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Abstract: The need for civilian use of Unmanned Aerial Vehicles (UAVs) has drastically increased
in recent years. Their potential applications for civilian use include door-to-door package delivery,
law enforcement, first aid, and emergency services in urban areas, which put the UAVs into obstacle
collision risk. Therefore, UAVs are required to be equipped with sensors so as to acquire Artificial
Intelligence (AI) to avoid potential risks during mission execution. The AI comes with intensive
training of an on-board machine that is responsible to autonomously navigate the UAV. The training
enables the UAV to develop humanoid perception of the environment it is to be navigating in. During
the mission, this perception detects and localizes objects in the environment. It is based on this AI that
this work proposes a real-time three-dimensional (3D) path planner that maneuvers the UAV towards
destination through obstacle-free path. The proposed path planner has a heuristic sense of A?

algorithm, but requires no frontier nodes to be stored in a memory unlike A?. The planner relies on
relative locations of detected objects (obstacles) and determines collision-free paths. This path planner
is light-weight and hence a fast guidance method for real-time purposes. Its performance efficiency
is proved through rigorous Software-In-The-Loop (SITL) simulations in constrained-environment
and preliminary real flight tests.

Keywords: vision-based navigation; cluttered environment; three-dimensional path planner; obstacle
avoidance; machine learning

1. Introduction

The cost-effectiveness, ease of access, and mission versatility are the primary com-
pelling qualities of UAVs that attract many aerospace and related sectors. Hence, UAVs are
being integrated into tasks such as package delivery, first aid, law enforcement, disaster
management, infrastructure inspection, agriculture mechanization, rescue, military intelli-
gence, and many more. As low-altitude aerial vehicles, however, UAVs often encounter
obstacles such as trees, mountains, high storey buildings, electric poles, and so on during
their missions. Therefore, these aerial vehicles should be equipped with sensors to perceive
the environment around them and avoid potential dangers.

To leverage the use of UAVs in cluttered environments, studies have been conducted
on the types and ways of integrating various sensors for autonomous navigation. Vehicle
localization is one of the pillars of autonomous navigation. In an open-air space, Global
Positioning System (GPS) is often used for UAV localization. However, GPS-based UAV
localization in cluttered environment is unreliable. In such environment, sensors onboard
the UAV are used for localization as well as collision avoidance. Ivan Konovalenko et al. [1]
fused inputs from visual camera and Inertial Navigation System (INS) to localize a UAV.
Based on computer simulation, the team analyzed various approaches to vision-based UAV

Appl. Sci. 2021, 11, 4706. https://doi.org/10.3390/app11104706 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0278-2926
https://www.mdpi.com/article/10.3390/app11104706?type=check_update&version=1
https://doi.org/10.3390/app11104706
https://doi.org/10.3390/app11104706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11104706
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4706 2 of 19

position estimation. Jinling Wang et al. [2] combined inputs from GPS, INS, and vision
sensors to autonomously navigate UAVs. In their report, the inclusion of GPS input reduces
vision-based UAV localization errors and hence enhances the accuracy of navigation. Jesus
Garcia et al. [3] presented a methodology of assessing the performance of sensors fusion
for autonomous flight of UAVs. Their methodology systematically analyzes the efficiency
of input data for accurate navigation of UAVs.

Computer vision technology has evolved over the years to the stage that enables
not only UAV localization but also obstacle detection and avoidance. This is realized
through the advent of high-performance computers with the ability to process data and
perform complex calculations at high speeds. With the promising progress in computer
vision technology, many vision-based navigation algorithms have been developing. A
comprehensive review of computer vision algorithms and their implementations for UAVs’
autonomous navigation was presented by Abdulla Al-Kaff [4]. Lidia et al. [5] provided a
detailed analysis on the implementation of computer vision technologies for navigation,
control, tracking, and obstacle avoidance of UAVs. Wagoner et al. [6] also explored various
computer vision algorithms and their capabilities to detect and track a moving object such
as a UAV in flight.

Alongside computer vision technology, Artificial Intelligence (AI) is being imple-
mented into UAVs navigation system to enable them to acquire humanoid perception. The
idea is to train the computer that is either onboard a UAV or integrated with ground-based
command system so that it takes control of UAV navigation with little to no human inter-
vention. Su Yeon Choi and Dowan Cha [7] reviewed the historical development of AI and
its implementation to UAVs with a particular focus on UAVs control strategies and object
recognition for autonomous flight of UAVs. They also considered machine-learning-based
UAV path planning and navigation methods.

The integration of AI and computer vision technology brings a remarkable importance
in civilian application of UAVs. Many challenging tasks such as wildlife monitoring, disas-
ter managment, and search and rescue are being addressed by UAVs equipped with AI and
computer technology. Luis F. Gonzalez et al. [8] reported how AI- and computer-vision-
enabled UAVs have solved the challenges of wildlife monitoring. The study reported by
Christos and Theocharis [9] reflects the importance of UAVs equipped with AI and com-
puter vision for autonomous monitoring of disaster-stricken areas. Eleftherios et al. [10]
combined AI with a computer vision system onboard a UAV to enable real-time human
detection during search and rescue operations.

The integration of the two aforementioned key technologies—AI and computer
vision—provides environment acquaintance to UAVs. This helps the UAVs to plan their
collision-free paths. For autonomous navigation, a UAV has to have either a predetermined
path or a capacity to plan a path in real-time. A mission with predetermined route requires
less number of sensors as compared to a mission with real-time path planning. The chal-
lenges with real-time path planning are the complexity of multiple sensors integration,
input data synchronization, and computational burdens thereof. Valenti et al. [11] devel-
oped techniques to enrich a UAV with capabilities of localizing itself and autonomously
navigate in a GPS-denied environment. In their report, stereo cameras on-board the
UAV-based vision data were used for UAV localization and to build a 3D map of the
surroundings. Based on this information, an improved A∗ path-planning algorithm was
implemented for autonomous navigation of the UAV collision-free along the shortest path
to the goal.

System-resource-intensive computational burdens on the companion computer on-
board a UAV is always a setback to real-time path planning for the UAV. The companion
computer has to deal with visual data processing for UAV localization, obstacle detection,
and path planning. A comprehensive literature review on vision-based UAV localization,
obstacle avoidance, and path planning was reported by Yuncheng et al. [12]. In their
study, the challenges of acquiring real-time data processing for safe navigation of the UAV
are reflected. They also reported the challenges of autonomous navigation of a UAV due
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to intensive computation and high storage consumption of 3D map of the surroundings.
Yan et al. [13] developed a computer-simulation-based deep reinforcement learning tech-
nique towards real-time path planning for UAV in dynamic environments. Although
this is a promising step towards real-time path planning in dynamic environments, the
assumption of predetermined global situational data and the absence of real flight test that
verifies the efficiency the technique may degrade its attention.

To ease the computational burden on a companion computer dedicated to UAV
localization, obstacle detection, and 3D path planning, we propose the integration of
the fastest object detection algorithm with a light-weight 3D path planner that relies
on few obstacle-free points to generate a 3D path. The proposed 3D path planner is
based on AI acquired through YOLO (You Only Look Once ), which is the fastest object
detection algorithm.

The study presented in this report is organized into sections. In Section 2, the problem
to be addressed in this study is stated and the implemented methodology is explained. In
Section 3, the overall descriptions of the implemented hardware and software components
and their configurations are given. The machine learning approach for object detection
is explained in Section 4. Then, the commonly known 3D path planning algorithms are
discussed with their advantages and disadvantages in Section 5. The developed real-time
3D path planner is detailed in this section, followed by its performance tests in Section 6.
Results and discussion are given in the final Section 7.

2. Problem Statement

The challenge in autonomous navigation of a UAV in urban environment is recogniz-
ing and localizing obstacles at the right time and continuously adjusting the path of the
UAV in such a way that it can avoid the obstacles and navigate to the destination safely.
To this end, it requires integrating effective object detection and path planning algorithms
that run on a companion computer onboard the UAV.

Most of the widely used object detection algorithms are based on scanning the entire
environment and discretizing the scanned region to create a dense mesh of grid points from
which objects are detected. This process requires a companion computer with high storage
capacity and intensive computational power. Moreover, the well-known path-planning
algorithms either randomly sample or exhaustively explore the entire consecutive obstacle-
free grid points to generate optimal path towards destination. This incurs additional
computational burden on companion computer and compromises the real-timeness of the
navigation commands . Liang et al. [14] conducted a comprehensive review on the most
popular 3D path planing algorithms. In their review, a detailed analysis of the advantages
and disadvantages of these commonly used algorithms is given. They reported that despite
the intensive applications of these algorithms, the problem of real-time path planning in a
cluttered environment remains unsolved.

Dai et al. [15] proposed light-weight CNN-based network structure for both object
detection and safe autonomous navigation of a UAV in indoor/outdoor environments.
However, the whole process of object detection and UAV path planning was performed
on a ground-based computer and communication with the UAV was through a Wifi
connection. This had a catastrophic drawback on the safe navigation of the UAV in indoor
environment where Wifi connection failure is likely. Moreover, the Wifi data transfer rate
may create a delay in navigation commands to be sent to the UAV. In an attempt to remove
the dependency of the UAV on ground-based commands, Juan et al. [16] proposed a
UAV framework for autonomous navigation in a cluttered indoor environment based on
companion computer on-board the UAV. The performance of this framework was validated
through hardware-in-the-loop simulation, and it appears to be promising to put an end
to ground-based navigation command. However, an occupancy map of the cluttered
environment in which the UAV navigated was pre-loaded on the companion computer.
This undermines the applicability of the framework in dynamic environment.
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To avoid computational burden on the companion computer, Antonio et al. [17]
applied a data-driven approach, where data about the cluttered environment must be
collected prior to the UAV mission. As proposed in their work, DroNet makes use of the
collected data and safely navigates a UAV in the streets of a city. However, this approach,
again, has limitations when it comes to dynamic or unknown environments.

This study, therefore, tends to address the challenges of computational burden sub-
jected to companion computer onboard a UAV by integrating the available fastest object
detection algorithm and the proposed light-weight real-time 3D path planner. Such an
approach by-passes the challenges of dynamic or unknown environments. In the pre-
liminary performance test, we assumed limited number of objects: pedestrian, window,
electric poles, tunnel, trees, and barely visible nets as plausible obstacles that the UAV
may encounter in a disaster monitoring scenario. Once the proposed 3D path planner is
validated in a complete real-flight tests, further objects will be included in the machine
learning process.

Methodology

To enable a companion computer onboard a UAV for simultaneous object detection
and 3d path planning in real-time, it is essential to integrate the fastest object detection
algorithm and 3D path planner that requires less computational burden. YOLO, as ex-
plained in Section 4.1, is selected as the fastest object detection algorithm. In addition to
object detection, this algorithm also localizes the object(s). The proposed 3D path planner
relies on the relative locations of the detected objects to calculate a collision-free path for
the UAV. Although the proposed 3D path planner resembles A∗ path planning algorithm
in implementing heuristic function for cost minimization, it avoids an exhaustive search
for consecutive collision-free nodes and storage method of A∗. Unlike A∗, the proposed
3D path planner maps the current location of the UAV to a few nodes between consecutive
obstacles. These few nodes are determined based on the size of the UAV and the gap be-
tween consecutive obstacles, as explained in Sections 5.1.1 and 5.1.2. A Euclidean function
is used as a heuristic function in this 3D path planner.

Prior to a real flight test, the performance of the proposed 3D path planner must be
checked in a simulated environment. For this performance test, software tools are essential
components. One of the software tools specifically designed for such task is Gazebo
3D dynamic environment simulator. This software was primarily designed to evaluate
algorithms for robots [18] and provides realistic rendering of the environment in which
the robot navigates. Moreover, it is enriched by various types of simulated sensors. We
designed a simulated cluttered 3D environment in Gazebo and used it to test performance
of the proposed 3D path planner during its successive development.

3. Utilized Tools and Their Integration

Various open-source software was implemented in both the gazebo-based simulation
and real flight tests for the development and validation of the 3D path planner. The type
and implementations of this software are explained in the following two subsections.

3.1. Setup for Software-In-The-Loop Simulation

It is very common that Software-In-The-Loop (SITL) simulation is often used for
testing the performance of an algorithm under development. This utility saves time and
cost of repair of probable crashes in real flight test scenarios.

Open-source software such as px4 flight control firmware, Gazebo simulator, and
Robot Operating System (ROS) were integrated and used for the development and perfor-
mance testing of 3D path planner. Gazebo is a dynamic 3d model simulation environment
particularly suitable for obstacle avoidance and computer vision. This simulation environ-
ment is enriched with simulated sensors that mimic the real sensors on-board the UAVs.
YOLO object detector, with its Darknet architecture wrapped with ROS, was also used to
publish information about obstacles in the UAV’s navigation environment. For training
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and validation of YOLO, images of the 3D models of the objects simulated in the gazebo
simulation environment were taken. The Images were taken under various backgrounds
and lighting conditions.

The 3D path planner algorithm that prompts px4 flight controller to send actuator
commands to quadcopter model in gazebo simulator was developed as an ROS node.
Hardware models implemented in this SITL Gazebo simulation are iris quadcopter, depth
stereo camera, three ultrasonic sensors, and LiDAR as shown in Figure 1.

Figure 1. SITL: quadcopter equipped with on-board components.

The camera is for the frontal environment’s image input, LiDAR is for quadcopter’s
altitude estimation in combination with GPS, and the ultrasonic sensors are used to de-
tect lateral obstacles that may be encountered during takeoff and rolling. The 3D path
planner acquires information from the aforementioned sensors in Gazebo simulator using
Gazebo_ros packages that enables sensors to publish their information. The whole process
runs on the desktop computer, whose software specifications are given in Table 1.

Table 1. Desktop Computer specification and software used for simulation.

Type Specification

Operating System Ubuntu 16.04
Memory 2 GB
Processor intel i7 CPU 972@2.67 GHz x 8
Graphics NV92
Gazebo version 7 with its dependencies
ROS Kinetic with dependencies
PX4 firmware version 1.9.2

3.2. Setup for Real-Flight Based Performance Test

Following SITL simulation-based performance validation, the 3D path planner was
uploaded onto NVIDIA Xavier companion computer. The computer was integrated with
Pixhawk 4 autopilot on-board Tarot 650 quadcopter platform. The platform components
and their specifications are given in Table 2.



Appl. Sci. 2021, 11, 4706 6 of 19

Table 2. Tarot quadcopter components specifications.

Parameter/Item Specification

Frame weight 750 g
Motor to motor length 600 mm
Payload weight 1665.5 g
4 motors MN4006-23 KV: 380 T-motor
4 propellers 13 × 5.5 Carbon Prop
Battery Poly-Tronics 14.8 V, 10,000 mAh
Electronic Speed Controller Arris Simonk 30 A

Hardware components used for real autonomous navigation are shown in Figure 2a.
The Tarot quadcopter was equipped with a forward-looking ZED mini stereo camera,

downward-looking LiDAR sensor, and upward-, right-, and left-looking ultrasonic sensors.
The tasks of these hardware are as mentioned in the SITL simulation counterpart. The
integration of the quadcopter, mounted sensors, and companion computer is shown in
Figure 3.

The autopilot board is Pixhawk 4, which is mounted on the quadcopter underneath
the companion computer: NVIDIA Xavier. The companion computer and LiDAR are
connected to the Telem 2 and I2C ports, respectively, of autopilot board. ZED mini stereo
camera and three ultrasonic sensors are connected to the companion computer.

(a) Hardware architecture (b) Software architecture

Figure 2. Architectures of hardware and software.
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Figure 3. Quadcopter equipped with on-board components.

System Calibration and Configuration

PX4 firmware version 1.9.2 was installed on Pixhawk 4, and x-configuration type
quadcopter airframe was selected. All the necessary sensors calibrations were done and
parameters were set in such a away that the autopilot could communicate with external
hardware. Quadcopter localization was enabled by GPS, LiDAR, and ZED mini stereo
camera fusion. Pixhawk autopilot supports a Micro Aerial Vehicle Link (MAVLink) protocol
that serializes messages. Telem 2 serial port of Pixhawk 4 was set to convey messages
to-and-from Pixhawk through MAVLink protocol.

Robot Operating Software (ROS) Kinetic version was installed on the companion
computer. ROS provides software tools that enable communication among hardware.
Communication between the autopilot and companion computer was enabled by MAVROS:
a ROS package that bridges ROS topics (message buses) with MAVLink messages. To
extract information from the ZED mini stereo camera and publish in the form of specific
message types through ROS topics, an open source, named ZED_ROS wrapper node,
was installed on the companion computer. YOLO version 3 (YOLOv3) object detection
algorithm and its framework Darknet_ROS were installed on the companion computer
for obstacle detection and localization. The 3D path planner module runs on companion
computer and communicates with autopilot through MAVROS. The configuration of
software components is shown in Figure 2b.

4. Machine Learning for Object Detection

In the machine learning process, a companion computer onboard a quadcopter was
trained to identify assumed obstacles that it may encounter during a disaster monitor-
ing mission. The assumed obstacles are pedestrians, windows, electric poles, tunnels,
trees, and barely visible nets. The companion computer can be trained to identify a large
number of objects once the performance of the proposed path planner is validated on the
assumed ones.

4.1. YOLO Object Detection and Localization

Object detection is a task in computer vision that involves identifying the presence and
type of one or more objects in a given image. There are various types of object detection
algorithms [19–25], and YOLO is one of them with its fastest detection and localization
mechanisms. Matija Radovic et al. [26] reported the preference of YOLO over the other
detection algorithms that runs on CNN. The key features underpinning YOLO as the
fastest detection means are applying a single neural network on the entire image and
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considering detected object localization as a regression problem. The architecture of this
neural network is called Darknet: a type of CNN. It has 24 convolutional layers working as
feature extractors and 2 dense layers for doing the predictions. A detailed discussion on
the neural network and its architecture is given by Joseph Redmon et al. [27]. There is a
configuration file with a given architecture. This file contains information about:

• layers and activations of the architecture
• anchor boxes
• number of classes
• learning rates
• optimization techniques
• input size
• probability score threshold
• batch size

Each configuration file has corresponding pre-trained weights. For training, YOLO
requires two files: a file with list of names of objects and a file with a list of training images
that contain desired objects with their corresponding labels. The labels are relative centers
and dimensions of objects in the image. The configuration file can be modified as per the
need of a user. For instance, increasing the batch value improves and speeds up the training
but at the cost of demanding more memory. Two of the most important parameters in the
configuration file that need to be checked are classes and final layer filters. The values of
these parameters should match with the total number of objects in the training.

Once the training is over, the configuration and corresponding weight files are in-
tegrated with YOLO Darknet ROS module for object detection and localization during
autonomous navigation of UAVs. Along with the detection of each object, there is a
bounding box, which is characterized by the following parameters.

• confidence score that the object is detected
• center of the bounding box (Uc,Vc)
• dimension of the bounding box (w, h)

where U and V are coordinate axes of an image frame in which U increases from left to
right and V increases from top to bottom. Both the center and dimensions of the box are
normalized to fall between 0 and 1. Based on these parameters, the sides of the bounding
box can be calculated as:

Umin = Uc −
w
2

and Umax = Uc +
w
2

(1)

and
Vmin = Vc −

h
2

and Vmax = Vc +
h
2

(2)

where Umin and Umax are the locations of left and right sides of the bounding box along the
U-axis. Similarly, Vmin and Vmax are the locations of upper and lower sides of the bounding
box along the V-axis. The coordinate transformation from the image frame to camera frame
follows the procedure shown in [28]. Since the path planner was written as the ROS node
that follows a reference frame FLU (Forward (x), left (y), and upward (z)), coordinate
transformation from camera frame to ROS frame (FLU) was done. Moreover, PX4 uses FRD
(Forward (x), right (y), and Down (z)). The ROS package MAVROS handles coordinate
frame transformation from ROS frame to PX4 frame.

5. Three-Dimensional Path Planning Algorithms

The top challenge in autonomous navigation of UAVs is planning an obstacle-free
route from the start to the destination. Encountering obstacles is possible, especially for
missions like law enforcement, package delivery, and first aid in urban areas. Most of the
path planning algorithms for UAVs are derived from pre-existing algorithms designed
for ground robots. These algorithms are often 2D and need to be modified into 3D for
aerial vehicles. The complexity to design and the demand for high performance computers



Appl. Sci. 2021, 11, 4706 9 of 19

on-board the UAVs are challenges that incurred by the 3D path planners. The obstacle-free
3D path planning process demands an intensive computational burden that often limits
the maximum cruising capability of the UAV. The effect of this computational burden is
true for both free and cluttered environments as long as image processing has to occur.

Commonly known 3D path planning algorithms are A? with its variants, Rapidly–
Exploring Random Tree (RRT) with its variants, Probabilistic RoadMaps (PRM), Artificial
Potential Field (APF), and Genetic or Evolutionary algorithms. These algorithms can be
categorized into two: sampling-based and node/grid-base algorithms. Sampling-based
algorithms connect randomly sampled points (subset of all points) all the way from start
to the goal points thereby creating random graphs from which a graph with shortest
path-length is selected. The algorithms include RRT, PRM, and APF.

Node/grid-based algorithms, unlike sampling-based algorithms, exhaustively explore
throughout consecutive nodes. These algorithms include A? and its variants. In search for
an obstacle-free path, the algorithm takes in an image of the environment and discretizse it
into grid cells that includes the current (start) location of the UAV and the goal location.
The A? algorithm has two functions to prioritize the cells to be visited. These two functions
are the cost function, which calculates the distance from the current cell to the next cell,
and the heuristic function, which calculates the distance from the next cell to the cell that
contains the goal. With the objective of minimizing the sum of these two functions, the
cells to be visited are heuristically prioritized. In the case of 3D search, the cost function
calculates distances from the current cell to all 26 neighboring cells, and the heuristic
function calculates distance from the 26 cells to the cell that contains the goal. In a cluttered
environment with complex occlusion, highly dense grid cells are required, which in turn
increase the computational burden, and thus the selected path may not be optimal.

5.1. Machine Learning-Based 3D Path Planner

Training an on-board computer to quickly identify objects and avoid collision with
them in an environment in which UAV is set to navigate can be taken as a paradigm shift as
it inherits the mechanism that a human being takes to avoid collision. The computational
intelligence of a human brain is the degree that it is trained to, as is the artificial intelligence
of the computer onboard a UAV. This is why intensive training of on-board computer is
compulsory.

Apart from the capabilities of ensuring the presence of objects and their relative
locations from the UAV, the companion computer may be required to know the type of
objects it detected. The YOLO object detection algorithm installed on the companion
computer has such a capability. Strategies to avoid collision with an object may depend on
the type of the object. For instance, the avoidance mechanism for a window (open obstacle)
is different from the mechanism for a tree (closed obstacle). Our 3D path planner includes
those capabilities, as explained below.

5.1.1. Open Obstacles

In this type of obstacle, there is a possibility in which the UAV has no other option
but to pass through the opening, such as in the case when the mission is to enter or exit a
closed room through open window. Missions like in-house first aid or disaster monitoring
may encounter such a scenario. In this case, the algorithm determines the relative position
of the UAV with respect to the center of the bounding box around the obstacle. The center
of the bounding box, as shown in Figure 4, has coordinate axes (xc, yc, zc) with respect to
the ZED mini stereo camera frame, whose origin is located at the center of left camera.

The x, y, and z axes of this frame point forward, right-to-left, and upward, respectively.
Therefore, x represents the depth of the detected object (e.g., xc depth of the window). The
depth information is directly extracted from the ZED mini camera, whereas y and z are
derived from the (U,V) coordinate values through coordinate transformation. Information
obtained with respect to image frame, including Equations (1) and (2), are transformed to
the camera frame.
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Figure 4. Open obstacle passing strategy.

The UAV’s local position (xl , yl , zl) is acquired from GPS embedded in the Pixhawk
4 autopilot, LiDAR and ZED mini stereo camera. Before the UAV tries to pass through
the window, it has to align itself with a vector normal to the plane of the window through
appropriate attitude and altitude changes. In the figure, the setpoint (xl , ys, zs) is sent by
the 3D path planner to the autopilot to command the UAV to adjust itself before advanc-
ing forward. The variables ys and zs are the y and z axes’ setpoint values, respectively,
obtained as follows:

ys = yl − yc and zs = zl − zc (3)

While the UAV is responding to the command, the ultrasonic sensors mounted on
the sides of the UAV check whether there are objects or not in the way. Once alignment is
done, the UAV advances through the window with the setpoint (xs, ys, zs), where xs is the
relative depth of the bounding box with clearance.

xs =| xl − xc | + objclr (4)

The variable objclr is a minimum object clearance or distance of the UAV behind the
window that ensures the UAV has completely passed through the window with clearance.
Moreover, to confirm the passage of the UAV through the window, the readings from the
ultrasonic sensors mounted on the left and right sides of the UAV are considered. This
method is implemented in cases like passing through tunnels or holes alike.

5.1.2. Closed Obstacles

If the obstacle is closed, our path planner considers the pass-by option with a minimum
side clearance from the obstacle. The 3D path planning algorithm takes in bounding boxes
information of all detected objects and assigns an identity index to each of them based on
the locations of their centers along the y-axis. All information about the bounding box are
with respect to the camera frame onboard the UAV. As shown in Figure 5a, the index value
increases towards the increasing y-axis of the ZED min stereo camera (in this case, from
right to left).
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(a) Avoidance strategy (b) Optimal path selection.

Figure 5. Obstacle-free optimal path selection

There are three conditions to be considered to determine next setpoint for the UAV.
These are searching for

• Wide primary gaps: gaps between consecutive obstacles;
• Narrow primary gaps but with proximity difference: depth difference between con-

secutive obstacles; and
• Narrow primary gaps with small or no proximity difference.

Based on Figure 5a, the algorithm calculates the primary gap (between the ith and
(i + 1)th) and secondary gap (between ith and (i + 2)th). The importance of calculating the
secondary gap is that if the primary gap is narrow (less than twice UAV width) but with
proximity difference more than twice the UAV length, there is the possibility that the UAV
can advance forward but should check whether the secondary gap is wide enough or not to
let the UAV pass in between. The gaps and proximity differences are calculated as follows:

Yi+1
min −Yi

max primary gap

Yi+2
min −Yi

max secondary gap

| Xi+1 − Xi | proximity difference

(5)

The pseudo-algorithm of our 3D path planner in the presence of multiple detected
obstacles, as shown in Figure 5b, is given below.

• index the bounding boxes of the obstacles based on y-axis values of their centers. The
box with the smallest y-axis value is indexed as the ith box;

• calculate Ymin and Ymax for each bounding box;
• calculate the primary gap between the ith and (i + 1)th

• if the gap is greater than or equal to twice UAV width;

– calculate the midpoint of the gap;
– calculate distances from the current location of the UAV to the midpoint and

from the midpoint to the goal point. Save the sum of these two distances as
path-length;

• else if the primary gap is smaller, calculate the proximity difference of the two consec-
utive bounding boxes ith and (i + 1)th;

– if proximity difference is greater than or equal to twice UAV length, calculate the
secondary gap;

– if secondary gap is greater than or equal to twice the UAV width, check the
following conditions:

* if the ith obstacle is closer than the (i + 1)th, then set (Xi, Yi
max + objclr, Zi) as

a potential setpoint;
* else, set (Xi+2, Yi+2

min − objclr, Zi+2) as a potential setpoint;
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– calculate distances from the current location of the UAV to the potential setpoint
and from potential setpoint to the goal point. Save the sum of these two distances
as path-length;

• apply the above steps for the remaining bounding boxes;
• compare the path-lengths and set the setpoint that leads to a minimum path length as

the next setpoint for the UAV;
• else if the secondary gap is less than twice the UAV width, hover at a current altitude

and yaw to search for any possible path applying the above procedure;
• if no path is discovered, land the UAV.

6. Path Planner Performance Tests

Performance tests were carried out during the developmental stage of the the path
planner. Prior to real flight performance tests, rigorous computer-simulation-based tests
were conducted. The implemented software tools and their integration as well as real flight
test procedures are described in the following subsections.

6.1. SITL Test

Gazebo simulation environments shown in Figure 6 (front view) and Figure 7 (top
views) were built, in which the path planner was to be tested.

Figure 6. Front view of gazebo environment

The gazebo world has left and right sections. Each section has a width (y-axis) of
10 m and a length (x-axis) of 30 m. The UAV located in the left section has to avoid the
obstacles on its mission to arrive at landing pad, which is located in the right section.
During path planner performance tests, the poles and trees were randomly re-located in
the simulation environment. Every time the arrangements of these obstacles are changed,
the path followed by the UAV changes. Figure 7c,d shows two traced trajectories for the
obstacles’ arrangements shown in Figure 7a,b, respectively.

The 3D models of the obstacles imported to gazebo world were pedestrian, open
window, poles, tunnel, trees, and two consecutive nets. The obstacles were designed
in consideration of UAV mission for in-house first aid, law enforcement during suspect
monitoring and door-to-door package delivery services in urban areas where the afore-
mentioned obstacles are assumed to be potential threats in such missions. The UAV is
supposed to pass by or through these obstacles on its way to a targeted location, in this
case, the landing pad.
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(a) Top view of environment 1 (b) Top view of environment 2

(c) Traced trajectory for environment 1 (d) Traced trajectory for environment 2

Figure 7. Top views of two simulation environments and traced trajectories.

The overall simulation infrastructure is shown in Figure 8. The 3D path planner
written as ROS node communicates with the PX4 module named Mavlink_main. MAVROS
bridges the ROS topics of the path planner with MAVLink messages of PX4 firmware. In
addition to bridging ROS topics with MAVLink messages, MAVROS has extra-advantage
in taking care of coordinate transformation between the ROS frame and PX4 Flight Control
Unit (FCU) frame. ROS works with the East–North–Up (ENU) frame, and FCU works with
the North–East–Down (NED) frame. PX4 firmware has a module called simulator_mavlink
that lets the firmware interact with the 3D model of the UAV in the Gazebo world. The
message exchanges between the PX4 firmware and gazebo simulator are handled by
simulator MAVLink protocol.

As part of the 3D path planner’s efficiency verification tests, video (named as Video S1)
is submitted with this manuscript. The livestreamed videos on qgroundcontrol (a ground
control station for UAVs) were recorded, and the snapshots of a video at the instants of
attitude or altitude changes, to avoid obstacles, are displayed in Figure 9.
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Figure 8. Software_In_The_Loop infrastructure.

(a) Pass-by pedestrian (b) Pass-through window

(c) Pass-through tunnel (d) Pass-by poles

(e) Pass-through trees (f) Net under/over pass

Figure 9. Instant snapshots during obstacle avoidance phases.
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The position and attitude accuracy for the environments Figure 7c,d are shown in the
first and second columns of Figure 10, respectively.

(a) Environment 1: position x (b) Environment 2: position x

(c) Environment 1: position y (d) Environment 2: position y

(e) Environment 1: roll (f) Environment 2: roll

(g) Environment 1: pitch (h) Environment 2: pitch

Figure 10. Simulation: position and attitude accuracy tests.

6.2. Real Flight Test

The real flight test requires us to do an intensive machine learning or training the
companion computer to identify the obstacles simulated in the gazebo environment. This
training process is not over yet: at least up to the report of this work. To get the sense of
the efficiency of the path planner, real flight tests were conducted for the first obstacle pass,
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as shown in Figure 11. As the quadcopter approaches the pedestrian, it has to evaluate the
best route based on the conditions given in the pseudo-algorithm Section 5.1.2. For this test
phase, short videos (named Videos S2 and S3) accompany this manuscript.

Considering the fact that building a real constrained environment as the simulated one
requires time and money, a ROS node that sequentially publishes the simulated locations
of obstacles was developed. The node publishes all the information that the 3D path
planner requires from ZED mini stereo in a real scenario. Based on this, the quadcopter
was deployed to arrive at a given destination, avoiding collisions with the obstacles. The
effectiveness of the path planner is validated as shown in Figure 12, where the setpoints
sent by the path planner and the estimated positions of the quadcopter throughout the
whole mission overlap.

(a) Pedestrian pass test 1 (b) Pedestrian pass test 2

Figure 11. Pedestrian as obstacle pass tests.

Figure 12. Estimated position and position setpoint comparison in real flight test.
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Furthermore, Figure 13 shows component-wise position and attitude accuracy validation.

(a) position x (b) attitude: roll

(c) position y (d) attitude: pitch

Figure 13. Real flight test for path planner efficiency validation.

7. Results and Discussion

The validation of the developed 3D path planner was conducted through both SITL
and preliminary real flight tests. Gazebo 3D model simulation environment was thoroughly
used to develop and validate our 3D path planner prior to its upload into Pixhawk autopilot.
The Gazebo environment shown in Figure 6 was set in such a way that it has obstacles
like human, window, poles, tunnel, trees, and nets. These obstacles implicate the plausible
encounters that the drone may face during missions such as package delivery, disaster
monitoring, law enforcement, and first aid. For a complete navigation from the left section
to the right section of the environment, the drone has to avoid collision with any of the
mentioned obstacles and safely land at the landing pad.

Rigorous simulation tests were done where the two randomly arranged environments
shown in Figure 7 are some of the environments in which the tests were done. The path
followed by the quadcopter in the environment in Figure 7a is shown in Figure 7c. Similarly,
the path followed in the environment in Figure 7b is shown in Figure 7d. As can be seen
in these figures, the quadcopter followed two different trajectories in response to the two
different arrangements of the obstacles in the environments. Moreover, the setpoints sent
by the path planner and the estimated locations of the quadcopter overlap throughout the
trajectories. This overlap validates the effectiveness of the path planner to autonomously
navigate the quadcopter in a cluttered and GPS-denied environment.

Components of position and attitude responses in the two environments, Figure 7a,b,
are shown in Figure 10. The well-traced setpoints of both position and attitude prove the
efficiency of the path planner. In the path planner, a setpiont acceptance radius is set to
0.30 m. The differences observed at setpoint nodes are due to this acceptance radius. The
quadcopter advances to the next setpoint assuming that the current setpoint is achieved
at the moment the quadcopter crosses the acceptance radius, though the quadcopter may
not reach the actual setpoint. This causes a gap between the estimated position and
position setpoint. The attitude estimates of the quadcopter in both environments conform
to the setpoints.
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The preliminary real flight tests were conducted for collision avoidance with pedes-
trians. Machine learning was done for a pedestrian with different posture, clothes, and
light exposures. As shown in Figure 9a, the quadcopter attempts to avoid collision with
the pedestrian by rolling either right or left, implementing the conditions given in the
pseudo-algorithm. For reference, the recorded two short videos on pedestrian collision
avoidance are submitted with this manuscript.

For a complete mission test, a real environment, similar to the simulated environment
shown in Figure 6, should have been constructed. This would take time and money. For
this report, the real environment was modeled by an ROS node that publishes required
information to the 3D path planner. This node publishes simulated locations of obstacles,
and the 3D path planner takes those locations and calculates an obstacle-free path. With
this, the UAV was commanded to autonomously head to the landing pad avoiding all
possible obstacles on its way. The path followed by the UAV during this mission is shown
in Figure 12. The overlap of the estimated quadcopter positions and intended setpoints
shows that the 3D path planner effectively executed the mission.

In the real flight test, which was conducted in an open field, the quadcopter local-
ization was limited to GPS and LiDAR. LiDAR is only for altitude estimation. ZED mini
stereo camera, combined with GPS for quadcopter localization, does not provide proper
localization of the quadcopter in an open field as it is required to get reflected rays from ob-
jects in its operation range. Therefore, for localization, the quadcopter in this circumstance
relies on GPS whose accuracy is about 2 m. Depending on the number of satellites accessed
and the environment in which the quadcopter is, the accuracy of the GPS drifts. The initial
location of the quadcopter before takeoff had high drifts as can be seen in Figure 13c.

The test results obtained so far show that the 3D path planning algorithm is effectively
guiding the UAV through collision-free paths. The future work includes the real flight tests
in the environment similar to the simulated one as well as in unconstrained environments.
Moreover, machine learning for various objects will be conducted based on the mission
profile of the UAV.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11104706/s1, Video S1: Performance of path planner in cluttered environment, Video
S2: Path planner in avoiding collision with pedestrian left pass, Video S3: Path planner in avoiding
collision with pedestrian right pass.
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