
also deduced above from Figure 3. It can also be seen that the inclusion of the extra
higher order terms in the eKdV Equation (42) over the Kawahara equation improves the
agreement with numerical solutions on the whole, especially as the nonlocality parameter
ν decreases, but the effect of these extra terms is small, with the Kawahara equation
giving good agreement over the whole range of ν and for all values of u+, except near the
RDSW/CDSW borderline at u+ = 0.7. This is expected as the weak dependence on the
nonlocality parameter ν means that the DSW is nonlocal, so that ν can be taken as large.
The dominant higher order term in the eKdV equation is ε2c4Qξξξξξ in this limit, as noted
in (44). As u+ = 0.7 is approached the resonant radiation shed by the DSW is of relatively
large amplitude as in this limit the RDSW/CDSW boundary is approached. This results in
oscillations in the lead wave amplitude as the resonant radiation moves through the DSW
and is shed. In these cases, the numerical amplitude shown in Figure 4 was calculated
as an average in z over the last few amplitude oscillations in the numerical solution. It is
noted that except for u+ = 0.75 and 0.7 the amplitude grows as ν decreases. This change in
behavior is due to the DSW changing form as it transitions from the RDSW to the CDSW
regime, for which the resonant radiation has a major effect on the DSW with its amplitude
decreasing markedly due to the large amount of mass being shed as resonant radiation [36].
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Figure 4. Comparison between lead wave amplitude a+ of PDSW and RSDW with numerical
solutions of the nematic Equations (11) and (12) with the initial condition (13). Numerical amplitude:
red squares; amplitude (45) with m = 1 given by undular bore solution of eKdV Equation (42): red
(solid) line; amplitude given by undular bore solution of Kawahara equation (Equation (42) with
c1 = c2 = c3 = 0): green (dashed) line. Here, u− = 1.0 and q = 2.
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The full linear dispersion relation (18) for the nematic Equations (11) and (12) is

ω = kv̄ +

√
ρ̄k√

νk2 + 2q

[
νk2 + 2q

4ρ̄
k2 + 4

]1/2

+
2ρ̄

q
(51)

when the mean 2ρ̄/q is added. This mean term arises on integrating v = ψx to obtain the
dispersion relation for ψ from that for v [35]. In the limit νk2 large, this dispersion relation
becomes (19)

ω = kv̄ +
1
2

k2 +
2ρ̄

q
+ . . . , (52)

again with the carrier wave phase shift 2ρ̄/q added to obtain the dispersion relation for ψ.
In the RDSW regime, the resonant wavetrain has low amplitude; see Figure 2b. In addition,
this wavetrain has high frequency relative to the DSW; again, see Figure 2b. So, the
appropriate dispersion relation for the resonant wavetrain is (52). In the RDSW regime,
the resonance condition for the resonant wavetrain ahead of the DSW has been set by
matching the phase velocity of the resonant wavetrain to the velocity of the lead wave of
the DSW [34–36], giving

s+ = cr, c = v̄ +
1
2

k +
2ρ̄

qk
, (53)

so that

kr = s+ +

[
s2
+ −

4
q

u2
+

]1/2
(54)

on setting ρ̄ =
√

u+ and v̄+ = 0 as the resonant wavetrain propagates on the level ahead.
This gives the wavenumber of the resonant wavetrain based on this criterion. The resonant
wavetrain then exists if s+ ≥ 2u+/

√
q, so that the borderline between the PDSW and

RDSW regimes is s+ = 2u+/
√

q. Previous work [35,36] has shown that this theoretical
borderline is in excellent agreement with numerical solutions in the high nonlocality limit
ν large. For fixed u+, as ν decreases, a PDSW changes to an RDSW, then to a CDSW; see
Figure 3. For instance, for u+ = 0.8, the DSW changes from PDSW to RDSW at ν = 88, then
to CDSW at ν = 34. However, the resonance condition (53), or (54), gives that the DSW
changes from PDSW to RDSW at ν = 3, which is the TDSW regime according to Table 1.
This resonance condition is based on the limit νk2 � 1, but, even if the full dispersion
relation (51) were used for the resonance condition (53), the predicted PDSW/RDSW
borderline is ν = 2.38, which is still far from the numerical value and close to that for
νk2 � 1. The resonance condition (53) is based on resonance between the lead wave
of the DSW and diffractive radiation. However, as pointed out previously [36], a DSW
is modulated periodic wave so that all waves of the DSW can resonant with diffractive
radiation, not just the lead wave, as seen in Figure 5 for a PDSW. Internal resonance will be
discussed in detail in Section 5. The phase velocity of a component wave of the DSW is (72).
Equating this bore component phase velocity with the nematic diffractive radiation phase
velocity determined from the dispersion relation (18) determines the internal resonance.
However, even using this internal resonance does not result in a borderline between the
PDSW and RDSW regimes in any reasonable accord with numerical solutions; see Figure 3.
A resonant wavetrain will then exist if the internally resonant waves can propagate out of
the DSW, that is their group velocity is greater than the velocity of the lead solitary wave of
the DSW. However, even this condition does not give the correct boundary between the
PDSW and RDSW regimes as the nonlocality parameter ν decreases. The issue of internal
resonance and its relation to the existence of the PDSW and RDSW regimes merits further
study. In this regard, the recent work [55] on the interaction of linear wavepackets and
DSWs could be relevant.
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Figure 5. Numerical solution of nematic Equations (11) and (12) in PDSW regime at z = 1500 for
initial condition (13) with u+ = 0.8 and u− = 1.0. Red (solid) line: |u|; green (dashed) line: φ. Here,
ν = 200 and q = 2.

5. CDSW Regime

For fixed a nonlocality parameter ν, as u+ decreases, the jump height u− − u+ in-
creases, the nematic DSW changes from RDSW to CDSW form; see Figure 3b. The reason
for this is that, as the amplitude of the resonant wavetrain grows, it takes more conserved
quantities from the DSW, so that its amplitude is reduced. In addition, the DSW becomes
unstable in the CDSW regime, as for the Kahawara equation DSW [26], noting that, in the
small jump height limit, the nematic equations reduce to the eKdV Equation (42), which
becomes the Kahawara Equation (44) in the limit of large nonlocality ν. Figure 2c shows
a typical nematic DSW in the CDSW regime. It can be seen that the DSW has changed
from a modulated wavetrain with a monotonically decreasing amplitude from front to
rear to a disordered wavetrain with an essentially uniform amplitude on average, except
at its rear. This structure is in agreement with unstable DSW structure for the focusing
NLS equation [56]. The unstable DSW can then be approximated by a train of equal am-
plitude solitary waves, which has been found to give good results for DSW solutions [57],
particularly unstable DSWs, and for the particular case of the nematic CDSW in the high
nonlocality, low optical power, regime [36]. The amplitude of the solitary waves of the
CDSW is determined from mass and energy conservation equations for the underlying
nonlinear dispersive wave equation [57].

If we set

B2 = 3

√
2
q

, B3 =
4νu2

+ − q2

8
√

2q3/2u+
(55)

for simplicity, the eKdV Equation (42) has the mass conservation equation

∂

∂η
Q +

∂

∂ξ

[
1
2

B2Q2 + B3Qξξ +
1
3

ε2c1Q3 +
1
2

ε2(c2 − c3)Q2
ξ + ε2c3QQξξ

+ ε2c4Qξξξξ

]
= 0. (56)
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The derivation of the energy conservation for the eKdV Equation (42) is not as straight-
forward. Multiplying the eKdV equation by Q and integrating by parts gives

∂
∂η

1
2 Q2 + ∂

∂ξ

[
1
3 B2Q3 + B3QQξξ − 1

2 B3Q2
ξ +

1
4 ε2c1Q4 + 1

2 ε2c2Q2Qξξ

+ ε2c4QQξξξξ − ε2c4Qξ Qξξξ +
1
2 ε2c4Q2

ξξ

]
+ ε2

(
c3 − 1

2 c2

)
Q2Qξξξ = 0.

(57)

The final term on the right hand side of this equation cannot be expressed as a perfect
derivative. However, it can be approximately expressed in this form on noting that ε is
small, so that, at first order, the eKdV Equation (42) is the KdV equation

∂Q
∂η

+ B2Q
∂Q
∂ξ

+ B3
∂3Q
∂ξ3 = 0. (58)

We then have at leading order that

∂

∂η
Q3 = −3Q2(B2QQξ + B3Qξξξ

)
= − ∂

∂ξ

3
4

B2Q4 − 3B3Q2Qξξξ . (59)

This expression may now be used to eliminate the term in QQξξξ in Equation (57) to
give the final energy conservation equation

∂
∂η

[
1
2 Q2 − ε2 c3− 1

2 c2
3B3

Q3
]
+ ∂

∂ξ

[
1
3 B2Q3 + B3QQξξ − 1

2 B3Q2
ξ +

1
4 ε2c1Q4

+ 1
2 ε2c2Q2Qξξ + ε2c4QQξξξξ − ε2c4Qξ Qξξξ +

1
2 ε2c4Q2

ξξ

− ε2 B2
4B3

(
c3 − 1

2 c2

)
Q4
]
= 0,

(60)

which is accurate to O(ε2).
To obtain an approximation to the nematic CDSW, let us assume that, at position η,

the CDSW consists of N equal solitary waves of amplitude ãs and width w̃s [57], where we
shall use tildes to denote scaled variables in the moving and stretched coordinates (ξ, η). It
is also assumed that the CDSW sheds a uniform downstream resonant wavetrain of (scaled)
amplitude ãr. Then, as ξ → −∞, Q → 1 and as ξ → ∞, Q → ãr cos

(
k̃rξ − ω̃rη

)
, since

|u| = u+ + ε2Q with ε2 = ui − u+. As the CDSW is approximated by a train of solitary
waves, the solitary wave solution of the eKdV Equation (42) is also needed. While there is
no known exact solitary wave solution of this equation, there is an asymptotic solution for
ε � 1 [58]. To use this solution, the eKdV Equation (42) needs to be rescaled to conform
with the eKdV scaling of Reference [58]. Performing this, we find that the asymptotic
solitary wave solution of the eKdV Equation (42) is

Q = γ1 sech2 ξ −Vsη

W
+ γ2 sech4 ξ −Vsη

W
, Vs =

1
3

B2 A
(

1 + 2ε2C4 A
)

, (61)

where

W =

√
12B3√
B2 A

, γ1 = A + ε2C6 A2, γ2 = ε2C7 A2. (62)

The rescaled coefficients ci, i = 1, . . . , 4, of the eKdV Equation (42), denoted by Ci,
i = 1, . . . , 4, are given by

C1 =
6
B2

c1, C2 =
1
B3

c2, C3 =
1
B3

c3, C4 =
B2

6B2
3

c4,

C6 =
2
3

C3 −
1
6

C1 +
1
6

C2 − 5C4, C7 =
15
2

C4 −
1
2

C3 +
1

12
C1 −

1
4

C2. (63)

It is noted that these scaled Ci, i = 1, . . . , 4, are the same as the Ci (49) used for the
perturbed DSW solution (45)–(48) due to the same rescaling from the eKdV Equation (42)
being used for this solution.
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The mass and energy conservation Equations (56) and (60) can now be used to deter-
mine the amplitude of the solitary waves in the nematic CDSW in the equal amplitude
approximation. The mass and energy conservation equations are integrated in ξ from −∞
to ∞. The integral of the mass and energy densities are approximated by N times these for
a single solitary wave (61). The flux terms are calculated using the boundary conditions
stated above, Q = 1 at ξ = −∞ and Q = ãr cos

(
k̃rξ − ω̃rη

)
at ξ = ∞. The resonant

radiation flux at ξ = ∞ is calculated by averaging the periodic radiation over a period [36].
In this manner, integrating the mass conservation equation gives

N
[

2γ1 +
4
3

γ2

]
W =

{
1
2

B2 +
1
3

ε2c1 −
[

1
4

B2 +
1
4

ε2(c2 − 3c3)k̃2
r

]
ã2

r

}
η (64)

and integrating the energy conservation equation gives

N

[
2
3

γ2
1 +

16
15

γ1γ2 − ε2 16
45

c3 − 1
2 c2

B3
γ3

1

]
W =

{
1
3

B2 +
1
4

ε2c1

− ε2 B2

4B3

(
c3 −

1
2

c2

)
− 1

4

[
−3B3k̃2

r ã2
r +

3
8

ε2c1 ã4
r + 5ε2c4k̃4

r ã2
r

− ε2 3B2

8B3

(
c3 −

1
2

c2

)
ã4

r

]}
η

∼
{

1
3

B2 +
1
4

ε2c1 − ε2 B2

4B3

(
c3 −

1
2

c2

)
− 1

4
c̃g ã2

r

}
η (65)

since ãr is small. In addition, this neglect of quartic terms in ãr is consistent with the radia-
tion being determined by a linear WKB analysis [35]. Here, c̃g is the scaled group velocity of
the resonant radiation based on (29). Dividing the mass and energy Equations (64) and (65)
gives an equation for A

γ2
1 +

8
5 γ1γ2 − ε2 8

15
c3− 1

2 c2
B3

γ3
1

γ1 +
2
3 γ2

= 4
B2 +

3
4 ε2c1 − ε2 3B2

4B3

(
c3 − 1

2 c2

)
− 3

4 c̃g ã2
r

2B2 +
4
3 ε2c1 −

[
B2 + ε2(c2 − 3c3)k̃2

r
]
ã2

r
(66)

in terms of ãr. Once A is determined, the unscaled amplitude as of the solitary waves of
the CDSW is given by

as = ε2
[

A + ε2(C6 + C7)A2
]
= (ui − u+)

[
A + (ui − u+)(C6 + C7)A2

]
, (67)

on using the solitary wave solution (61). Transforming back from the scaled eKdV variables
to the original variables, the relation (66) becomes

γ2
1 +

8
5 γ1γ2 − 8

15 (ui − u+)
c3− 1

2 c2
B3

γ3
1

γ1 +
2
3 γ2

= 4
B2 +

3
4 (ui − u+)c1 − 3B2

4B3
(ui − u+)

(
c3 − 1

2 c2

)
− 3

4

(
cg−

√
2
q u+

)
a2

r

(ui−u+)3

2B2 +
4
3 (ui − u+)c1 − [B2 + (c2 − 3c3)k2

r ]
a2

r
(ui−u+)2

(68)
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on using the scalings (63) for the eKdV equation. Substituting for the higher order solitary
wave coefficients γ1 and γ2 given by (62) gives the final equation determining the amplitude
of the CDSW solitary waves as

A
1 + 2(ui − u+)

(
C6 +

4
5 C7

)
A− 8

15 (ui − u+)
(

C3 − 1
2 C2

)
A

1 + (ui − u+)
(
C6 +

2
3 C7

)
A

= 4
B2 +

1
8 (ui − u+)B2(C1 + 3C2 − 6C3)− 3

4

(
cg−

√
2
q u+

)
a2

r

(ui−u+)3

2B2 +
2
9 (ui − u+)B2C1 − [B2 + (c2 − 3c3)k2

r ]
a2

r
(ui−u+)2

. (69)

The final quantity to determine is the amplitude of ar of the resonant radiation, which
is related to the scaled amplitude ãr by ar = ε2 ãr = (ui − u+)ãr. This resonant radiation
was determined as a WKB solution of the nematic Equations (11) and (12) by linearizing
about the mean level u+ of the resonant radiation [35]. This WKB solution gives the
amplitude of the resonant radiation as

ar =
1
2

u− − u+

1 + 2u+kras
qs+(kr−s+)2

. (70)

Here, s+ is the unscaled velocity of the CDSW, which is [36]

s+ =

√
2
q

u+ +
1
3

B2as(1 + 2C4as). (71)

The resonant radiation wavenumber kr is determined by the resonance condition (54)
and the group velocity of the resonant radiation is given by the k derivative of the short
wave dispersion relation (52). The resonant radiation is a solution of the nematic equations
in the limit νk2 � 1, so that the appropriate group velocity for it is that from the dispersion
relation (52), not the linearized KdV group velocity of the eKdV Equation (42) [36].

Figure 6 displays comparisons of the nematic DSW amplitude as and resonant wave
amplitude ar in the CDSW regime as given by (68) and (70) and numerical solutions.
A typical CDSW is shown in Figure 2c, with details of the actual CDSW of this figure
shown in Figure 7a. It can be seen that the lead waves of the DSW have an approximately
uniform amplitude, with a rapid decrease of the amplitude towards the trailing edge
of the CDSW, as also illustrated in Figure 7b. This solution, and that of Figure 7a, are
typical structures for an unstable DSW [56]. The numerical DSW amplitude for the
comparisons of this figure was calculated as an average over the approximately uniform
waves at the leading edge, which is the same assumption on which the equal amplitude
approximation used to calculate the solitary wave amplitude as was based. Figure 6a
shows comparisons for the amplitude ar of the resonant wavetrain leading the CDSW; see
Figure 2c. It can be seen that there is excellent agreement between the theoretical amplitude
and the numerical amplitude for the larger values of the level ahead u+, with the increase
of ar as the nonlocality parameter ν decreases being correctly given. This agreement
is much improved through the inclusion of the all the higher order terms in the eKdV
Equation (42) than that of previous work [36] based on the Kawahara equation, for which
c1 = c2 = c3 = 0, as given by the green dashed line in the figure. As u+ decreases and
the TDSW regime is approached, the agreement between theory and numerical solutions
decreases. This is shown particularly in the final comparison of Figure 6a for u+ = 0.5,
which is near the TDSW boundary; see Figure 3. The reason for this decreasing agreement
is that, as the TDSW regime is approached, the number of waves in the CDSW decreases so
that only one lead wave is left; see Figure 7c. The approximation that an average can be
taken over an equal amplitude wavetrain then breaks down.
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Figure 6. Comparison between theory and numerical solutions of the nematic Equations (11)
and (12) with the initial condition (13) for the nematic CDSW. Numerical amplitude: red squares;
amplitude (70): red (solid) line; amplitude given by the Kawahara equation (equation (42) with
c1 = c2 = c3 = 0): green (dashed) line. (a) Resonant wave amplitude ar, (b) CDSW solitary wave
amplitude as (67). Note that, for clarity, the numerical DSW amplitude for u+ = 0.55 is denoted by
red open squares. Here, u− = 1.0 and q = 2.

Figure 6b displays similar comparisons for the amplitude as of the nematic CDSW with
numerical solutions. It can be seen that the comparison for the DSW amplitude is similar to
that for the resonant wave amplitude. It should be noted that different values of u+ have
been chosen for the DSW amplitude comparisons for the sake of clarity. The inclusion of
all the higher order terms in the eKdV Equation (42) results in a significant improvement
in the agreement with numerical solutions over that based on the Kawahara equation with
c1 = c2 = c3 = 0 when the level ahead u+ is away from the TDSW/CDSW boundary of
Figure 3. As u+ approaches the TDSW/CDSW boundary, the DSW amplitude as given
by the eKdV equation differs significantly from the numerical amplitude. The reason for
this is that discussed in the previous paragraph for the resonant wave amplitude, the fact
that the CDSW ceases to be a train of equal amplitude solitary waves, but reduces to a
few waves.
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Figure 7. Numerical solution of nematic Equations (11) and (12) in the CDSW regime for the initial condition (13). (a)
u+ = 0.8 at z = 1000, (b) u+ = 0.7 at z = 1500, (c) u+ = 0.5 at z = 1500. Here, u− = 1.0 and q = 2.

The next thing that we discuss is the analytical borderline between the nematic CDSW
and RDSW regimes. This borderline can be found by determining when the resonant
amplitude (70) approaches zero or approaches a minimum as a function of the nonlocality
parameter ν. The determination of this borderline is similar to that of previous work [36]
in which the resonant amplitude was found as a function of the initial state u+, rather than
ν. This approach gave a borderline for u+ ≤ 0.73 for large ν, with the CDSW regime not
existing above this value of u+ for large ν. Above this limit, the resonance condition (53)
ceases to work as a function of ν and an alternative method needs to be found to determine
the borderline. To determine the borderline in this case, we exploit the fact that the (interior)
structure of the nematic DSW is resonant, as evidenced in Figure 5, not only the leading,
solitary wave edge. A DSW is an extended modulated periodic wavetrain, so that all its
component waves can resonant, not just the leading edge. To verify this internal resonance,
the phase velocity of the modulated cnoidal waves forming the DSW needs to be matched
with the nematic linear phase velocity on the local mean level of the DSW. By way of
illustration, we equate the DSW phase velocity [47]

cp =

√
2
q

u+ +
(ui − u+)√

2q

{
2 + 2m− 1

7
(ui − u+)(8C4 − C3)(2m−m2 − 1)

+
1
3
(ui − u+)C4(2 + 2m)2 − 1

6
(ui − u+)(C3 − C1 + 4C4)(2 + 2m)

}
, (72)

where C1, C3, and C4 are given in (49), with the nematic phase velocity from the full linear
dispersion relation (51) on the DSW background (47) and solved for internal resonant
wavenumbers, which are always positive and real, as the modulus m varies from near
zero to near one. As the DSW parameter expressions (47) and (72) are only valid for a
well-ranked DSW (stable DSW), such as the PDSW and the RDSW, and the CDSW is an
ill-ranked DSW (unstable DSW), then a borderline exists when these wave parameter
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expressions result in imaginary internal resonant wavenumbers, which are unphysical, at a
borderline value of ν. The mean flow v̄ in the dispersion relation (51) was determined from
the extended KdV reduction of the nematic equations of Section 4. Substituting the O(ε2)
mean flow v1 given by (31) into the mean flow perturbation expansion (27) for v and then
averaging gives

v̄ =
2
√

2
√

q
( ¯|u| − u+

)
. (73)

This then completes the determination of the CDSW/RDSW borderline. A comparison
between the theoretical and numerical borderlines between the RDSW and CDSW regimes
is shown in Figure 3. It can be seen that the theoretical borderline is in excellent agreement
with the numerical borderline for large values of the nonlocality parameter ν down to
around ν = 50, with poorer agreement towards the local limit with ν small for which the
DSW is changing form from KdV type to NLS type.

6. TDSW Regime

Figure 2d displays a typical DSW in the TDSW regime. There is (almost) a constant
amplitude resonant wavetrain which, at its trailing edge, is connected to the intermediate
level ui. At its leading edge there is a modulated wavetrain which takes u down to the
level u+ ahead. This wavetrain leading the resonant wave is a partial DSW [27,36,49].
A partial DSW differs from a standard DSW in that it connects a uniform state to a periodic
wavetrain, unlike a standard DSW which links two different levels. While there is a negative
polarity solitary wave connecting the resonant wavetrain to the intermediate level [26],
this connection can be approximated by a Whitham shock [36,48], a shock, a jump, in the
modulation parameters of the wavetrain, wavelength, frequency, amplitude, and mean
level, of the Whitham modulation equations for the modulated periodic wavetrain [12].
A Whitham shock is determined from the Whitham modulation equations. As noted
above, the nematic DSW is in the nonlocal regime, so the appropriate Whitham modulation
equations are those for ν large.

The Whitham modulation equations in the highly nonlocal limit ν� 1 (low optical
power) have previously been determined [36], so these modulation equations will just be
quoted here. These modulation equations determine the mean level ρ̄ of ρ, the amplitude
a and the wavenumber k of the Stokes’ wave solution of the nematic Equations (15)–(17).
As there is no known general periodic wave solution of the nematic equations, the highly
nonlocal Whitham modulation equations are derived based on the weakly nonlinear Stokes
wavetrain for the nematic equations [36]. It can be seen from Figure 2d that the resonant
wavetrain has small amplitude, so the weakly nonlinear limit is appropriate. In the highly
nonlocal limit ν� 1, the Stokes’ wave solution of the nematic Equations (15)–(17) is

ρ = ρ̄ + a cos ϕ + . . . , (74)

v = v̄ + av1 cos ϕ + . . . , (75)

φ =
ρ̄

q
+ aφ1 cos ϕ + . . . , (76)

ω = ω0 + aω1 + a2ω2 + . . . , (77)

where the uniform phase is ϕ = kx − ωz, and the over bar, ρ̄ and v̄, denotes the mean
value of a wave parameter [36]. The amplitude a of the (Stokes) wave is assumed to be
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small. The work of Reference [36] gives that, at O(a), the nematic Stokes coefficients and
the O(a2) correction to the dispersion relation are

ω0 = kv̄ +
k2

2
+

4ρ̄

νk2 −
8ρ̄q
ν2k4 −

16ρ̄2

ν2k6 + . . . , (78)

v1 =
k

2ρ̄
+

4
ν k3 −

8q
ν2k5 −

16ρ̄

ν2k7 + . . . , (79)

φ1 =
2

νk2 −
4q

ν2k4 + . . . , (80)

ω2 = − k2

8ρ̄2 −
3

ρ̄νk2 +
6q

ρ̄ν2k4 −
20

ν2k6 + . . . (81)

The coefficient ω1 is set to zero, ω1 = 0, to eliminate secular terms. The weakly
nonlinear Whitham modulation equations can then be derived by averaging conservation
laws deduced from Nöther’s Theorem [59]. The Lagrangian for the hydrodynamic form of
the nematic Equations (15)–(17) is

L = −2ρψz −
1
4

ρ2
x

ρ
− ρψ2

x − 4ρφ + νφ2
x + 2qφ2. (82)

Applying Nöther’s Theorem we have that translation invariance with respect to the
phase ψ gives the mass conservation law

∂

∂z
∂L
∂ψz

+
∂

∂x
∂L

∂ψx
= 0, (83)

translation invariance with respect to space x yields the momentum conservation law

∂

∂z

(
∂L
∂ρz

∂ρ

∂x
+

∂L
∂ψz

∂ψ

∂x
+

∂L
∂φz

∂φ

∂x

)
+

∂

∂x

(
∂L
∂ρx

∂ρ

∂x
+

∂L
∂ψx

∂ψ

∂x
+

∂L
∂φx

∂φ

∂x
− L

)
= 0, (84)

and translation invariance with respect to time-like z gives the energy conservation law

∂

∂z

(
∂L
∂ρz

∂ρ

∂z
+

∂L
∂ψz

∂ψ

∂z
+

∂L
∂φz

∂φ

∂z
− L

)
+

∂

∂x

(
∂L
∂ρx

∂ρ

∂z
+

∂L
∂ψx

∂ψ

∂z
+

∂L
∂φx

∂φ

∂z

)
= 0. (85)

Substituting the Stokes expansions (74)–(76) into these conservation laws and aver-
aging by integrating in ϕ from 0 to 2π [12] yields the modulation equations, truncated to
O(1/ν),

∂k
∂z

+
∂
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(
kv̄ +

k2

2
+

2ρ̄

q
+

4ρ̄
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)
= 0, (86)

∂ρ̄
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)
= 0, (87)
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∂
∂z

(
ρ̄v̄2 + 2ρ̄2

q + k2a2

4ρ̄ + kv̄a2

2ρ̄ + 4a2

νk2 +
4v̄a2

νk3

)
+ ∂

∂x

(
ρ̄v̄3 + 4v̄ρ̄2

q + ka2

q + k3a2

4ρ̄

+ 3v̄k2a2

4ρ̄ + 3v̄2ka2

4ρ̄ + 6v̄a2

νk2 + 6v̄2a2

νk3 + 2a2
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)
= 0

(89)

for the (slowly varying) amplitude a, wavenumber k, and means ρ̄ and v̄ of the modulated
Stokes wave [12].

The modulation Equation (87) is that, for optical power conservation, Equation (88) is
momentum conservation, and (89) is energy conservation. The modulation Equation (86)
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is the equation for conservation of waves, kz + ωx = 0, on noting that the x derivative term
is just the dispersion relation (77). In this regard, it should be noted that the dispersion
relation for the Stokes’ wave from which the modulation equations are calculated has the
carrier waves’ phase shift term 2ρ̄/q added [35,36], as explained above,

ω = kv̄ +
1
2

k2 +
2ρ̄

q
+

4ρ̄

νk2 −
k2a2

8ρ̄2 −
3a2

νk2ρ̄
. (90)

Figure 2d shows that, in the TDSW regime, the KdV-type nematic bore structure of
Figure 2a–c has disappeared, leaving a dominant resonant wavetrain which is linked to the
intermediate level ui by a negative polarity solitary wave [26]. As discussed above, this
link between the resonant wavetrain and the intermediate level can be approximated by a
Whitham shock, a jump in the modulation equation variables [36,48], so that the Whitham
shock links the resonant wavetrain with the level ui behind, in a similar manner to a gas
dynamic shock wave links two compressible flow states [12]. Let us denote the amplitude,
wavenumber, mean level and mean phase gradient of the resonant wavetrain by ar, kr, ρ̄r,
and v̄r, respectively. Matching the Whitham shock velocity Us to the Stokes’ wave velocity
(90), as these are co-propagating, gives

Us = v̄r +
1
2

kr +
2ρ̄r

qkr
+

4ρ̄r

νk3
r
− kra2

r
8ρ̄2

r
− 3a2

r

νk3
r ρ̄r

. (91)

Ahead of the Whitham shock, there is the resonant wavetrain, and behind it is a flat
shelf, the intermediate level, which is a wavetrain of zero amplitude. The mass, momentum,
and energy conservation Equations (87)–(89) then give the jump conditions
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across the Whitham shock. Together with the resonance condition (91), these form four
equations for the five unknowns Us, ar, kr, ρ̄r, and v̄r, noting that ρi and vi are given by
(24) and (25), respectively. The final equation is obtained by assuming that the Riemann
invariant R− (22) is conserved through the resonant wavetrain and its lead partial DSW,
which is valid for a full DSW [19,50]. This then determines the mean of the resonant phase
gradient v̄r [36]. This Riemann invariant condition gives

v̄r = 2

√
2
q
(√

ρ̄r −
√

ρ+
)
= 2

√
2
q
(√

ρ̄r − u+
)
. (94)

The above nematic Whitham modulation equation jump conditions (92)–(93) with
(94) can be solved numerically for Us, ar, kr, and ρ̄r using Newton’s method. The full
details for this numerical solution of the Whitham shock jump conditions can be found
in Reference [36]. Figure 8 shows comparisons for the Whitham shock velocity from the
nonlocal to local limits, the optical power increasing, as given by the jump conditions and
full numerical solutions of the nematic Equations (11) and (12). The values of the level
ahead u+ were chosen to lie in the TDSW regime; see Figure 3. It can be seen that there is
excellent agreement between the theoretical and numerical solutions from high nonlocality,
ν large, down to ν = O(10). As for the lead solitary wave amplitude comparison of Figure 4,
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there is little change in the Whitham shock velocity as the nonlocality parameter ν varies by
an order of magnitude, with only a small increase in the velocity. There is a small, increasing
deviation between the theoretical and numerical values towards ν = 20. This is due to the
onset on the VDSW regime for which u vanishes at a point, a vacuum point [35,36]. Once
the vacuum point is reached, |u| cannot decrease further, so that the Whitham shock jump
conditions need to be modified [36]. This will not be pursued further here.

For a fixed level ahead u+, as the nonlocality parameter ν decreases (optical power in-
creases), the nematic DSW evolves from CDSW to TDSW type; see Figure 3. The borderline
between the CDSW and TDSW regimes can be determined from the Whitham shock jump
conditions (92)–(93) and the resonance condition (91) based on the following condition.
For a fixed nonlocality parameter ν, as the level ahead u+ increases, it is found that the
Whitham shock velocity becomes greater than the linear group velocity

cg = v̄r + kr −
8ρ̄r

νk3
r

(95)

of the resonant wavetrain. This is unphysical as this would mean that the resonant wave-
train could not form. Figure 3 shows this theoretical bound between the CDSW and TDSW
regimes as a red line. It can be seen that the agreement with numerical solutions is excellent
over the entire range of ν, even for jump heights u− − u+, which are not small.
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Figure 8. Comparison between the Whitham shock velocity Us given by the modulation equation
jump conditions (92)–(93) with (94) and numerical solutions of the nematic Equations (11) and (12) in
the TDSW regime. Solution of jump conditions: red (full) line; numerical solution: red boxes. Here,
u− = 1.0 and q = 2.

As ν decreases, it would be expected that the high nonlocality modulation
Equations (86)–(89) cease to be applicable. The Whitham modulation equations for the
nematic equations in the local limit, ν small, were calculated based on the equivalent of the
Stokes’ wave expansions (74)–(77) and (78)–(81), expanding in ν rather than 1/ν. However,
these were found not to give solutions in good agreement with numerical solutions. This is
expected as Figures 3 and 4 show that the nematic DSW is highly nonlocal down to very
small values of ν, which are unphysical, as discussed at the end of Section 3.

7. RNLS and NLS DSW Regimes

The KdV approximation (44) gives that the DSW changes from KdV to NLS type at ν =
q2/(4u2

+) due to the change in sign of the coefficient of the third derivative, as discussed
above, and as shown in Figure 3. It should be noted that numerical solutions do not show a
distinct change in DSW type, but a transition from a KdV-type DSW to an NLS-type DSW,
as seen in Figure 2d,e and as shown by the two regimes RNLS and NLS type in Figure 3.
The TDSW regime is characterized by a negative polarity solitary wave connecting the
resonant wavetrain to the intermediate level, as in Figure 2d. As the nonlocality ν decreases,
the beam power in increases, and the height of this solitary wave decreases, resulting in
the RNLS regime which consists of a Whitham shock connecting a resonant wavetrain
to the intermediate level ui. Ahead of the resonant wavetrain is a partial NLS-type DSW
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which connects to the level ahead u+; see Figure 2e. As ν decreases further, the resonant
wavetrain shrinks, and the partial DSW becomes a full NLS DSW with solitary waves at its
trailing edge and linear waves at its leading edge, resulting in an NLS DSW for sufficiently
small ν; see Figure 3b. In this limit, the NLS DSW alone links the intermediate level to
the level ahead. As ν decreases in the RNLS regime, the waves at the trailing edge of the
partial DSW evolve from weakly nonlinear Stokes waves to fully nonlinear periodic waves,
and then solitary waves in the NLS DSW regime.

The intermediate RNLS state, illustrated in Figure 2e, consists of a resonant wavetrain
with the height of the negative polarity solitary wave at the Whitham shock negligi-
ble. To compare the KdV-NLS DSW boundary ν = q2/(4u2

+) with numerical solutions,
the choice of the height of this solitary wave being 5× 10−3 above ui was chosen for the
onset of the RNLS regime in numerical solutions. It can be seen that there is good agree-
ment for this regime boundary for u+ close to u−, but there is increasing disagreement as
u+ decreases. This is expected as the reductive nematic eKdV Equation (42) was derived
under the assumption that |u− − u+| is small.

8. Conclusions

The structure of the nematic DSW (dispersive shock wave) solution of the defocusing
nematic equations governing the propagation of an optical beam through a cell filled with
nematic liquid crystals has been investigated using a combination of numerical solutions
of the equations governing the beam, consisting of an NLS-type equation for the optical
beam and an elliptic medium response equation, and solutions of the governing nematic
equations using Whitham modulation theory and/or asymptotic solutions. In contrast to
previous work [34–36], the evolution of the DSW structure was studied as the power of the
optical beam varied, from the experimental low power for which the nematic response is
nonlocal to high power for which the response is local. As the beam power varies, it was
found that the nematic DSW transitions between six regimes, four of which were studied
in previous work [34–36]. The two NLS-type DSWs do not exist in the low power regime
studied in this previous work. However, the experimental verification of these high power
DSW types is questionable as the powers required for their existence are unrealistic due
to the possible excessive medium heating the high beam powers would cause. Excellent
agreement was found between numerical solutions and analytical solutions for the four
physically relevant DSW regimes, the PDSW, RDSW, CDSW, and TDSW regimes displayed
in Figure 2a–d. In particular, the analytical theory gives good agreement for the boundaries
between the existence regions for five of the DSW types as the nonlocality parameter ν
varies, the exception being the boundary between the PDSW and RDSW regimes.

It has been found that the details of the nematic DSW, for instance, its lead wave
amplitude and velocity and the amplitude of the associated resonant radiation, are well
approximated by the nematic equations in the high nonlocality limit, the nonlocality
parameter ν large, as the DSW transitions to the local limit. This holds for the PDSW,
RDSW, CDSW and TDSW regimes with the nonlocality parameter ν ranging from O(100)
to O(1). As the analysis of the nematic DSW is much easier in the high nonlocality limit
based on asymptotic analyses with ν� 1, this is an important result for future analysis of
the nematic DSW in its various regimes and over its nonlocality range.

There are still a number of issues which could be addressed by future work. An
outstanding issue is the correct determination of resonance between the nematic DSW
and diffractive radiation. In contrast to the high nonlocality limit with ν large [34–36],
as ν decreases from the high to the low nonlocality limit, the beam power increases, and
the resonance condition used in previous work in the RDSW and CDSW regimes that the
velocity of the lead solitary wave of the DSW matches the linear phase velocity of the
resonant waves does not agree with numerical solutions. The theoretical transition from
the PDSW regime for high nonlocality to the RDSW regime due to the onset of resonance
as ν decreases occurs for ν = O(1), while numerical solutions show the transition for
ν = O(100) to O(10). As noted in previous work [36], and in contrast with other work
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on resonant DSWs, not only is the lead wave of the DSW in resonance with diffractive
radiation, but the whole modulated periodic wave which forms the DSW is in resonance.
However, even this observation does not yield the correct resonance condition for the
RDSW regime as the nonlocality parameter ν decreases below the highly nonlocal limit.
The correct resonance condition between the DSW and diffractive radiation requires further
study. This should be an important general issue for all resonant DSWs beyond the specific
application to nematic liquid crystals.
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