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Abstract: Since continuous motion control can provide a more natural, fast and accurate man–
machine interface than that of discrete motion control, it has been widely used in human–robot
cooperation (HRC). Among various biological signals, the surface electromyogram (sEMG)—the
signal of actions potential superimposed on the surface of the skin containing the temporal and spatial
information—is one of the best signals with which to extract human motion intentions. However,
most of the current sEMG control methods can only perform discrete motion estimation, and thus
fail to meet the requirements of continuous motion estimation. In this paper, we propose a novel
method that applies a temporal convolutional network (TCN) to sEMG-based continuous estimation.
After analyzing the relationship between the convolutional kernel’s size and the lengths of atomic
segments (defined in this paper), we propose a large-scale temporal convolutional network (LS-TCN)
to overcome the TCN’s problem: that it is difficult to fully extract the sEMG’s temporal features.
When applying our proposed LS-TCN with a convolutional kernel size of 1 × 31 to continuously
estimate the angles of the 10 main joints of fingers (based on the public dataset Ninapro), it can
achieve a precision rate of 71.6%. Compared with TCN (kernel size of 1 × 3), LS-TCN (kernel size of
1 × 31) improves the precision rate by 6.6%.

Keywords: temporal convolutional network; human–robot cooperation; surface electromyogram;
continuous motion estimation

1. Introduction

Although intelligent robots can perform highly-intensive work in harsh environments,
they still cannot complete autonomous decision-making in complex situations [1], espe-
cially in medical treatment [2,3] and military scenarios [4]. Human–robot cooperation
(HRC) systems with high efficiency are promising solutions for performing these tasks
safely and reliably. Hence, developing a new generation of HRC systems that are more
natural, fast and direct has become a hot research topic. Finding a quicker and more natural
interactive interface that does not require any additional learning process is one the most
significant aims of research for developing a new generation of HRC system. In other
words, in an efficient HRC system, the machine should be able to understand human
intentions quickly and accurately. Meanwhile, humans should not bear any new physical
or mental burdens.

Currently, the signals used for intention recognition in HRC systems can be divided
into two categories, i.e., non-physiological signals and physiological signals. Among them,
non-physiological signals are widely used in daily life—for instance, in images, videos and
forms of mechanical input (keyboards and control buttons). However, non-physiological
signal-based systems suffer from poor real-time performance, and the signal collection
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equipment is often inconvenient to carry around [5]. On the other hand, physiological
signals—such as sEMG—have characteristics that directly reflect human intentions, and
these physiological signals are easy to collect [6]. The surface electromyogram (sEMG) is
generated by action neurons in muscle. It is the signal of an action potential superimposed
on the surface of the skin through time and space. The sEMG contains rich information
of motor intentions [7], and can be collected in a non-invasive way. In addition, since
the action potential is generated before the muscle’s movement, the external information
transmission can be completed 30 ms to 150 ms ahead of the actual action. The human
hand—the most frequently used body part for external interactions and one of the most
complex organs—can provide abundant interactive signals for HRC [8]. Compared with
hands’ other movements, finger movements are more delicate and complex, involving
many small deep muscles and more than 20 joint degrees of freedom [9]. Hence, it is still
challenging to estimate finger movement.

At present, there are two methods for extracting the motion intentions of sEMG signals.
One is to use a classification algorithm to classify the sEMG to generate discrete motion
information, which can be used as switch signals in HRC [10–12]. However, this simple
classification method cannot meet the requirements of HRC for our daily use. The other
one—which is known as sEMG-based continuous estimation—is to use nonlinear models to
extract continuous motion intention information (such as the angle of motion joint at each
moment), which is more natural and more accurate than the classification algorithm-based
method [1,13,14]. Hence, in the rest of this paper, we focus on the research of sEMG-based
continuous estimation.

Traditionally, most of motion intention estimation methods have adopted conventional
machine learning algorithms to decode EMG/sEMG signals and perform artificial feature
selection. Jiang et al. proposed a synchronous proportional multi-degree of freedom (DOF)
EMG control method based on sparse constrained non-negative matrix factorization [15].
This method further expands the researchers’ thinking in pattern recognition, but still
cannot meet the actual needs in terms of the number of DOFs and the complexity of recog-
nizable gestures. Xiloyannis et al. used a Gaussian process to estimate hand motion [16].
The Gaussian process defines the prior function. After observing certain function values,
they can be converted into posterior functions through algebraic operations. However,
in theory, the Gaussian process will lose its validity in high-dimensional space. Clancy et al.
estimated the elbow joint torque produced by sEMG through linear and nonlinear dynamic
models [17]. However, these methods using traditional machine learning algorithms can-
not meet the requirements of current HRC scenarios in terms of accuracy and real-time
responses [18].

In recent years, researchers began to focus on continuous motion estimation based
on deep learning. These methods are mainly based on advanced time-oriented machine
learning methods or deep learning methods. Alique et al. [19] proposed a neural network
based approach to predict the mean cutting force in milling progress. Precup et al. [20]
developed Takagi Sugeno-Kang (TSK) fuzzy models, which are evolved by an incremental
online identification algorithm. Matía et al. [21] investigated the fuzzy Kalman filter (FKF)
and improved its implementation by reformulating uncertainty representation.

Smith et al. proposed an artificial neural network to estimate the angles of five
metacarpophalangeal joints [22]. This work introduced neural networks into the field of
continuous motion estimation and verified their feasibility. However, due to the limitations
of neural network development at that time, this approach can only estimate simpler
gestures. Muceli et al. proposed a method based on multilayer perceptrons (MLP) to
estimate the motion of multiple joints at the same time [23]. This method divides the sEMG
into segments and estimates the joint angle values corresponding to each segment of the
sEMG. However, the relevance of the input before and after is not considered, which makes
it difficult for the accuracy rate to meet the actual demand. To solve this problem, the
recurrent neural network (RNN) has been used for EMG control [24,25]. The RNN can
analyze the time correlation between multiple inputs, which further improves the accuracy
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of the model. However, the application scenarios of continuous motion estimation are
mostly in edge devices, and it is difficult to meet the demand of RNN for computing power,
resulting in poor real-time performance.

In this paper, we propose a large-scale temporal convolutional network (LS-TCN) to
continuously estimate the angles of the 10 main joints of the finger in real time. LS-TCN
achieved the estimation accuracy of 71.6%, which is an improvement of accuracy over
traditional methods by 6.6%.

The rest the paper is organized as follows. We explain the dataset and our methodol-
ogy in Section 2. Results and discussion are presented in Section 3. Section 4 concludes
the paper.

2. Methodology
2.1. Data Set

In order to fairly compare this with other methods, the public database Ninapro
DB2 was chosen. Ninapro [26] is a publicly available multi-mode database, designed
for facilitating the research of artificial intelligence robots and prosthetic hands. Ninapro
includes EMG, kinematics, inertia, eye tracking, visual, clinical and neurocognitive data.
Ninapro’s data are widely used by scientific researchers for machine learning, robotics,
medicine and neurocognitive science.

We chose 8 subjects out of the database, and those 8 subjects cover all subjects’ in-
formation as much as possible. The ranges of height, weight and age were 154–187 cm,
50–90 kg and 24–35; there were 5 males and 3 females; and regarding dominant hand,
for 6 subjects it was the right and for 2 the left, respectively. Since grasping movements are
the most commonly used hand movements in daily lives, we selected 6 types of grasping
movements, as shown in Figure 1.

Figure 1. The 6 types of grasping movements we selected for experiments from Ninapro [26].

Note that we selected only 6 grasping movements, because continuous estimation
tasks are more challenging than classification tasks in terms of modeling, especially when
simultaneously estimating 10 joint angles as we did in this subject. To possess both
good fitting capabilities and real-time performance, we could not adopt many grasping
movements for modeling. Otherwise there would have been many parameters in the
model, such that real time performance could not be achieved. We will design light-weight
models for more movements in future studies.

We selected the 6 movements based on the shapes and diameters of the objects grasped.
The shapes included a cylinder, a ball and a flat object. The diameters included large,
medium and small-diameter objects. The hand joint ranges and the coordination mecha-
nisms of the selected movements were different such that they could be used for modeling.
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Ninapro DB2 used a 22-sensor CyberGloveII data-glove to measure hand kinematics,
and it adopted Delsys Trigno wireless system, including 12 wireless sEMG electrodes,
to collect sEMG signals. We used a 12-channel sEMG to estimate 10 main joint angles. we
chose the proximal interphalangeal point (PIP) and the metacarpophalangeal point (MCP)
as estimated joints, because they are the main active joints in the grasping movement.
These 10 joint angles we selected are shown in Figure 2.

Figure 2. The 10 joint angles we selected for experiments.

2.2. Data Processing

The hand kinematics movement was collected at 20 Hz and resampled to 2000 Hz to
synchronize with the sEMG signals. The sEMG signals and hand joint angle signals were
divided into fragment sequences of 100 ms duration, and the sliding step-length was 0.5 ms.
The commonly used feature extraction methods in EMG processing include root mean
square value (RMS) [27], mean square value (MSV) [28], envelopes [29], etc. In this paper,
RMS was employed as the feature extraction approach, due to its abundant information
content and uncomplicated computation process. The RMS feature extraction used a 100 ms
processing window size with 0.5 ms stride length. The RMS could be calculated as:

RMS =

√
1
N

n

∑
i
(ni − n̄) (1)

where ni represents the values in the window, and n̄ is the mean value of the window; N is
the length of the window.

2.3. Parameters for Evaluation

The Pearson correlation coefficient (PCC) is commonly used to measure whether two
sequences are on a line or not, and to measure the linear relationship between distance
variables [30]. Here, we used it to measure the correlation between the actual joint angle
and the estimated joint angle. Its calculation formula is as follows:

PCC =
∑N

i=1
(
θest − ¯θest

)(
θreal − ¯θreal

)√
∑N

i=1
(
θest − ¯θest

)2
√

∑N
i=1
(
θreal − ¯θreal

)2
(2)

where θest, ¯θest, θreal and ¯θreal are the value of estimated joint angle, the mean value of
estimated joint angles, the value of real joint angle and the mean value of real joint angles,
respectively. The PCC value is between −1 and 1, which can be used to evaluate the
performance of the algorithm. The closer the PCC value is to 1, the more similar the
predicted finger trajectory is to that of the actual movement, and the higher the accuracy of
the estimation can reach.
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We use root mean square error (RMSE) to evaluate the numerical error of amplitude
between predicted joint angles and actual joint angles. It can be described as:

RMSE =

√√√√ 1
N

N

∑
i

(
θest − ¯θreal

)
(3)

2.4. Applying Tcn to Semg-Based Continuous Estimation

The temporal convolutional network (TCN) was initially designed by Bai et al. [31]
for sequence modeling tasks. Their experimental results showed that TCN outperforms
canonical recurrent networks (such as RNN, LSTM and GRU) across a diverse range of
sequence modeling tasks (such as Sequential MNIST, Music JSB Chorales and Word-level
PTB) [31]. The main architectural elements in the TCN are dilated causal convolution
(modified from causal convolution) and residual connections.

As shown in Figure 3, causal convolution only looks back at a history with a size
linearly proportional to the network’s depth. Differently from the traditional convolution
neural network, causal convolution can not see the future data. In other words, it is
unidirectional structure, not bidirectional. Thanks to this, causal convolution ensures that
the model only uses the time series before the moment when doing forecast.

In order to extract the features of longer time series, the TCN uses a modified causal
convolution called dilated causal convolution [31], as shown in Figure 4a. It can extract
longer time series at the same depth. Differently from the causal convolution, dilation
causal convolution allows the input of convolution to have interval sampling. The inter-
val between sampling points of convolutional kernel is determined by d, whose value
generally increases with the depth of the layer. This means that the receptive field in-
creases exponentially with the network’s depth. Therefore, for a certain receptive field,
the depth of the network with dilated causal convolution is significantly less than that with
causal convolution.

Figure 3. The structure of causal convolution, where each circle is a neuron. Solid arrows are used to
depict the data flow of the right-most output neuron, and dashed arrows represent other data flow.

In order to make the network’s error transfer across layers and effectively prevent
the gradient disappearing, the TCN constructs a residual block to replace one layer of
convolution. As shown in the Figure 4b, the residual block contained two layers of
convolution and nonlinear mapping. In each layer, weightnorm and dropout were added
to regularize the network.
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Figure 4. The structure of dilated convolution and residual connections, where each parallelogram is a neuron, solid
arrows are used to depict the data flow of the right-most neuron and dashed arrows represent other data flow. (a) Dilated
convolution; (b) Residual connections.

As sEMG is one type of sequence modeling, TCN can be adopted to extract sEMG’s
features. In this paper, we propose a novel method that applies TCN to the sEMG-based
continuous estimation. When directly applying this TCN to continuously estimating the
angles of the 10 main joints of the finger (based on Ninapro dataset), it can only get a
terrible precision rate (i.e., the Pearson correlation coefficient, PCC), 65%, which will be
explained in the following section.

2.5. The Large-Scale Temporal Convolutional Network

The depth of the network and the convolutional kernel’s size are two determining
factors for the accuracy of the deep learning network. Therefore, in this subsection, we
will discuss how to improve the precision rate of the TCN for sEMG-based continuous
estimation of finger kinematics, by considering the depth and convolutional kernel size of
TCN. Finally, we propose our large-scale temporal convolutional network (LS-TCN).

With an increase in the depth of a deep learning network, the extracted features will
become more and more abstract. If we simply deepen the network, the details of the
underlying information will be lost, especially the temporal features. Considering that
the continuous motion estimation requires the details of the sEMG signal, we limited the
number of layers of network to 5 layers.

After the analysis of the influences of the depth and convolutional kernel size on the
network precision rate and parameter size (Section 3), we created the large-scale temporal
convolutional network (LS-TCN). This LS-TCN is a 5-layer network with a convolutional
kernel size of 1 × 31, and the convolutional channels are [32, 64, 64, 32, 10]. Following the
convolution layer, 2 dense layers (256, 10) are used to complete the mapping from feature
space to target value.

3. Results and Discussion
3.1. Experimental Setup

We built all models on the PyTorch [32] platform to compare their performance. Mean
square error (MSE) was adopted as the loss function, which has excellent performance in
regression tasks. Adam was used as the optimizer with a learning rate of 0.0001. We used
the public dataset Ninapro for predicting the angles of 10 joints in 6 kinds of grasping
motion. The first 60 percent and the last 40 percent of each movement were used for
training and testing, respectively.



Appl. Sci. 2021, 11, 4678 7 of 13

3.2. Movement Data

Movements are characterized by the angles of joints, and these joints involve the use
of different muscles, whose movements can be estimated using the sEMG signals [33].
A specific movement consists of a set of joint angles, which corresponds to a set of sEMG
signals. We adopted 12 channels of sEMG signals to predict 10 joint angles of 5 fingers,
with two joints from one finger (as depicted in Figure 2). Consequently, to evaluate the
effectiveness of continuous movement estimation, we predicted the joint angles with sEMG
signals and compared our prediction results with those of other methods in Section 3.4.

3.3. Kernel Size Optimization

In order to find the optimized convolutional kernel size of the network (other architec-
tural elements are kept same as the TCN) for sEMG-based continuous estimation, we have
explored the influence of different convolutional kernel size on the network accuracy.

From the experimental results (as shown in Figure 5), it can be seen that when we
expanded the convolutional kernel, the correlation coefficient increased until achieving the
highest peak at 82.06% (where kernel size is 31), and then fell back. This could be explained
as follows. In sEMG, there is a strong correlation between the points within a certain period
of time, which we call atomic segments.

Figure 5. The relationship between kernel size and PCC.

As shown in Figure 6, we define the atomic segment as the shortest time sequence
in which sEMG can express effective information. When the convolutional kernel is
smaller than the atomic segment, such as 1 × 3 in TCN, it is difficult to obtain sEMG’s
information. This is caused by the fine-grained, long sequence information contained in
the sEMG, and a shallow network with a small convolutional kernel cannot obtain enough
temporal features. Similar situations have appeared in image segmentation. Peng et al. [34]
found that a large convolutional kernel has better performance for image segmentation
(pixel classification). This further proves that a large convolutional kernel is helpful for
maintaining the underlying details.
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Figure 6. The atomic segment is defined as the shortest time sequence in which sEMG can express effective information.
When the convolutional kernel is too small, it is difficult to obtain effective information. If the convolutional kernel is too
large, it will contain redundant information, which increases the difficulty for the network to learn efficient information and
increase the number of network parameters.

On the other hand, if the convolutional kernel is too large (such as larger than 31 in
Figure 5), it will contain non-strongly correlated and redundant information, which will not
help improve the network accuracy but will increase the number of network parameters.
Therefore, when setting the convolutional kernel size equal to or slightly larger than the
length of the sEMG’s atomic segment, the network will maximize the network precision
rate while maintaining a minimum network parameter size.

3.4. Performance Comparison

The experimental results are shown in Figure 7. It shows that our proposed LS-TCN
can achieve an accuracy (measured by correlation coefficient) of 71.6% for sEMG-based
continuous motion estimation (six common gripping actions in Ninapro in this case).
Compared with TCN [31], the accuracy of LS-TCN was improved by 6.6%. As shown in
Figure 8, LS-TCN can achieve the best average RMSE performance. For subjects 4 and 6,
it was not the best, because the convolution structure imore easily produces jitter than
the method with the recurrent structure. However, the convolution structure is easy to
accelerate in hardware and thus can provide better real-time performance [35], which was
demonstrated in our previous work [36]. Note that individual factors such as low muscle
mass or obesity may lead to poor performance of the model.
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Figure 7. Summary of the PCC of 8 subjects. PCC denotes the correlation between predicted joint
angles and real joint angles. The higher, the better.
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Figure 8. Summary of the RMSE of 8 subjects. RMSE denotes the root mean square error between
predicted joint angles and real joint angles. The lower, the better.

Figures 9–11 display orange real joint angles from measurements and blue predicted
joint angles estimated from sEMG signals using different methods. Although the blue
predicted values look similar to sEMG signals, they are actually predicted joint angles.
Two joints were used for each finger (as depicted in Figure 2), and therefore there are
10 subfigures (indexed from 1 to 10) for five fingers in total. Note that for each movement,
there was a significant joint angle amplitude variation, which resulted in a peak or a valley.
In each subfigure, two peaks or two valleys denote the same movement, because every
movement was performed twice with the same duration in our test dataset. Thus there are
12 peaks/valleys for selected six grasping movements. Subfigure 1 of Figure 9 illustrates
the division of six movements with two repetitions.

Figure 9. The continuous amplitudes of real and predicted joint angles using RNN. There are 10 subfigures for 5 fingers
(i.e., two joints per finger as depicted in Figure 2), and each subfigure denotes the result of a finger joint, where the x-axis
represents the sampling point index and the y-axis denotes normalized joint angles. Each movement was performed
twice, and thus every two peaks or valleys represents a movement; i.e., 6 grasping movements were characterized by
12 peaks/valleys in each subfigure. The annotations of subfigure 1 indicate the division of 6 movements with 2 repetitions.
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Figure 10. The continuous amplitudes of real and predicted joint angles using TCN (kernel = 3). There are 10 subfigures for
5 fingers (i.e., two joints per finger as depicted in Figure 2), and each subfigure denotes the result of a finger joint, where the
x-axis represents the sampling point index and the y-axis denotes normalized joint angles. Each movement was performed
twice, and thus every two peaks or valleys represents a movement; i.e., 6 grasping movements were characterized by
12 peaks/valleys in each subfigure.

Figure 11. The continuous amplitudes of real and predicted joint angles using LS-TCN. There are 10 subfigures for 5 fingers
(i.e., two joints per finger as depicted in Figure 2), and each subfigure denotes the result of a finger joint, where the x-axis
represents the sampling point index and the y-axis denotes normalized joint angle. Each movement was performed twice,
and thus two peaks or two valleys represents one repeated movement; i.e., 6 grasping movements are characterized by
12 peaks/valleys in each subfigure.
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From Figures 9–11, we can see that the joint angle curve predicted by LS-TCN is closer
to the real curve, especially in movements 5 and 6 (the last four peaks/valleys). In addition,
we can see that the estimation for movement 4 (i.e., the Power Sphere Grasping) was the
worst and vibrated most among the six movements for all the three models (including the
RNN, the TCN and the proposed LS-TCN). This was caused by the fact that the sampled
joint angle of movement 4 varied dramatically between different repetitions, and this
problem may be solved by adding a real-time smoothing algorithm at the end of the
methods. For other movements, since the sampled joint angle was much more stable than
that of movement 4 in different repetitions, the performance was far better.

This paper explored the influences of the kernel size and the network depth of TCN
on accuracy. We found that the convolutional kernel size we chose allows the minimum
effective information of sEMG, and small numbers of layers are beneficial to continuous
motion estimation based on sEMG. Then we proposed LS-TCN based on the experimental
results and verified the performance of LS-TCN, TCN, RNN and SPGP when extracting
the continuous motion information from sEMG. Although LS-TCN improved the accuracy
by 6.6% compared with TCN, there are still several problems to be solved in practical
applications of human–computer interaction. First, the current model leverages personal
data for training and lacks generality. One possible solution is to train the general model
with a large number of subjects and adjust it with transfer learning, which we will try in
our future work. Second, collecting stable and high-quality EMG signals is still difficult for
current studies. For example, dry electrodes are prone to displacement and wet electrodes
are not easy to wear. Third, the stability of the prediction angle needs to be further
improved, which may be solved by adding an implementation smoother. Forth, we plan
to find optimal parameterization of our network by leveraging advanced technologies in
our future work, such as nature-inspired optimization algorithms [37] and multi-objective
optimization [38].

4. Conclusions

In this paper, we proposed LS-TCN for sEMG-based continuous motion estimation.
We used it for predicting the angles of 10 joints in six kinds of grasping motion. By dis-
cussing the influences of network depth and convolutional kernel size on the prediction
accuracy, we found that if the convolutional kernel’s size is close to the length of the
atomic segment, the prediction accuracy of the network will be optimized. Based on TCN,
we proposed the LS-TCN whose convolutional kernel size is 1 × 31. Finally, we tested
the LS-TCN with six common gripping actions on the Ninapro dataset, and the accuracy
was 71.6%, which proves that LS-TCN has good prospects for application in sEMG-based
continuous motion estimation.
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