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Abstract: Wire arc additive manufacturing (WAAM) is a direct energy deposition (DED) process 
with high deposition rates, but deformation and distortion can occur due to the high energy input 
and resulting strains. Despite great efforts, the prediction of distortion and resulting geometry in 
additive manufacturing processes using WAAM remains challenging. In this work, an artificial 
neural network (ANN) is established to predict welding distortion and geometric accuracy for 
multilayer WAAM structures. For demonstration purposes, the ANN creation process is presented 
on a smaller scale for multilayer beads on plate welds on a thin substrate sheet. Multiple concepts 
for the creation of ANNs and the handling of outliers are developed, implemented, and compared. 
Good results have been achieved by applying an enhanced ANN using deformation and geometry 
from the previously deposited layer. With further adaptions to this method, a prediction of additive 
welded structures, geometries, and shapes in defined segments is conceivable, which would enable 
a multitude of applications for ANNs in the WAAM-Process, especially for applications closer to 
industrial use cases. It would be feasible to use them as preparatory measures for multi-segmented 
structures as well as an application during the welding process to continuously adapt parameters 
for a higher resulting component quality. 
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1. Introduction 
Meeting the growing demand for fast product development, multi-variant product 

designs, and the ability to manufacture complex geometry components, additive 
manufacturing (AM) processes have gained increasing interest in recent years. 
Simultaneously, a variety of different AM technologies emerged following the 
characteristic layer-by-layer building approach [1,2]. For the manufacturing of metal 
components, these technologies can be mainly divided into powder bed systems, powder-
feed systems, and wire-feed systems [1]. Compared to powder-based processes, wire-feed 
AM processes are generally characterized by higher deposition rates, larger building 
space, and high material utilization, whereas powder-based processes exhibit superior 
geometrical accuracy and resolution [3]. Wire and arc additive manufacturing (WAAM) 
is a wire-based AM approach that uses conventional arc welding technology for the layer-
by-layer deposition of material [4]. Thereby, an electric arc between the base metal and a 
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consumable or non-consumable electrode is used to create a weld pool and for melting of 
the wire feedstock. A predefined path of the welding torch is further applied for the part 
generation. 

Based on the high deposition rates and low geometrical restrains, WAAM is 
particularly suitable for the near-net shape production of large components as well as for 
incremental manufacturing (IM) [5–7]. IM is a production concept where base parts are 
produced in high volume and then incrementally finalized with different processes such 
as additive manufacturing and machining [8]. For an efficient manufacturing process, 
techniques with high deposition rates such as WAAM are considered advantageous for 
this manufacturing concept. For the combination of WAAM and IM, the concept consists 
of finalizing a large number of prefabricated metal parts with build-up welding and thus 
resulting in the required structures and geometry. However, one of the major challenges 
during WAAM is the occurrence of welding distortion due to a comparatively high heat 
input and the related inhomogeneous plastic strains [9], leading to the formation of 
residual stress as well as distortion of the component.  

Distortion affects, next to the final part geometry, also the manufacturing process 
itself. Component warping may lead to unstable process behavior or even process 
abortion. Hence, the distortion needs to be considered either during offline process 
planning or in-situ by adaptive manufacturing strategies. Since the manufacturing 
process is complex and distortion is influenced by many parameters such as energy input, 
temperature regimes, part geometry, inner and outer restraint, and material parameters, 
an enhanced prediction method is needed.  

In order to account for these influencing factors in predictions of the AM process 
results, several approaches have been implemented. Simulations with thermal finite 
elements (FE) and other thermal modeling such as thermo-elastic-plastic transient models 
[10,11], GAMMA-simulation [12] as well as fuzzy logic [13] have been used for welding 
processes. Due to the difficulty and the often very limited available computational times 
required for accurate simulations for welding processes, the usage of artificial neural 
networks (ANN) has been applied to these multi-criteria problems to a much larger 
extent, often in combination with simulations [11–13], although the use cases differ. 

Several researchers examine the influence of specific parameters such as welding 
gases [14,15] with ANNs, often with a focus on the ANN-based prediction of the resulting 
welding bead geometries. These are mostly based on the usage of welding parameters 
such as layer count, welding speed and current as well as voltage as inputs with bead 
width and height as outputs. Variations in the usage of these parameters can be found. 
Kim et al. only consider the bead height as output, Xue et al. also include nozzle distance 
from the substrate as well as wire feed speed. Hu et al. use an additional genetic algorithm 
to find the best welding parameters for the desired results, whereas Casalino et al. 
combine ANN-based prediction with FEM in order to calculate stress and deformation. 
Ding et al. use bead geometry prediction together with an approach for path planning, 
while Kshirsagar et al. combined the ANN with a support vector machine in order to 
provide a high prediction quality with multiple inputs in spite of fewer data [16–21].  

Other approaches include looking at specific operations for welding processes, such 
as the joining of metal plates with a focus on the resulting distortion [22] or optimization 
of welding parameters for special purposes such as thin-walled aluminum structures [23]. 
Tian et al. and Tafarroj et al. examined the possible resulting plate geometries as well as 
distortion for the substrate for single beads [24,25]. Thus, according to prior research, the 
prediction of the resulting bead height and width, as well as distortion, is a viable 
application for ANN. However, the applicability of the current approaches towards 
different experimental setups or different real-life implementations within a reasonable 
timeframe is questionable. Distortion is often affected by the welded geometries and 
related factors such as wall thicknesses which requires geometry-specific adjustments to 
the ANNs and the machine-learning algorithms. This is not efficient for small to medium 
scale process chains such as IM, where these welded additive processes must be 
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predictable in order to efficiently design the process timelines. In particular, predictions 
for possible occurring geometry deficiencies such as deviations in component heights lead 
to better planning, or with countermeasures taken during the process, to a decrease of 
manual intervention and an overall increase of efficiency. The current state of the art 
shows that prediction is generally possible and examines potential training processes and 
data acquisition solutions. However, the next steps towards larger-scale applicability for 
different welded structures and components with few predefined parameters or pre-
programmed FEM-models require further research. 

The strategy of this research is a combination of analyzing welding and geometry 
parameters with the objective to predict the distortion and build-up of multiple beads for 
usage in incremental manufacturing on thin plates. It focuses on the application of ANNs 
without additional software implementations for straightforward transferability. This 
research mainly distinguishes itself from the previous approaches through its 
expandability. With the proposed enhanced ANN, the proof-of-concept for a continuous 
prediction during the welding process is made, which could be applied to larger 
structures in further research. This continuous prediction can be achieved through a 
recursive prediction of defined building blocks, which serve as a simplification of defined 
geometries and their characteristics, such as wall thicknesses. As such, this research is a 
preliminary feasibility study for the usage and recursive prediction with ANNs 
exemplary for the combination of single layers. The resulting proposed enhanced ANN 
predicts welding structure geometry and their distortion in a recursive manner, which 
leads to a great increase in accuracy without large amounts of additional welding 
experiments. This enables accurate prediction with reduced time and resource investment 
and shows good prospects for an application with defined geometries as building blocks. 

2. Materials and Methods  
The procedure of this study is visualized in Figure 1. As a necessity for further 

examination, the parameters for the experiments and the generation of datasets are 
described at the start of Section 2.1. Following this, in Section 2.2, the different concepts 
for ANN as well as their data requirements, such as in- and outputs, are developed. With 
the framework conditions for experiments and required data being set, the used data and 
the handling of possible outliers are assessed in Section 3.1. Finally, the resulting concepts 
for ANNs with their different possibilities for used data are analyzed and compared in 
Section 3.2. 

 
Figure 1. The methodical approach of this study. 
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2.1. Generation of Datasets 
In order to generate a data set for analyzing and predicting multipass welding 

distortion, welding experiments were performed using a Fronius CMT Advanced 4000 R 
welding power source (Fronius International GmbH, Austria), with the welding torch 
being guided by a KUKA KR-22 6-axis robotic system (KUKA Deutschland GmbH, 
Germany). This multipass welding is typical for usage in IM and forms the basis for larger 
additive welding structures. Single and multipass welding procedures were carried out 
on 1.0330 mild steel substrates (200 × 52 × 2 mm). A weld seam length of 150 mm was 
deposited using a 1.5130 solid wire electrode with a diameter of 1.2 mm. The chemical 
compositions of the used materials are given in Table 1. All welding experiments were 
performed using a conventional short arc process and an Argon (99.996%) shielding gas 
flow of 14 L/min. The contact-tip to workpiece distance was set to 10 mm. For the welding 
of pre-heated samples, the samples were tempered on a heating plate. Prior to welding, 
the temperature was verified on the sample surface using type-k thermocouples. 

Table 1. The nominal composition of welding wire and substrate material. 

Alloy 
Chemical Composition (wt%) 

Fe C Mn Si P S 
Welding wire: 

1.5130 
bal 0.1 1.7 1.0 <0.025 <0.025 

Substrate: 
1.0330 

bal <0.12 <0.6 - <0.045 <0.045 

To describe the influence of the main process parameter’s pre-heating temperature, 
energy input, and number of layers on the resulting distortion of the baseplate, full 
fractional parameter variations were conducted according to Table 2. Therefore, there are 
48 cases for three different amounts of layers resulting in 144 data points as a potential 
input for the machine-learning algorithm.  

Table 2. Welding parameters for data generation. 

Parameter Symbol Unit Variation 
Pre-heating  

Temperature 
ti °C 23 80 140 200 

Wire feed vW m/min 2.0 2.5 3.0 3.5 
Welding speed vS cm/min 60 70 80 

Number of layers n - 1 2 4 

During welding and subsequent cooling sequence, the specimens were positioned 
using a floating bearing arrangement without clamping, allowing free deformation (see 
Figure 2a). This arrangement was chosen to solely consider the welding distortion under 
idealized conditions without influences of the clamping conditions. Three stops were used 
for repeatable positioning of the specimens on the welding table. Only minor deviations 
of the position in the x–y plane were detected due to the distortion of the samples. 
Deviations in the z-plane resulted in a change of the contact-tip to workpiece distance 
along the predetermined weld path. Based on the measurements of welding voltage and 
current, these showed no significant influences on the deposition process. For the 
determination of the energy input per layer, welding voltage and current were measured 
using a weld process data scanner (HKS Prozesstechnik GmbH, Germany) and integrated 
over the welding time. Welding distortion has three primary components in x, y, and z 
directions. This study is focused on the main distortion in the y–z-plane as distortions in 
x-z-plane were found to be considerably low. The distortion in the y–z-plane (Figure 2b) 
was measured after cooling the sample using a dial gauge. For the measurement 
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procedure, the sample was positioned on a measurement table with the curvature from 
distortion facing upwards. Further, the distortion was determined as the highest point 
(minus sample thickness) at four points along the x-direction using a dial gauge. 

 
Figure 2. (a) Schematic welding sequence, (b) measurement location of the main distortion. 

Further, the resulting weld bead geometries respective build-up height and width 
were measured in the x–z-planes with a laser scanner, as depicted in Figure 3. 
Measurements were done on both sides, on the top side, referred to as upper weld bead in 
this study, as well as on the underside of the plate, called lower weld bead or weld root, in 
the following paragraphs, respectively. 

  
Figure 3. Determination of build-up geometry for an example of four layers. 

2.2. Development of Artificial Neural Networks (ANN) 
An ANN is a machine learning application for building correlation models and 

consists of a user-defined number of processing elements called neurons. These are 
partially or fully connected with weighted links and arranged in layers, starting with an 
input layer leading to one or more hidden layers and ending in an output layer. The 
weights can be adjusted using different approaches in order to build or train a model for 
a correlation between inputs and outputs. These training processes are influenced by a 
high degree of randomization, for example, in which order the data is used to train and is 
therefore often difficult to reproduce. For that reason, there will not be a best neural 
network for a use case in most instances. Instead, parameters for ANNs are often 
configured, so they merely tend to result in good and useful predictions while still 
depending on randomization. In order to enable an assessment of the quality of the 
constructed ANN, a division of the given data sets into training, testing, or validation data 
sets is most often performed. A small part of the data set is excluded from training, which 
then can be used to test or validate the ANN in order to assess the generalization ability 
as well as potential overfitting of the network. More information on the structure and 
development of ANNs can be found in several publications (e.g., [26,27]). 

Before starting to build and train these ANNs, concepts for the implementation of the 
in- and output values are developed. The first type of architecture for an ANN is to use 
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the actual welding parameters as the input. These parameters can be directly influenced 
by the welder and are displayed in the first five columns of Table 3. The corresponding 
outputs are the five columns on the right, which are the resulting geometry as well as the 
distortion. Geometry, in this case, indicates the height and width of both the lower and 
upper bead. These standard ANNs are only applicable for undistorted “blank” substrates, 
as it has no way of being informed about a previous distortion with this input data. 

Table 3. Minimum and Maximum values of generated data. 

 

Parameters with Direct Influence Resulting Parameters 

Amount of 
beads 

Preheat 
temp. in °C 

Welding 
speed in 
cm/min 

Wire 
feed in 
m/min 

Energy 
input in 
kJ per 
Layer 

Height of 
upper bead 

in mm 

Height of 
lower bead 

in mm 

Width of 
upper bead 

in mm 

Width of 
lower bead 

in mm 

Distortion 
in mm 

Min. 1 20 60 2 16.2 0.92 0.05 2.91 1.31 −3.8 
Max. 4 200 80 3.5 46.05 5.68 1.8 6.41 5.76 18.85 

As a second type of ANN architecture, an enhanced procedure is chosen. This can 
also be described as a recursive concept, where the geometries and distortion from 
previous welds on the plate are used as an additional input. This means, that for 
continuous prediction, the ANN is able to partially reuse previous outputs as inputs. For 
this approach, there is always a given pre-distortion, which is used in combination with 
the welding parameters to predict the distortion after the next welded segment, which can 
consist of one or multiple beads. These two types of ANN are visualized in Figure 4 and 
serve as a basis for the further examination in this paper. 

  
Figure 4. Exemplary implemented standard and enhanced ANNs. 

For this work, an approach for ANNs with two hidden layers and an early stopping 
mechanism against overfitting with a maximum epoch count of 500 is used. For these 
implementations, ANN parameters such as batch size, layer count, and amount of 
neurons per layer or moment were set to initial values and then varied by a 
multidimensional grid search before setting the final parameters for all ANNs. Batch size 
1, ReLU activation for the first two layers and linear activation for the output layer were 
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selected this way. After this process of optimizing hyperparameters, the ADAM-
optimizer with 150 neurons per hidden layer is applied with a dense sequential 
implementation in the python-package KERAS version 2.3.1 was chosen. Further details 
can be found in the Supplementary Materials. 

3. Results and Discussion 
The results are organized into separate parts. First, the generated datasets were 

examined and possible outliers identified. Afterwards, the creation of ANNs and options 
for dealing with these outliers were discussed. Finally, the resulting ANNs were analyzed 
for their accuracy and the created correlations for the input parameters and compared to 
existing research. 

3.1. Analysis of the Used Data Sets 
Examining the data from the welding experiments, two specific cases regarding the 

general characteristics of the resulting deformation could be distinguished. During 
welding with low and medium energy input, the main shrinkage distortion in y-plane 
predominantly occurred at the top surface of the substrate, leading to positive distortion 
values in y–z-plane. At high energy inputs, the distortion values in y–z-plane were found 
to show comparatively low, and in particular cases, negative values. This may be 
explained by an increase in welding depth. Figure 5 compares the weld seam cross-section 
of a sample welded with low energy input; (a) shows comparatively low weld penetration 
depth with no visible formation of the weld root. In contrast, when welding with high 
energy input (b) a distinct formation of the weld root is visible. Depending on the size of 
the weld root, this leads to a significantly different shape of the specimen in y–z-plane, 
causing a change in the direction of main distortion. 

  
Figure 5. Weld seam geometry and resulting sample distortion for different parameter combinations: (a) low energy input, 
(b) high energy input. 

The quality of these generated data sets is decisive for the validity of the generated 
ANN and is examined in the following paragraphs. As an overview of the created data, 
four examples for the different slopes of the 48 data points are illustrated in Figure 6. There 
is no data for the bead count three as the experiments measured one, two, and four layers.  
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Figure 6. Examples of slopes for welding distortion progression over bead count. 

Different exemplary progressions are shown, with the slope of the distortion staying 
positive in most cases. The noticeable exception is the lowest progression shown in light 
blue, where high energy input causes full penetration of the weld bed and results in 
negative distortion into the direction of the weld root. Five of these outlying experiments 
with a negative slope appeared in total, mostly at low welding speeds with a high wire 
feed.  

The data points showing a reduction of distortion seem inconsistent with the rest of 
the data and could have a negative impact on the accuracy of the ANNs. To filter out these 
outliers, different strategies were implemented using an unedited dataset as a point of 
reference: As a first filter strategy, the changes in distortion between the welding steps 
(see Figure 6) were examined and the datasets making up the worst 5% of data were 
removed before training and validating the ANNs. In contrast, in another strategy, the 
ANNs were trained with unedited data, removed the data with the greatest deviation 
from the fit of the created model with an implemented algorithm automatically and re-
trained with the remaining data points. A third strategy was to remove all the datasets 
with the highest wire feed, as these appeared to be not suitable for applications in WAAM. 
For the standard ANN, a dataset using only the data for the maximum build-up of four 
layers was also used in order to model a possible improvement for the prediction of higher 
layer counts. The training and test split of the data was randomized for every new 
construction, with 80% of data used for training and 20% for testing. This construction of 
the ANNs was repeated ten times for each approach to choose the respective best 
networks in order to achieve a valid comparison. 

To assess the importance of the inputs and outputs for the ANNs, different 
combinations have also been tested. In total, three types of settings were evaluated for 
standard and enhanced ANNs, which are described as removal of data, as well as the 
combination of in- and outputs in Figure 7 (left). As an example, for the enhanced ANNs, 
one type of input with two types of outputs was implemented with four strategies for 
removal of outliers for a total of 8 examined enhanced ANN-structures.  
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Figure 7. Implemented settings for the creation of ANNs. 

The results from these settings have been plotted in Figure 8 for the absolute test and 
training errors. Generally, the ANNs tend to be better with larger inputs, as seen in the 
graph in the top right. The most striking result is an accumulation of low errors for the 
blue-colored highlighting of the enhanced ANNs in the graph on the bottom right. In 
order to achieve an exemplary comprehension of the comparison of the applicability of 
these approaches, an ANN from the enhanced, as well as standard category, is selected 
and compared in the following paragraphs. 

 
Figure 8. Plots for the different settings of implemented ANNs for the means of the absolute values of the absolute 
prediction errors highlighted by setting. 
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3.2. Analysis of ANN 
Results of the implementations of Figures 7 and 8 are displayed in Table A1 in the 

Appendix A. The data shows good results marked in blue with averages of the absolute 
values for errors being as low as 2.5% for training and 3.0% for test data (~0.3 mm), some 
average fittings with accuracy between 10% and 30% (~up to 1.3 mm) as well as some 
outliers.  

Below, the results from the enhanced and standard ANNs are visualized and 
compared. For better comparability of the following diagrams, exactly the same 
experiments as datasets, as well as the same ANN-modeling concepts, were used for the 
enhanced and standard ANNs. For a better analysis of the behavior, an enhanced ANN 
with very good error values for unedited data and the standard ANN with the same 
unedited dataset for the conventional inputs of welding parameters as well as the amount 
of beads are shown in Figure 9. The average absolute error for enhanced is 0.32 mm and 
1.325 mm for standard. The approach to predict distortion based on the additional input 
of resulting geometry does result in a lower average absolute error of 0.84 mm, but this is 
still significantly worse than the enhanced approach. Additionally, a distortion prediction 
based on the resulting geometry of the welded structure is not feasible for a real use case, 
so it is not examined further. In these diagrams, the x-axis shows the measured distortion, 
and the y-axis the predicted distortion. 

 
Figure 9. Accuracy of prediction with unedited data of output distortion with the input: (a) All welding parameters and 
amount of beads (standard). (b) All welding parameters and current geometry plus distortion (enhanced). 

All test and training data were plotted. The target line indicates the values for a 
perfectly accurate prediction. In both diagrams, the prediction dots were scattered very 
closely along this line, which proves an accurate prediction model for the created ANNs. 
In comparison to each other, the enhanced ANN scatters less, which is also supported by 
the minimum and maximum errors of (4 mm/-7 mm) for the enhanced ANN as well as (6 
mm/-9 mm) for the standard ANN. Groups of large errors cannot be clearly assigned to 
an area of real distortion. Hence, the ANN should work well for all examined distortion 
values. The prediction also does not result in data points scattered more on one side of the 
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target line, which means that there is no imbalance, such as a shifted prediction towards 
high distortions. 

3.2.1. Discussion of Parameters for ANNs and Comparison with Other Works 
Generally, the data shows better results for ANN with more data-inputs from the 

enhanced model. This was expected from a data-quantity-dependent process such as ANN, 
where correlation models often vastly improve as the quantity of data increases. 

The objective of the calibration of the chosen parameters was to achieve good results 
while avoiding overfitting. As mentioned previously, the extent of overfitting can be 
judged by the difference in test and training errors. According to columns one to four of 
Table A1 in the Appendix A, the differences confirm a good fit with mostly no observable 
overfitting. For some implementations, the test error is even smaller than the training 
error, which is caused by the randomization of the split of the data into the two datasets. 
This reinforces the good fit of the implemented ANNs. 

Even if data points are removed according to the implemented strategies, no 
significant improvement of the predictability can be observed. The ANNs are able to 
tolerate these outliers and continue to deliver usable results. This is caused by the 
consistently occurring penetration of the weld bead, although the root formation is mostly 
smaller and less distinctive than these outliers. Thus, the more extreme data points, where 
the weld root formation was significantly higher, do not have such a detrimental impact 
on the data sets as a whole. Having some of these data points in the training data even 
helps predict the real distortion and penetration welding to some degree, as it shifts the 
data points as a whole towards the formation of weld roots for certain welding 
parameters, which reflects reality.  

Looking at similar published research, the created ANNs error rate of up to 3% for 
test data also proves to be comparable. Tian et al. describe the errors for ANNs with a 
somewhat similar method of measuring distortions at 8–9% as relatively low [24]. Tafarroj 
et al. achieved an error rate of 2.4–5.3% with a prediction method for a different method 
of distortion measurement for the joining of steel plates [25]. Casalino et al. shows mean 
errors for test data in a range from 1–14% depending on the output data with experimental 
outliers removed by hand and a combined approach with FEM [18]. In Summary, good to 
very good results have been achieved for a prediction model without large datasets or 
assistance of a simulation model. The focus on transferability of the presented 
methodology has no negative effect on the accuracy compared to existing research.  

3.2.2. Analysis of ANN and Created Correlations  
Below, the correlation of predicted distortion with the input parameters for the 

enhanced ANNs are examined for a single selected ANN. In analogy to the plot in Figure 
9b, the enhanced ANN with the lowest absolute test error was chosen. For this ANN, the 
standardized residual of the prediction errors over the predicted distortion is shown in 
Figure 10. 
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Figure 10. Standardized residual over predicted distortion for an enhanced ANN with unedited data of output distortion 
(see Figure 9b). Additional list of parameters for the five outliers (Marked as A–E) given. 

Even though there are some outliers surpassing an upper and lower limit of three 
times the standard deviation, this plot visualizes the good fit of this enhanced approach, 
as over 95% of datapoints are within these boundaries. The standardized residual is even 
lower for most points, with the average of the absolute standardized residual being 0.485. 
The five outliers are listed at the bottom of the figure. The low amount of outliers 
compared to the total amount of 144 datapoints only allows very limited statements about 
their nature. The only obvious common ground is a current welded layer count of one, 
which suggests that the ANN is mostly challenged by the prediction of early layers. As 
noted in paragraph 3.2, these outliers appear in a broad area where the bulk of the 
predicted data points are also located. In summary, Figure 10 confirms low prediction 
errors even for predictions of high and low distortions and an overall ability to predict all 
trained ranges of parameter values for this preliminary application of an enhanced 
approach. 

For further analysis, the complete dataset is predicted with the enhanced ANN from 
Figure 9b and 10 and compared to the results from the experiments. This makes it possible 
to analyze the influence of different input parameters on the predicted distortion. 
Analyzing the correlations for the non-continuous datasets such as wire feed is difficult, 
as the points are mostly stacked on top of each other and are difficult to interpret. 
Therefore, Figure 11 shows the plots for the predicted distortion of the next layer over the 
continuous dataset energy input as well as the enhanced inputs for the geometries and 
the previously welded current distortion. 
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Figure 11. Visualization of the influence of inputs on the accuracy of distortion prediction with an enhanced ANN with 
unedited data from the input of all welding parameters, current geometry and distortion and output distortion. Plotted is 
the predicted next distortion over (a–d) current upper and lower bead geometry, (e) energy input and (f) current 
distortion. 

The plots b and d with the weld bead widths as inputs show no correlation. Plot a 
with the current upper weld bead height shows two seemingly separate columns. The 
reason for this is the current upper height being either a result of welding a single layer 
or two layers, as these are the two possible input bead counts for the enhanced ANN. Plot 
f for the predicted next distortion over the current distortion shows a distribution that 
appears to be a linear correlation. As a result, the created ANN seem to predict higher 
distortions for already pre-distorted objects, which is the expected behavior and reinforces 
the good fit of the created ANN. Plots c for the lower weld bead height and e for the energy 
input illustrate the effect of large amounts of thermal energy causing full-penetration 
welding as well as reduced distortion. In plot c, for current bead heights above 0.7 mm, 
no predicted distortion above 10 mm was achieved. This is a reasonable correlation 
trained by the ANN, when considering the increased bending moment required for large 
material depositions on the underside of the plate. For very high energy inputs above 40 
kJ, the predicted distortion also tends to be lower; this models the effects of full-
penetration welding, as described in Section 3.1.  

In the diagrams of Figure 11, the error of the predicted distortion to the actual 
distortion is shown by the color of the dots. No particular areas that tend to result in large 
errors were identified. Merely the areas with low current lower weld bead height can be 
described as the area with all of the larger errors. However, in the same area, a very large 
amount of predictions with a low error are also existent, so the relative amount of large 
errors remains low. In summary, this concept for an enhanced ANN promises to deliver 
very good results even for the edges of available data.  

4. Conclusions 
In this study, a method for an enhanced ANN-based prediction of distortion for 

WAAM structures was presented and compared to standard methods. One hundred 
forty-four welding experiments with one, two, and four layers as well as different welding 
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parameters were carried out. Several implementations for the data pre-processing were 
proposed and tested.  

In comparison to other publications, very good results have been achieved with the 
enhanced ANN. The resulting ANNs showed great predictability even for extreme values 
in the datasets. Analysis of the inputs and predicted distortion showed correlations 
suggesting a good fit of the created ANN. Depending on the utilized neural networks, 
robust systems with low error percentages of up to 3% were achieved. The proposed 
enhanced method proved to result in better predictability than previous approaches, even 
though the amount of welding experiments was the same as for standard ANNs.  

Potentials and Limitations of the Current Study 
The presented ANN is very suitable for usage in additive manufacturing on thin 

substrates, which has a lot of potential in the applications of incremental manufacturing, 
for example, for finishing stamped metal sheets with small additive manufactured 
functional structures. A proper application is used in path planning and minimization of 
process time for continuous welding processes, as the ANN can continuously update 
predictions for the required amount of remaining layers and thus welding time. With 
further utilization of ANNs, an implementation to calculate optimal welding parameters 
for the desired result with minimal distortion is also possible. However, an extrapolation 
for more complex components, such as multidimensional, multi-layer structures with 
complex shape and contour parameters based on these datasets requires further 
adjustments and training data. With the presented experiments, the groundwork was laid 
for the usage of enhanced ANNs for wire arc additive manufactured parts and the 
prediction of their geometries and distortions. Especially for larger components and 
welded structures that are no longer part of the Incremental Manufacturing process, 
distortion of the substrate metal plate is often negligible. This is either caused by the usage 
of very thick plates that possess inherently high stiffness or through the added stiffness of 
the structure created by the added layers. Disruptive effects still occur in this context, 
which results in shapes and geometries that can differ significantly from their intended 
results. This is caused by factors that are difficult to measure or control, such as the heat 
dissipation in the structure and varying layer height. 

Possible approaches for an adapted and improved, enhanced prediction is the 
division of components into smaller building blocks of a defined size and layer count. 
Thereby, the remaining welding work can be approximated after the creation of each of 
these building blocks. This reduces the need for manual intervention for the welding of 
near-net shape components and makes a compromise between excellent prediction, which 
could be achieved by very time-consuming measurements after each welded layer, and 
realistic processes applicable to industrial setups.  

Supplementary Materials: The used data and scripts used for this study are available at 
https://lnk.tu-bs.de/52f8kz (accessed on 19 May 2021). 
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Appendix A 

Table A1. Results for implemented ANNs color-coded according to their error: blue for low errors, red for high errors—
absolute error in mm. Shown are the mean values of the absolute error for the predicted distortion for test and training 
data. Further information for every neural network can be found in the supplementary material. 

Test—Best  
Absolute Error 
for Distortion 

Training—Best 
Absolute Error 
for Distortion 

Test—Best  
Relative Error 
for Distortion 

Training—Best 
Relative Error 
for Distortion 

Removal of Data Input Output Enhanced/ 
Standard 

0.258 0.341 0.042 0.037 No data removed Welding 
parameters. 

current geometry 
and distortion 

Distortion Enhanced 0.43 0.599 0.047 0.07 Removal by hand 
0.333 0.26 0.036 0.025 Removal of highest wire feed 
0.297 0.306 0.035 0.031 Self-removal by ANN 
0.527 0.735 0.048 0.106 No data removed Welding 

parameters. 
current geometry 

and distortion 

Geometry 
and  

Distortion 
Enhanced 0.505 0.531 0.045 0.052 Removal by hand 

0.275 0.5 0.03 0.046 Removal of highest wire feed 
0.906 0.543 0.093 0.059 Self-removal by ANN 
1.146 1.37 0.745 0.231 No data removed 

Amount of beads 
and welding 
parameters 

Geometry 
and  

Distortion 
Standard 

1.118 1.103 0.152 0.156 Removal by hand 
1.213 1.288 0.144 0.177 Removal of highest wire feed 
0.723 1.106 0.066 0.086 Only 4th bead 
2.153 1.26 0.355 0.232 Self-removal by ANN 
0.63 0.894 0.092 0.186 No data removed 

Amount of beads. 
welding 

parameters and 
resulting geometry 

Distortion Standard 
1.001 0.647 0.146 0.091 Removal by hand 
0.981 0.693 0.153 0.086 Removal of highest wire feed 
0.488 1.358 0.051 0.108 Only 4th bead 
0.448 0.56 0.051 0.087 Self-removal by ANN 
1.654 1.812 0.259 0.323 No data removed 

Resulting 
geometry Distortion Standard 

2.218 2 0.361 0.279 Removal by hand 
1.374 1.995 0.182 0.313 Removal of highest wire feed 
2.748 2.294 0.335 0.219 Only 4th bead 
2.326 1.839 0.273 0.252 Self-removal by ANN 
1.648 2.037 0.418 0.319 No data removed Amount of beads 

and welding 
parameters 

without Energy 
Input 

Distortion Standard 
1.52 1.823 0.288 0.309 Removal by hand 

2.472 1.735 0.319 0.299 Removal of highest wire feed 
1.739 1.113 0.182 0.099 Only 4th bead 
1.272 2.092 0.274 0.285 Self-removal by ANN 
1.369 1.455 0.199 0.382 No data removed 

Amount of beads 
and welding  
parameters 

Distortion Standard 
1.905 1.276 0.223 0.17 Removal by hand 
0.92 1.492 0.25 0.259 Removal of highest wire feed 
0.69 1.322 0.082 0.105 Only 4th bead 
1.34 1.167 0.174 0.192 Self-removal by ANN 
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