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Featured Application: The control strategy proposed to this paper can be applied to the joint
position and velocity tracking down industrial robots (series or parallel manipulators). Theo-
retically, it is suitable for general second-order nonlinear systems, such as inverted pendulum
control, motor coupling control, dual manipulator cooperative control, etc.

Abstract: Background: As a control strategy of industrial robots, sliding mode control has the
advantages of fast response and simple physical implementation, but it still has the problems of
chattering and low tracking accuracy caused by chattering. This paper proposes a new sliding
mode control strategy for the application of industrial robot control, which effectively solves these
problems. Methods: In this paper, a deep deterministic policy gradient–nonlinear nonsingular fast
terminal sliding mode control (DDPG–NNFTSMC) strategy is proposed for industrial robot control.
In order to improve the tracking control accuracy and anti-interference ability, DDPG is used to
approach the uncertainties of the system in real time, which ensures the robustness of the system in
various uncertain environments. Lyapunov function is used to prove the stability and finite time
convergence of the system. Compared with the nonsingular terminal sliding mode control (NTSMC),
the time to reach the equilibrium point is shorter. With the help of MATLAB/Simulink, the tracking
accuracy and control effects are compared with traditional terminal sliding mode control (TSMC),
NTSMC and radial basis function–sliding mode control (RBF–SMC), the results showed that it had
the advantages of nonsingularity, finite time convergence, small tracking error. The motion accuracy
and anti-interference ability of the uncertain manipulator system was further improved, and the
chattering problem of the system in the motion process is effectively eliminated.

Keywords: nonlinear nonsingular fast terminal sliding mode control; deep deterministic policy
gradient; dynamic uncertainty; disturbance; manipulator

1. Introduction

In recent years, with the development of industrial robots, nonlinear, external interfer-
ence, a variety of uncertainty problems appear, and the performance requirements of the
control system are more and more strict. At present, there are many control methods of
general nonlinear systems—e.g., adaptive control, fuzzy control, neural network control,
sliding mode control (SMC) [1–4], etc. Among them, in the dynamic process, sliding mode
control (SMC) is subject to the continuous changes of the system according to the current
state of the system, which forces the system to move according to the state trajectory of
the predetermined sliding mode, the hypersurface in state space is defined as sliding
surface [5], which has strong robustness to the external interference and uncertainty of the
nonlinear system [6,7]. Therefore, SMC is usually used in the control system of industrial
robots and manipulators [8–11]. However, the traditional sliding mode variable struc-
ture controls have some disadvantages, such as singularity, uncertain convergence time,
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and the error is difficult to converge on 0. When the state trajectory reaches the sliding
surface, it is difficult to slide strictly into the sliding surface to the equilibrium point, it
passes back and forth on both sides of the sliding surface, which is called chattering [5,12],
and it needs an accurate dynamic model for the control object. To solve these problems,
some research effects propose a series of solutions to eliminate the uncertainty, chatter,
and error of the system as much as possible [13–21]. For the uncertain dynamic model,
neural network [13–15], fuzzy logic system [16–18], RBF [19,20] are used to approach the
uncertainty infinitely. In [21,22], the TSMC is introduced, and the nonlinear function is
led into the sliding surface to construct the terminal sliding surface, so that the sliding
surface’s tracking error converges on 0 in finite time T. However, the convergence speed of
TSMC is slow, and the singularity still exists.

Therefore, the authors of [23,24] proposed fast terminal sliding mode control (FTSMC)
to solve the convergence rate problem, while [25,26] proposed NTSMC to solve the singu-
larity problem. On these bases, the authors of [9,27] proposed nonsingular fast terminal
sliding mode control (NFTSMC), which overcomes the single problem that [21–26] pro-
posed a solution only for one of the shortcomings of SMC. However, the above TSMC,
FTSMC and NFTSMC have not eliminated the chattering of the system. Therefore, some
scholars proposed global terminal sliding mode control technology [24,28]. The control
law is continuous and does not contain switching term (control transformation param-
eter) [5,12], so the chattering of the system is eliminated, but the tracking accuracy is
less precise.

Deep reinforcement learning has been developed rapidly and applied to the field
of control in recent years. For example, in [29,30] the authors applied the reinforcement
learning neural network algorithm to the control of flexible manipulator and multi-body
system with unknown dynamic model, inspired by [29,30], this paper combined deep
reinforcement learning algorithm with SMC, proposed DDPG–NNFTSMC. It had the
following characteristics:

• It is proved that NNFTSMC has the characteristics of nonsingularity and finite time
convergence by mathematical derivation, and the robustness and stability of the
system are verified by Lyapunov theorem;

• DDPG is used to adaptively approximate the uncertainty of the system model, and
the chattering is eliminated to realize the control system’s smooth input, to improve
the anti-interference ability which ensures the robustness of the system in various en-
vironments such as quality change, friction factor, external disturbance, and modeling
uncertainty of the system [5,6,12];

• On the basis of eliminating chattering with DDPG, it brings the advantages of low
steady-state error and high-precision position tracking.

Compared with the nonlinear control methods such as TSMC, NTSMC and RBF–SMC,
the proposed method has better tracked performance and stronger anti-interference and
uncertainty effects. The effectiveness and superiority of the proposed control method is
verified. Finally, the conclusion is given. Table 1 provides the definition of acronyms.

Table 1. Definition of acronyms.

Acronyms Definition

SMC Sliding mode control
TSMC Terminal sliding mode control

FTSMC Fast terminal sliding mode control
NTSMC Nonsingular terminal sliding mode control

RBF–SMC Radial basis function–sliding mode control

DDPG–NNTFSMC Deep deterministic policy gradient–nonlinear nonsingular fast
terminal sliding mode control



Appl. Sci. 2021, 11, 4685 3 of 15

2. Manipulator Model

According to [5,22,31], the dynamic differential equation model of n-DOF manipulator
system is as follows:

M(q)
..
q+C

(
q,

.
q
) .

q + G(q)+F
( .

q
)
+τd(t) = τ(t) (1)

where: q,
.
q ,

..
q ∈ Rn correspond to the position, velocity, and acceleration of the manip-

ulator, M(q)= M̃(q)+δM(q) ∈ Rn×n is the actual inertia matrix of order n× n, C
(
q,

.
q
)

= C̃
(
q,

.
q
)
+δC

(
q,

.
q
)
∈ Rn×1 is the n × 1 order inertia matrix of centrifugal force and

Coriolis force, M̃(q), C̃
(
q,

.
q
)

is the standard model, δM(q), δC
(
q,

.
q
)

is the error of the
real dynamic model. G(q) ∈ Rn×1 is the inertia vector of order n× 1 and represents the
gravity matrix; F

( .
q
)

is the n× 1 order inertia vector, which represents the friction force
and disturbance load; τd(t) ∈ Rn×1 is interference term and uncertainty term; τ(t) is the
system control input.

The actual dynamic equation of the manipulator can be written as follows:

M̃(q)
..
q+C̃

(
q,

.
q
) .

q + D = τ(t) (2)

where:
D
(
q,

.
q ,

..
q) = δM(q)

..
q+δC

(
q,

.
q
) .

q + G(q)+F
( .

q
)
+τd(t) (3)

The change of joint rotation, angular velocity and angular acceleration are defined as:
qd,

.
qd,

..
qd, then the tracking position error of the system is:

e = q(t) − qd(t) (4)

The speed error is:
.
e =

.
q(t)− .

qd(t) (5)

The dynamic error corresponding to Equation (2) is:{ .
e1 = e2

.
e2= −M̃(q)−1C̃

(
q,

.
q
) .
q + M̃(q)−1τ + D− ..

qd
(6)

where: D = − d M̃(q)−1 is the vector of uncertainty (including unknown disturbance,
uncertainty, and approximation error).

According to the physical characteristics of industrial robot [9,31,32], the following
hypotheses are put forward:

Assumption 1. M(q) is a positive definite, invertible symmetric matrix and bounded:

φ1 ≤ M(q) ≤ φ2 (7)

Assumption 2. The uncertainty D in the set is a bounded function satisfying the constraint:

||D|| ≤ A0+A1 ||q||+ A 2 ||
.
q || (8)

where: φ1,φ2, A0, A1, A2 are unknown constants, and φ1,φ2, Λ > 0; ||D || represents the Eu-
clidean norm of a matrix.

In this paper, the control strategy is proposed to improve the tracking control accuracy
of the manipulator with uncertain dynamic models further. The nonlinear sliding surface
is established by using dynamic error, then the feedback control loop is developed. DDPG
algorithm is used to adaptively approximate the uncertainties of the system. Therefore, for
the control system with uncertainties, the tracking error can converge to zero synchronously
and remain stable for a finite amount of time.
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3. DDPG–NNFTSMC Control Design

In this part, a DDPG–NNFTSMC control method is proposed for the nonlinear second-
order system of the general manipulator. Then the sliding surface and DDPG algorithm
design are given.

3.1. Design of the NNFTSMC

In this part, we design a new NNFTSMC sliding surface for the manipulator with
uncertain dynamic model based on traditional NTSMC, and then solve the reaching law
and design the controller based on the sliding surface.

According to [33], the function sig(x)a is introduced, when a > 0, ∀x ∈ R, sig(x)a

monotonically increasing, and always returns a real number.

sig(x)a = |x|asgn(x) (9)

It can be seen from [5] that the traditional ntsmc sliding surface and control rate are
as follows:

s = x1 +
1
β

x2
η (10)

where: β > 0, 2 > η > 1, because the exponential term of e2 is greater than 0, the
singular problem is avoided, but in the region far away from the equilibrium point, the
state derivative of the system is smaller than the linear sliding surface with the same
parameters, which affects the convergence rate of the system state. To accelerate the
convergence speed, the tracking position error and change rate of Equations (4) and (5) are
defined as NNFTSMC variables, combined with Equations (9) and (10), the sliding surface
function is designed as follows:

s = e1 +
1
α

sig(e 1)
γ +

1
β

sig(e 2)
η (11)

where: α,β > 0, 2 > η > 1.
According to the dynamic error Equation (6), the NNFTSMC control law is designed as:

τ = − M̃(q)
[
− M̃(q)−1 C̃

(
q,

.
q
) .

q+
γ

α
sig(e1)

γ−1 +
β

η
sig(e2)

2−η
(

1+
γ

α
|e1|γ−1

)
+ (Λ + ε)sgn(s)− ..

qd

]
− kd·s (12)

Theorem 1. For the system Equation (1), using Equation (11) as the sliding surface, the NN-
FTSMC control law is designed as Equation (12), then the system will reach the sliding surface in
finite time ts, and the tracking error on the sliding surface will converge to 0 in ts.

Proof of Theorem 1. The stability analysis of the controller is as follows:

Equation (11) is taken as the first derivative of time to obtain the exponential reaching
law, then Equation (12) is substituted into the calculation:

.
s =

.
e1 +

1
αγ|e1|γ−1 .

e1 +
1
βη|e2|η−1 .

e2

= e2 +
γ
α |e1|γ−1e2 +

η
β |e2|η−1

(
− M̃(q)−1 C̃

(
q,

.
q
) .

q + M̃(q)−1τ + D− ..
qd

)
= e2 +

γ
α |e1|γ−1e2 +

η
β |e2|η−1

{
−β

η sig(e2)
2−η
(

1+γ
α |e1|γ−1

)
− (Λ + ε)sgn(s)+D }

= η
β |e2|η−1[−(Λ + ε)sgn(s)+D]

(13)

Equation (13) makes the speed of the system fast before reaching the switching surface.
When reaching the switching surface, the speed decreases and the chattering is weakened,
so that the system has better adaptability, and robustness to parameter perturbation and
external disturbance.



Appl. Sci. 2021, 11, 4685 5 of 15

The Lyapunov function is selected as:

V =
1
2

s2 (14)

Equations (11) and (13) are substituted into Equation (14) and their derivatives are
obtained: .

V = s
.
s

= s
(

η
β |e2|η−1[−(Λ + ε)sgn(s)+D]

)
= η

β |e2|η−1[Ds − (Λ + ε)|s|]
(15)

Due to 1 < η < 2, 0< η − 1 < 1, and β > 0, when e2 6= 0, η
β |e2|η−1> 0 is established.

Equation (15) combined with Equation (8) can be obtained as follows: (16)

.
V ≤ η

β |e2|η−1[|D||s| − (Λ + ε)|s|]
≤ η

β |e2|η−1[Λ|s| − (Λ + ε)|s|]
≤ η

β |e2|η−1(−ε|s|)
≤ 0

(16)

Therefore, when e2 6= 0 is applied, the controller satisfies Lyapunov stability condi-
tion [34] and has good stability and robustness. The system will arrive at sliding mode
surface in finite time. The time for sliding mode surface s(0) 6= 0 to s = 0 is tr, when
t = tr, s = 0, that is s(t r) = 0, we can get:

.
s =− ε

|s|
s
= ±ε (17)

By integrating both sides of the above equation, we get the following results:

tr =

∣∣∣∣ s(0)ε

∣∣∣∣ (18)

In stage s = 0, supposed e1(tr) 6= 0 passes through finite time ts from s to e1(tr+ts)= 0,
.
e1 can be obtained by Equation (6), Equation (11) and s = 0:

.
e1 = −e1

1
ηβ

1
η (1+

1
α
|e1|γ−1)

1
η

(19)

By integrating and simplifying Equation (19) at the same time, the following results
can be obtained: ∫ e1=e1(tr+ts)=0

e1=e1(tr)

(
1
e1

) 1
η

de1 ≤ −
∫ tr+ts

tr
β

1
η dt (20)

ts ≤
η

β
1
η (η − 1)

e1 (t r)
1− 1

η (21)

The total convergence time is as follows:

t = tr+ts ≤
∣∣∣∣ s(0)ε

∣∣∣∣+ η

β
1
η (η − 1)

e1 (t r)
1− 1

η (22)

Theorem 2. Was proved.

Remark 1. Due to the existence of 1
α sig(e1)

γ term in Equation (11), the total convergence time of
Equation (22) is less than that of NTSMC proposed in [26].
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3.2. Design of DDPG Network

According to the derivation process of Section 3.1, the uncertainty D in assumption 2
satisfies: |D| ≤ Λ is an important condition of Lyapunov stability.

The modified DDPG algorithm can improve the stability and anti-interference of the
control system. The delay of control parameters’ return and the update makes the action
calculated according to the current state take effect in the next control phase, the weights
of the neural network and the parameters of experience pool are updated synchronously.
During the execution of the algorithm, the data onto the previous step combined with
the error information is converted into a reward parameter, which is combined with a
data area with N steps. At the beginning of training, the actor network Q(Γ, a|θQ

)
(using

hyper-parameter θQ) and critic network µ(Γ|θµ) (using hyperparameter theta θµ) are
initialized, and the experience set
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is initialized. For the critic algorithm, the current
round monitoring data and state and the next action (combined as vectors: Γ) are used as
the input parameters of the target network, and then scalar values are output to calculate
target values. The formula for target value was:

yi= ri+γQ′
[
Γi+1,µ′(Γ i+1 |θ

µ′)|θQ′
]

(23)

The current network in the critic algorithm takes the latest state action history and
current states Γ as input and outputs the new action to be taken. This paper uses a real-time
update feedback training program with multiple training rounds. In each execution cycle,
each batch (in random order) of training data is used to update the weights of the neural
network using gradient descent. The critic network is updated by minimizing the mean
square error between the output of Q and the original reward data. When taking action in
the current state, according to the output of µ, the policy network is updated by minimizing
the output of Q. For the action-value function of critic network output, one part is used to
calculate the mean square error:

L =
1
N ∑

i

[
yi−Q

(
Γi, ai |θQ

)2
]

(24)

Network used to update actor part at the same time:

∇θµ J ≈∑
i

VaQ
(

Γ, a|θQ
)∣∣∣∣∣Γ=Γi,α=µ(Γi)

∇θµµ(Γ|θµ)|Γi
(25)

The key of the reward function is to make the network give correct feedback to the
network according to the execution results after making decision actions. The merits of the
reward function directly affect the training effect and convergence speeds. In reinforcement
learning, there is no strict definition of the reward function. It only needs to be able to
correctly evaluate the advantages and disadvantages of network output actions. There are
two kinds of common reward functions. One is a sparse reward, which is often used in
the game to score after completing the task. This kind of reward does not respond well to
nondiscrete actions, so it is difficult to quantify the size of the reward. The other is a formal
reward, which is only given in the target state, and not anywhere else. This formal reward
is easier to promote neural network learning, even if the strategy does not find a solution
to the problem, the reward function can also provide positive feedback.

In this paper, the input value of the theoretical signal (including but not limited to
position, velocity, acceleration, etc.) and the parameters of feedback adjustment (including
but not limited to tracking position, tracking velocity, tracking error, control rate, etc.)
are combined. According to the actual situation, the correlation signal is multiplied
by the adjustment coefficient and superimposed, and the results are provided for the
reinforcement learning network as the reward function value.
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In actor-network, the role of actor current network is responsible for the iterative
update of policy network parameter θ, according to the current state Γt selects the current
action a and interacts with the environment to generate Γt+1. The actor target network is
responsible for selecting the optimal next action at according to the next state Γt+1 sampled
in the experience playback pool. At the same time, m samples are sampled in the experience
set
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θµ
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′ (26)

When the neural network is needed to output the action, the current state Γt is inputted
into the actor target network to get the output after selecting the action with the largest
reward, at corresponds to a variable within a predefined range. The formula is as follows:

at= µ(Γt |θµ)+Nt (27)

To improve the foresight of action selection, the random noise Nt was added to
ensure that the output action has certain randomness, which could be added or removed
dynamically according to the need in practical application.

The DDPG algorithm used in this paper has the following improvements compared
with the traditional DDPG algorithm: 1. In the critic network, the output signal was
changed from the single numerical to the combined control rate and error, so as to improve
the performance requirements of control rate for the early stage of the model; 2. In the last
layer of the performer network, the output was mapped from the discrete action output
with the highest probability selected from the experience pool to the numerical output with
the highest probability selected. The control diagram is as Figure 1:
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Aiming at the two joint control model used in this experiment, two lightweight DDPG
networks are used to jointly control the target, which respectively undertakes the error
compensation output and control adjustment of the two joints. In the experiment, using the
traditional network architecture will make the training model too complex, the convergence
speed is significantly reduced, and there will be an overfitting phenomenon. Therefore, the
network uses two layers of network with 32 and 64 neurons as actor-network, two layers of
critic-network with 32 neurons each are used to judge and correct the performer network.
The control flow chart of DDPG–NNFTSMC is shown in Figure 2.
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4. Experimental Results and Discussion
4.1. Simulation Comparison with Control Algorithms

To verify the effectiveness of DDPG–NNFTSMC proposed in this paper, the dynamic
model of two joint manipulator was introduced into this section. The simulation analysis
was carried out by using MATLAB/Simulink, and the sampling rate was set to 10−3 s,
the sensor was used to measure the corresponding position accuracy, response speed,
and the path tracking control of each joint. Considering the characteristics of the control
system, the external disturbance and uncertain friction were modeled. The control effect
was compared with TSMC, NTSMC, and RBF–SMC. Figure 3 is the pseudo-code of the
proposed algorithm.
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The second-order manipulator model designed according to [5,35] was shown in
Equation (1), where:

M(q) =
[
ρ1+2ρ3cos(q 2) + 2ρ4sin(q 2) ρ2+ρ3 cos(q2)+ρ4sin(q 2)
ρ2+ρ3cos(q 2) + ρ4sin(q 2) ρ2

]
(28)

C
(
q,

.
q
)
=

[ (
−2ρ3sin(q 2) + 2ρ4cos(q 2))

.
q2

(
−ρ3sin(q 2) + ρ4cos(q 2))

.
q2

(ρ 3sin(q 2)− ρ4cos
( .

q 2

)
)

.
q1 0

]
(29)
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G(q) =
[
ρ3St2cos(q 1+q2) + ρ4St2sin(q 1+q2) + (ρ 1 − ρ2 + St1)St2cos(q 1)

ρ3St2cos(q 1+q2) + ρ4St2sin(q 1+q2)

]
(30)

The friction force was:
F
( .

q
)
= 2sgn

( .
q
)

(31)

The external interference is as follows:

τd =
[

10 sin
( .

q
)

10 sin
( .

q
) ]T (32)

The uncertainty parameters are as follows:

ρ =
[
ρ1 ρ2 ρ3 ρ4

]T (33)

The physical parameters of the two joints manipulator are shown in Table 2. Table 3
was the control parameter selection for the control strategies.

Table 2. Physical parameters of two joint manipulator.

m1 l1 lc1 I1 me lce Ie δe
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1 kg 1 m 0.5 m 1/12 kg 3 kg 1 m 0.4 kg 0 −7/12 9.81

Table 3. The control parameter selection for the control strategies.

Control Strategy Control Parameters Parameter Value

TSMC (α,β,γ, δ,ϕ) (0.75, 0.9, 1.2, −0.1, 160)
NTSMC (α,β,γ, δ,ϕ, ε,µ) (0.75, 0.9, 1.1, 0.1, 160, 22/11,25/11)

RBF–SMC
(

p1, p2, p3, p4, p5
M,ϕ, ε,µ

)
(2.9, 0.76, 0.87, 3.04, 0.87, 1, 0.1, 5, 10)

DDPG–NNTFSMC
(
ρ1, ρ2, ρ3, ρ4,α,β

,γ, δ, η,ϕ, Λ, ε

) (ρ1, ρ2, ρ3, ρ4,10, 10,
25/11,21/11,160,2,0.1)

This paper compared Equation (1) with TSMC and NTSMC proposed in [5,26], RBF–
SMC [5,19], NNFTSMC and DDPG–NNFTSMC proposed in this paper. In order to further
compare the effects of each control strategy, Equation (28) was led to calculate the aver-
age position error Es and the average speed error Ev according to [9], where n was the
simulation step size, and the results are shown in Tables 4 and 5.

E =

√
1
n

n

∑
k=1

(||ei||)2 (i = 1, 2, 3 . . .) (34)

Table 4. The control parameter selection for the control strategies.

Error Control Strategy Es1 Es2

TSMC 0.6083 0.3986
NTSMC 0.6449 0.4288

RBF–SMC 0.4459 0.1151
DDPG–NNTFSMC 0.0690 0.0757

Table 5. The average speed errors under control input signals of the control strategy.

Error Control Strategy Ev1 Ev2

TSMC 3.1022 2.0766
NTSMC 3.9493 2.6833

RBF–SMC 3.5170 0.9385
DDPG–NNTFSMC 0.5416 0.4756
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Figures 4–7 correspond to the tracking performance of four controllers, including
tracking position and tracking error of each joint, tracking speed and speed error. Figure 8
showed the control inputted signals of each controller compared with this paper, includ-
ing the traditional TSMC, NTSMC, and RBF–SMC, NNFTSMC, and DDPG–NNFTSMC
designed in this paper.
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4.2. Results and Discussion

From Tables 4 and 5 and Figures 4–7, it could be seen that the position error and
velocity error of traditional TSMC, NTSMC, and RBF–SMC changed with the application of
uncertain interference and friction. Compared with the three strategies, DDPG–NNFTSMC
was much smaller in position error, velocity error, average position error and average veloc-
ity error, the corresponding tracking position and speed almost fitted the theoretical value.
In addition, the proposed sliding surface function s was designed based on the control
function in Equation (12), which played an important role in providing fast convergence
and robustness to uncertainties and disturbances. Compared with other control strategies,
the control strategy proposed in this paper provided the best path tracking performance
and the fastest convergence speed.

In Figure 8a,b compared with the traditional TSMC and NTSMC which converged on
finite time, but for nonlinear and nonsingular systems, there were still system chattering
and errors, so we must choose between chattering elimination and path tracking accuracy.
Therefore, the robustness of the system was reduced, and the tracking error was increased.
As shown in Figure 8c, although the control input 1 of RBF–SMC had the characteristics
of fast convergence speed and elimination of chattering phenomenon, the tracking error
was greatly increased; control input 2 provided a continuous control signal with partial
chattering behavior, but the tracking error also decreases, as shown in Figures 4–7. The
NNFTSMC designed in this paper provided continuous control signals for the manipulator,
and led DDPG network into the controller, the tracking accuracy was guaranteed, and
the chattering phenomenon of Figure 8d was eliminated, and the convergence time of the
control system signal was effectively reduced without losing its effectiveness, which is
shown in Figure 8e. These adaptive feedbacks were estimated according to the change of
system disturbance and uncertain disturbance terms. Once the error variables converge to
the sliding surface, they would be close to a constant value. From the simulation results,
the controller was superior to the traditional TSMC, NTSMC, and RBF–SMC in tracking
accuracy, convergence speed, and chattering elimination.

5. Conclusions

In this paper, a DDPG–NNFTSMC control strategy was proposed to solve the problem
of chattering and chattering caused by traditional sliding mode control, which is success-
fully applied to manipulator systems with uncertain dynamic characteristics. Based on
NNFTSMC, the sliding surface was proposed, and the error function can converge on the
sliding surface quickly. Then the Lyapunov stability condition was used to prove that the
NNFTSMC has good stability and finite time convergence. Compared with the traditional
TSMC, NTSMC, and RBF–SMC, the DDPG–NNFTSMC has the following advantages: (1)
DDPG network is used to train and update the control parameters in real time to estimate
the model uncertainties (including unknown disturbance, dynamic model uncertainty,
and approximation error), which effectively eliminates the chattering phenomenon of the
system and ensures the robustness of the system under various uncertain disturbances;
(2) the chattering elimination greatly improves the tracking accuracy, reduces the tracking
average error, and enhances the ability of antidisturbance and uncertainty of the system.
Therefore, it can be concluded that DDPG–NNFTSMC proposed in this paper has excellent
control performance, and theoretically has good application prospects for industrial manip-
ulators with uncertain dynamic models and general second-order nonlinear systems. Next,
based on the research of scholars [12,31], we will try to apply DDPG–NNFTSMC to other
different scenarios and combine it with deep reinforcement learning to further improve the
control performance [32,36,37].
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