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Abstract: The use of equivalent beam models to estimate the dynamical characteristics of complex
tall buildings has been investigated by several authors. The main reason is the structural response
estimation to stochastic loads, such as wind and earthquake, using a reduced number of degrees of
freedom, which reduces the computational costs and therefore gives the designer an effective tool to
explore a number of possible structural solutions. In this paper, a novel approach to calibrate the
mechanical and dynamical features of a complete 3D Timoshenko beam, i.e., describing bending,
shear and torsional behavior, is proposed. This approach is based on explicitly considering the
sub-structures of the tall building. In particular, the frames, shear walls and lattice sub-systems
are modeled as equivalent beams, constrained by means of rigid diaphragms at different floors.
The overall dynamic features of the tall building are obtained by equating the deformation energy of
an equivalent sandwich beam with that of the selected sub-structures. Finally, the 3D Timoshenko
equivalent beam parameters are calibrated by minimizing a suitable function of modal natural
frequencies and static displacements. The closed form modal solution of the equivalent beam model
is used to obtain the response to stochastic loads.

Keywords: tall buildings; Timoshenko beam; reduced-order models; environmental loads; stochas-
tic dynamics

1. Introduction

In the last five decades, the reduction of complex structural systems to equivalent
beam models has been investigated by several authors. The availability of simple models
that can accurately describe the global response is appealing because it can reduce the time
and computational costs required by detailed numerical finite element (FE) models with
a large number of degree of freedom [1] and simplify the structural analysis increasing
both the efficiency and understanding of the system behavior. This aspect becomes crucial
when designing complex tall buildings with irregular shapes that have been built around
the world in the last decades.

Indeed, the development of structural optimization algorithms capable of reducing
the cost of such buildings while maintaining appropriate safety levels might be time-
consuming and even not feasible with a large-dimension problem that could require
special techniques. For this reason, reliability-based design optimization (RBDO) has been
proposed as a framework to obtain minimum building costs constrained to prescribed safety
levels. In particular, Spence and Gioffrè proposed an RBDO algorithm for member size
optimization based on the definition of explicit sub-problems driven by safety constraints
on both global and local structural response to stochastic wind load and with uncertain
mechanical parameters [2–4].
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The development of reduced-order models is also crucial for improving the effec-
tiveness of preliminary sensitivity analysis in which the influence of random loads and
uncertain mechanical parameters on the linear and nonlinear structural response is of
interest [5,6].

For all these reasons, a number of reduced-order equivalent beam models have been
proposed in the literature, where a combination of in-series and/or in-parallel bending,
shear and torsional stiffnesses are considered to model the typical tall building bracing
resisting systems (e.g., walls, frames, lattice structures, frames, coupled shear walls).
Appendix A reports a detailed summary of the main contributions to the literature about
this topic. Recent papers on equivalent beam models [7–10] testify that there is still interest
in finding effective solutions to find reduced-order systems to describe complex structures.

One of the issues is related to the effective calibration of the equivalent beam mechani-
cal and dynamical parameters. For example, the equivalent 3D Timoshenko beam model
calibration proposed in [8] was based on the availability of a detailed tall building FE model.
A possible drawback of this approach is that the detailed numerical modeling of complex
tall buildings can be a time-consuming activity. On the other hand, the approach first pro-
posed by Potzta and Kollar in [11] is appealing, since the equivalent beam parameters are
directly obtained by the stiffness features of each of the different horizontal load-resisting
sub-structures. The drawback of this method is that the equivalent beam parameters are
different for each considered mode shape. Dynamic analysis by modal superposition
is therefore dependent on the load frequency content and preliminary estimation of the
number of modes to be considered is required. Furthermore, direct time integration of the
dynamic system equations is not possible.

This paper proposes a novel two-step calibration procedure to merge the advantages
of each of the two approaches described above and to overtake their drawbacks. First,
the equivalent sandwich beam parameters of a tall building are evaluated with the ap-
proach proposed in [11] (e-SBM) for a chosen number of mode shapes, avoiding the time
consuming detailed FE modeling. Second, the equivalent Timoshenko beam model (e-TBM)
described in [8] is calibrated using a suitable optimization procedure aimed to target the
e-SBM beam response in terms of modal natural frequencies and static displacements.
The obtained e-TBM has the advantage of having a closed-form solution of all the natural
frequencies and mode shapes that can be effectively used to estimate the response to
dynamic random loads by modal superposition and/or direct time integration.

The structure of the paper is as follows. First, the e-TBM and the e-SBM beam main
features are briefly recalled and the optimization-based calibration strategy is described.
Second, a case study is used to demonstrate the proposed novel approach effectiveness.

2. The Novel Equivalent Beam Model Calibration
2.1. The Timoshenko Beam with De Saint-Venant Torsional Behavior (e-TBM)

The equivalent beam model presented in [8] to estimate the three-dimensional re-
sponse of asymmetric tall buildings was based on the Timoshenko beam with coupled De
Saint-Venant torsional behavior (e-TBM). As it is well known, the Timoshenko beam model
enhances the Euler–Bernoulli beam model by considering the shear stiffness, the cross-
section rotation inertia and the possibility to have deformation where the beam axis can
also be not normal to the cross section.

In this Section the ruling equations are briefly recalled and additional details can
be found in [8]. Assuming a reference system where z is the beam axis, x and y are the
cross-section principal axis, the problem in the planar case, y− z, can be described by the
following equations:
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• the balance equations

dMx

dz
= Vy(z)−mx(z) (1)

dVy

dz
= −qy(z), (2)

where qy(z) and mx(z), Vy(z) and Mx(z) are the distributed load and moment, the shear
and the bending moment, respectively.

• the constitutive equations

Mx = EIx
dθx

dz
(3)

Vy = GKy γy, (4)

where dθx/dz, γy, EIx and GKy are curvature, shear deformation, bending stiffness
and shear stiffness, respectively.

• the compatibility equation, assumed as in Timoshenko (1921)

duy

dz
= γy − θx. (5)

Assuming constant stifnesses along the beam axis, the following equations are obtained

GKy

(
d2uy

dz2 +
dθx

dz

)
+ qy = 0 (6)

EIx
d2θx

dz2 − GKy

(
duy

dz
+ θx

)
+ mx = 0, (7)

which can be extended to the equations of motion assuming inertial forces and moments
per unit length and D’Alembert’s principle

GKy

(
∂2uy

∂t2 +
∂θx

∂z

)
+ qy − ρA

∂2uy

∂t2 = 0 (8)

EIx
∂2θx

∂z2 − GKy

(
∂uy

∂z
+ θx

)
+ mx − ρIx

∂2θx

∂t2 = 0, (9)

where ρ is the mass density, assumed to be uniform over both the beam cross-section area
and beam length.

The previous planar model can be easily extended to the 3D case writing the equations
of motion in the x–z plane and describing the torsional deformation by the classical De-Saint
Venant’s model where, assuming the torsional moment, Mt, stiffness, GJt, and distributed
moment, mz, and using the constitutive equation

Mt = GJt
dφ

dz
, (10)

and the balance equation
dMt

dz
= −mz, (11)

one obtains

GJt
d2φ

dz2 + mz = 0. (12)
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Finally, assuming uniform mass density ρ and using D’Alembert’s principle, the equa-
tion of motion becomes

GJt
∂2φ

∂z2 + mz − ρI0
∂2φ

∂t2 = 0, (13)

where I0 =
∫

Ω

(
x2 + y2)dΩ is the polar moment of inertia and Ω is the cross section surface.

The equations ruling the 3D dynamic problem can be obtained by coupling the
Timoshenko beam model in the x and y directions with the torsional model in (13) and
assuming a reference system with the origin in the cross-section centroid

GKx

(
∂2ux

∂z2 −
∂θy

∂z

)
−M

∂2ux

∂t2 −M yS
∂2φ

∂t2 + SM
x

∂2φ

∂t2 + qx = 0 (14)

EIy
∂2θy

∂z2 + GKx

(
∂ux

∂z
− θy

)
+ IM

y
∂2θy

∂t2 − IM
xy

∂2θx

∂t2 + my = 0 (15)

GKy

(
∂2uy

∂z2 +
∂θx

∂z

)
−M

∂2uy

∂t2 + M xS
∂2φ

∂t2 − SM
y

∂2φ

∂t2 + qy = 0 (16)

EIx
∂2θx

∂z2 − GKy

(
∂uy

∂z
+ θx

)
− IM

x
∂2θx

∂t2 + IM
xy

∂2θy

∂t2 + mx = 0 (17)

GJ
∂2φ

∂z2 −M yS
∂2ux

∂t2 + M xS
∂2uy

∂t2 − IS
∂2φ

∂t2 + SM
x

∂2ux

∂t2 − SM
y

∂2uy

∂t2 + (18)

+ 2
(

xS SM
y + yS SM

x

)∂2φ

∂t2 + mz + qxyS − qyxS = 0,

where

M =
∫

Ω
ρ dΩ, SM

x =
∫

Ω
ρ y dΩ, SM

y =
∫

Ω
ρ x dΩ

IM
x =

∫
Ω

ρ y2 dΩ, IM
y =

∫
Ω

ρ x2 dΩ, IM
xy =

∫
Ω

ρ x y dΩ (19)

IS = M
(

x2
S + y2

S

)
+
(

IM
x + IM

y

)
,

with SM
x , SM

y , IM
x , IM

y and IM
xy being the classical first and second inertia moments and xS

and yS are the coordinates of the shear centre. Equations (14)–(18) can be used to compute
natural frequencies and the corresponding mode shapes [8].

2.2. The Sub-Structure Approach (e-SBM)

The equivalent beam model proposed by Potzta and Kollar [11] is based on the sub-
structure approach, which uses an equivalent cantilever sandwich beam to model the lateral
load-resisting system of a tall building starting from the stiffnesses of the different structural
sub-systems (e-SBM). The equivalent sandwich beam is given by coupling one Timoshenko
beam with bending stiffness, D0, and shear stiffness, S, and one Euler–Bernoulli beam with
bending stiffness, Dl , assuming to have the same horizontal displacements at all levels.
The parameter Dl is also referred to as “local" stiffness since it is obtained from each of
the subsystem columns and beams. Moreover, the 3D behavior is also described using
the Vlasov non-uniform torsion theory. In this Section, the main features of the model
described in [11] that will be used to develop the proposed novel equivalent beam model
are recalled.

In the sub-structure approach, each lateral load-resisting sub-system of the building
(i.e., wall, truss, frame, coupled shear wall) is replaced by a sandwich beam or a Timoshenko
beam with suitable stiffness parameters. In this paper, a tall building with two sub-systems,
frame and truss, will be considered. For these two cases, Table 1 in [11] gives the following
stifness values:
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• k-th frame with n+ 1 columns, having cross section area, Aci, and inertia, Ici, i = 0, . . . , n,
and n beams having cross section inertia, Ibi, i = 1, . . . , n:

Dlk =
n

∑
i=0

EIci (20)

D0k =
n

∑
i=0

EAcic2
i (21)

Sk =
(

S−1
b + S−1

c

)−1
(22)

Sb =
n

∑
i=1

12EIbi
lih

(23)

Sc =
n

∑
i=0

12EIci
h2 , (24)

where ci is the distance of the i-th column from the frame axis, li is the span of the i-th
beam (i.e., distance between columns i and i− 1) and h is the constant inter-storey
height. It is worth noting that these values do not depend on the number of floors.

• k-th truss with columns and bracing having cross section area, Ac and Ad, respectively:

D0k =
1
2

EAcL2 (25)

Sk =
2EhL2 Ad

d3 (26)

where L is the span of the truss, h is the inter-storey height and d is the length of
each of the two cross-bracing at each storey, with d =

√
L2 + h2. In this case, a pure

Timoshenko beam is assumed, since Dl is null.

In the general 3D case, the tall building equivalent sandwich beam parameters can
be found by using the approach based on the deformation energy and can be collected
into three matrices, [D0], [Dl ] and [S]. In the following, adopting the assumptions in [11],
the reference system x, y, z is used with the beam axis in the x direction; v and w are the
displacements of the beam axis in the y and z directions, while ψ, χy, χz are the rotations
about the x, y, and z axis, respectively. Finally, γy and γz are the shear deformations, while

ψ′ = θB + θS, (27)

is the torsional deformation with the two components, θB and θS, due to bending and shear
of the single sub-structures, respectively. In the approach proposed in [12,13] the following
equations hold

v′ = χy + γy (28)

w′ = χz + γz (29)

ψ′ = θS + θB. (30)

It is worth noting that neglecting the shear deformation , i.e., γy = γz = θS = 0 one
obtains the standard Vlasov model with v′ = χy, w′ = χz and ψ′ = θB.

The values of [S], [D0] and [Dl ] are obtained assuming that the deformation energy
of the tall building equivalent sandwich beam is the same of the sum of the deformation
energy of all the N sub-structures

1
2

∫ ({
u′′
}T

[Dl ]
{

u′′
}
+ {γ}T [S]{γ}+

{
χ′
}T

[D0]
{

χ′
}
+ Dtθ

2
)

dx =

N

∑
k=1

1
2

∫ ({
u′′
}T

[Dlk]
{

u′′
}
+ {γ}T [Sk]{γ}+

{
χ′
}T

[D0k]
{

χ′
}
+ Dtkθ2

)
dx,

(31)
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with
{u} = {v, w, ψ}T , {χ} =

{
χy, χz, θB

}T , {γ} =
{

γy, γz, θS
}T , (32)

and where [D0k], [Dlk] and [Sk] are the stiffness parameters of each equivalent beam sub-
structure in the global reference system x, y, z; Dt and Dtk are the torsional stiffness of the
equivalent beam and the k-th sub-structure, respectively. These matrices are computed
starting from the stiffness values in the local reference system η, ζ (η horizontal axis and ζ
vertical axis)

[
Dη,ζ

0

]
k
=

 D0k 0 0
0 0 0
0 0 0

,
[

Dη,ζ
l

]
k
=

 Dlk 0 0
0 0 0
0 0 0

,
[
Sη,ζ]

k =

 Sk 0 0
0 0 0
0 0 0

, (33)

and then changing the orientation and location of the lateral load-resisting sub-system by
the transformation

[Xk] = [T]Tk [X
η−ζ ]k[T]K with [T]k =

 cos αk − sin αk rkη

sin αk cos αk rkζ

0 0 1

 k = 1, . . . , N, (34)

where X can be D0, Dl or S, αk is the angle between η and y, and rkη and rkζ are the
coordinates of the origin of the system (η, ζ) in the reference system (x, y).

Solving Equation (31), the following relations are obtained

[S] = π2[B][C]−1[B][C]−1[B] (35)

[D0] = [B][C]−1[B]

(
[I]

1
l2
0
[B]−1[C]

)−1

(36)

[Dl ] = [A]− [B][C]−1[B] (37)

Dt =
N

∑
k=1

Dtk, (38)

where

[A] =
N

∑
k=1

([I] + π2

l2
0
[D0k][Sk]

−1

)−1

[D0k] + [Dlk]

 (39)

[B] =
N

∑
k=1

(
[I] +

π2

l2
0
[D0k][Sk]

−1

)−1

[D0k][Sk]
−1

(
[I] +

π2

l2
0
[D0k][Sk]

−1

)−1

[D0k] (40)

[C] =
N

∑
k=1

π4

(
[I] +

π2

l2
0
[D0k][Sk]

−1

)−1

[D0k][Sk]
−1

×
(
[I] +

π2

l2
0
[D0k][Sk]

−1

)−1

[D0k][Sk]
−1

(
[I] +

π2

l2
0
[D0k][Sk]

−1

)−1

[D0k], (41)

Approximate values for l0 are suggested when vibration analyses are of interest.
For example, l0 = 2H, l0 = 2/3H, l0 = 2/5H can be assumed for modeling the first, second
and third vibration mode, respectively.

2.2.1. Modal Analysis

Natural frequencies and associated mode shapes can be found solving the following
eigenvalues and eigenvectors problem [13,14]

[(
H4

µ2
Bi
[D0]

−1 + H2

µ2
Si
[S]−1

)−1
+

µ2
Bi

H4 [Dl ] +
µ2

Si
H2 [G]

]
v0m
w0m
ψ0m

 = ω2
mim[M]


v0m
w0m
ψ0m

, (42)
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where

[M] =

 1 0 zm
0 1 −ym
zm −ym

Θ
m + y2

m + z2
m

, [G] =

 0 0 0
0 0 0
0 0 Dt

, (43)

where H is the equivalent beam height, m is the mass per unit length, Θ is the polar
moment of mass, ym and zm are the coordinates of the centroid. The values of µBi and µSi
are respectively 3.52 and 0.5π for the first vibration mode, 22.03 and 1.5π for the second
vibration mode and 61.7 and 1.25π for the third vibration mode. The polar moment of
mass is given by

Θ =
∫

A
µr2dA, (44)

where A is the region occupied by the generic building plan and µ is the mass per unit area.
Assuming uniform mass distribution µ is constant, giving

Θ = µ(Ir + Is) (45)

where Ir and Is are moments of inertia about A principal axes.

2.2.2. Torsional Stiffness

When dealing with torsion, it is well-known that two stiffnesses may be considered:
the classical De Saitnt-Venant torsion stiffness and the one associated with the section
warping. The latest is implicit in the contribution given by [D0] and [Dl ], while the first one,
represented by Dt in Equation (42) need to be estimated. The following espression for Dt
is proposed in [15] when w walls and f frames and/or coupled beams are the considered
sub-structures

Dt =
w

∑
k=1

GJk +
f

∑
h=1

(
(Si)y(zi − zCR)

2 + (Si)z(yi − yCR)
2
)

, (46)

where Jk is the torsional constant of the k-th wall and (Si)y and (Si)z are the shear stiffnesses
of the h-th frame or coupled-beam having y-z centroind coordinates equal to yi and zi,
with ySC and zSC being the coordinates of the stiffness center. Furthermore, the finding
in [15] suggest using the effective shear stiffness, Se, in place of the shear stiffness, S,
as follows

Se = s f S with s f =

√
(4H)20.313D0

(4H)20.313D0 + H4S
. (47)

The values of ySC and zSC can be estimated by

ySC =
∑

w+ f
i=1 f 2

z,i yi

∑
w+ f
i=1 f 2

z,i

, zSC =
∑

w+ f
i=1 f 2

y,i zi

∑
w+ f
i=1 f 2

y,i

, (48)

where fy,i and fz,i are the frequencies in y and z direction of the wall and frame, that can be
estimated with

f =

√√√√ f 2
b +

f 2
g f 2

s′

f 2
g + f 2

s′
, (49)

where fs′ , fg and fb are the frequencies considering only shear stiffness, global bending
stiffness and local bending stiffness, respectively, given by
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f 2
s′ =

1
(4H)2

r2
f S

m
(50)

f 2
g =

0.313
H4

r2
f D0

m
(51)

f 2
b =

0.313
H4

r2
f Dl

m
, (52)

with r f a factor related to the mass distribution.

2.3. Estimation of Parameters and Genetic Algorithms

The mechanical characteristics of the e-TBM described in Section 2.1 are calibrated
minimizing a suitable function of nm natural frequencies and nd static displacements of
the e-TBM and the e-SBM in Section 2.2 that has general expression:

f (D1, . . . , Dm) =
nm

∑
i=0

wi

∣∣∣∣∣1− ωe−TBM
i

ωe−SBM
i

∣∣∣∣∣+ nd

∑
j=0

wj

∣∣∣∣∣1− ue−TBM
j

ue−SBM
j

∣∣∣∣∣, (53)

where Dd, d = 1, . . . , ndv, are the ndv e-TBM design variables (e.g., mechanical parameters
such as cross-section area, second moments, bending, shear and torsional stifnesses);
ωe−TBM

i and ωe−SBM
i , i = 1, . . . , nm, are the e-TBM and e-SBM natural frequencies; ue−TBM

j

and ue−SBM
j , j = 1, . . . , nd, are the e-TBM and e-SBM static response displacements; wi and

wj are suitable weights to drive the solution on the desired target response parameters.
At each step of the minimization procedure, a check on the modal shapes is performed in
order to match both natural frequencies and mode shapes of the e-SBM.

Genetic algorithms [16] are chosen to minimize the function in Equation (53). This choice
is usually done when the optimization problem cannot be solved using classical algorithms,
for example because of the discontinuous, not derivable or stochastic objective functions.
Classical minimizing algorithms were not successful in the case study that will be pre-
sented in this paper because of the significant influence of the initial design variable values.
Sensitivity analysis was also performed to have information both on the influence of the
variation of the design parameters on the quantities of interest and on the presence of
local minima of Equation (53). The genetic algorithms were successful to overcome the
problem due to their inherent feature to randomly search in the solution domain and to
easily follow decreasing values of the objective function. The classic genetic algorithm can
be summarized as follows [17]:

1. generation of a random set of values for the design variables (initial population);
2. evaluation of the objective function and selection of the best solutions;
3. generation of a new population of hybrid solutions by means of genetic operators

(cross-over and mutation);
4. iterative repetition of points 2. and 3. with this population;
5. termination of the algorithm when a specified condition is reached (e.g., convergence

criteria, maximum number of generations, time limit).

A crucial point to find the optimal solution is to give a wide range for the initial
population, which is related to the initial domain of the design variables.

3. Results
3.1. Case Study Tall Building

Figure 1 shows three views of the tall building used to demonstrate the effectiveness of
the proposed approach. The building has a square plan with a side of 30.1 m, overall height
equal to 179.4 m and 3.9 m constant inter-story height for a total of 46 floors. The structural
system consists of 16 steel frames, 8 for each direction, having 4.3 m bay length. Moreover,
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the four external frames have a bracing system. Structural steel, S235, has been considered,
with elastic modulus E = 210,000 MPa. Column and beam sections are HD400 × 463 and
IPE360, respectively. Table 1 summarizes the geometrical properties of the used sections
(values are not shown when not used in the analysis).

Figure 1. The case study: 3d view (a), an external frame (b) and an internal frame (c).

Table 1. Geometrical properties of the frame sections.

Section A IS (Strong Axis) Iw (Weak Axis)
[m2] [m4] [m4]

HD400 × 463 5.88 × 10−2 1.797 × 10−3 6.703 × 10−4

IPE360 - 1.552 × 10−4 -

Tubular square sections with side 0.4 m and thickness 0.05 m are used for the bracing
system with the following mass per unit length and polar moment of mass

m = 155640 kg/m (54)

Θ =
m
12

(
a2 + b2

)
= 2.350 · 10107 kg m2/m. (55)

3.2. Sub-Structures’ Stifness Parameters

The following sub-structure’s stiffness parameters are obtained using the approach
proposed in Section 2.2:

-Internal frame in the x direction

Di f x
l =

7

∑
i=0

EIHD
s = 3.019 · 109 N m2 (56)

Di f x
0 =

7

∑
i=0

EAHD
c,i c2

i = 9.589 · 1012 N m2 (57)
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Si f x
b =

7

∑
i=0

12 EI IPE360
s

li h
= 1.632 · 108 N (58)

Si f x
c =

7

∑
i=0

12 EIHD
s

h2 = 2.382 · 109 N (59)

Si f x =

((
Si f x

b

)−1
+
(

Si f x
c

)−1
)−1

= 1.63 · 108 N. (60)

-Internal frame in the y direction

Di f y
l =

7

∑
i=0

EIHD
w = 1.126 · 109 N m2 (61)

Di f y
0 =

7

∑
i=0

EAHD
c,i c2

i = 9.589 · 1012 N m2 (62)

Si f y
b =

7

∑
i=0

12 EI IPE360
s

li h
= 1.632 · 108 N (63)

Si f y
c =

7

∑
i=0

12 EIHD
w

h2 = 8.884 · 109 N (64)

Si f y =

((
Si f y

b

)−1
+
(

Si f y
c

)−1
)−1

= 1.379 · 108 N. (65)

-External frame in the x direction

The external frames in the x direction have a bracing system (Figure 1). In this
case, the bending stiffness D0 is the same of Equation (57), while the shear stiffness is
computed using Equation (26). Furthermore, since the topmost part of the bracing has
smaller dimensions (Figure 2), the weighted mean for the length dm and the vertical height
hm are used in place of d and h in (26).

hm =
7 · 23.4 + 15.6

8
= 22.425 m, dm =

7 · 38.13 + 33.9
8

= 37.598 m. (66)

Therefore, the values assumed for the external frame in the x direction are the following:

De f x
l =

7

∑
i=0

EIHD
s = 3.019 · 109 N m2 (67)

De f x
0 =

7

∑
i=0

EAHD
c,i c2

i = 9.589 · 1012 N m2 (68)

Si f x
b =

7

∑
i=0

12 EI IPE360
s

li h
= 1.632 · 108 N. (69)

Si f x
c =

7

∑
i=0

12 EIHD
s

h2 = 2.382 · 109 N (70)

Si f x =

((
Si f x

b

)−1
+
(

Si f x
c

)−1
)−1

= 1.632 · 108 N (71)

St =
EhmL2 Ad

d3
m

= 1.124 · 1010 N (72)

Se f x = Si f x + St = 1.139 · 1010 N. (73)
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- External frame in y direction

De f y
l =

7

∑
i=0

EIHD
w = 1.126 · 109 N m2 (74)

De f y
0 =

7

∑
i=0

EAHD
c,i c2

i = 9.589 · 1012 N m2 (75)

Si f y
b =

7

∑
i=0

12 EI IPE360
s

li h
= 1.632 · 108 N (76)

Si f y
c =

7

∑
i=0

12 EIHD
w

h2 = 8.884 · 109 N (77)

Si f y =

((
Si f y

b

)−1
+
(

Si f y
c

)−1
)−1

= 1.379 · 108 N (78)

St =
EhmL2 Ad

d3
m

= 1.124 · 1010 N (79)

Se f y = Si f y + St = 1.138 · 1010 N. (80)

Figure 2. Bracing on the external frame in x direction.

3.3. Torsional Stiffness, Natural Frequencies and Static Displacements of The e-SBM

The torsional stiffness can be computed using Equation (46)

Dt =
f

∑
h=1

(
(Si)y(zi − zCR)

2 + (Si)z(yi − yCR)
2
)
=

= 2 ·
(

Si f x + Si f y
)
·
(

2.152 + 6.452 + 10.752
)
+ 2 ·

(
Se f x + Se f y

)
· 15.052 = 1.041 · 1013 N m2.

(81)

The solution of the e-SBM is obtained by first computing the stiffness parameters
solving Equation (31), and secondly, evaluating the natural frequencies solving the problem
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in (42). Table 2 summarizes the obtained results in terms of natural periods and compares
these values with those computed using a detailed SAP2000 FE model.

Table 2. Natural periods between the e-SBM and FE models.

Mode Te−SBM TFEM Error
[s] [s] [%]

1 4.491 4.832 7.596
2 4.457 4.779 7.222
3 1.142 1.017 −10.946
4 1.119 0.989 −11.618
5 1.118 0.984 −11.987
6 0.624 0.464 −25.604
7 0.576 0.462 −19.810
8 0.537 0.307 −42.761
9 0.526 0.169 −67.799

The first two modes are in the y and x direction (Figure 1), while the third mode shape
is torsional. For these three modes, the error from the detailed FE model solution is below
11%. The torsional model has a satisfactory estimate given the inclusion of the warping
contribution in the e-SBM. These results suggested that the sub-structure approach for
the considered case study can be effectively used as a reference for the first five modal
frequencies that will be used as quantities of interest in Equation (53). It is worth noting
that, in this case, the effect of the bracing system on the external frames is significant:
neglecting this term in the sub-structures would result in a first natural period rising to
9.135 s, more than double the actual value.

Beside modal frequencies, the novel calibration procedure described in Section 2.3
requires knowledge of the static response of the e-SBM. In this case study the response
displacements to uniformly distributed loads over the height, z, of the building are used.
In particular, the displacements at the top floor in the x and y directions, u and v, obtained,
respectively, for a static load in the x and y directions are computed using the modal
analysis results, in terms of nm natural periods, Tk, and modal shapes, φk(z), k = 1, . . . , nm.

When a beam of length H is affected by a load F(z, t), the k-th elementary oscillator is
ruled by the following equation

q̈k + 2νkωk q̇k + ω2
k qk =

fk(t)
mk

(82)

with

ωk =
2π

Tk
, mk =

∫ H

0
µ(z)φk(z)2dz (83)

and

fk(t) =
∫ H

0
F(z, t)φk(z)dz. (84)

In this case study, a pseudo-static uniformly distributed load is considered, than can
be represented by

F(z, t) = F0 sin
(

2π

T
t
)

with T � Tk. (85)

In this case, the steady-state response is given by

v(z) =
∞

∑
k=1

qkφk(z) (86)

with

qk =
fk

mk ωk
=

F0
∫ H

0 φk(z)dz

ωk µ
∫ H

0 φk(z)2dz
, (87)
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where the summation is stopped after a finite number of terms. In this case study, the first
nm = 6 modes and F0 = 100 kN/m are assumed giving the following top floor, z = H,
static displacements

u = 0.467 m (88)

v = 0.478 m. (89)

It is worth noting that these displacements differ less than 3.5% from the corresponding
values computed using the detailed FE model (uFEM = 0.484 m, vFEM = 0.493 m).

3.4. Calibration of The e-TBM

The last step of the proposed procedure is the calibration of the mechanical parameters
of the 3D Timoshenko beam model, e-TBM, using the optimization procedure presented in
Section 2.3. Using the target response parameters of the e-SBM computed in Section 3.3.
In particular, the results in Table 2 suggested using five natural frequencies together with
the two static displacements in the x and y directions at the beam free end. The function in
Equation (53) becomes:

f
(

A, As,x.As,y, Ix, Iy, It
)
= w1

∣∣∣∣∣1− ωe−TBM
1

ωe−SBM
1

∣∣∣∣∣+ w2

∣∣∣∣∣1− ωe−TBM
2

ωe−SBM
2

∣∣∣∣∣+ w3

∣∣∣∣∣1− ωe−TBM
3

ωe−SBM
3

∣∣∣∣∣+
+ w4

∣∣∣∣∣1− ωe−TBM
4

ωe−SBM
4

∣∣∣∣∣+ w5

∣∣∣∣∣1− ωe−TBM
5

ωe−SBM
5

∣∣∣∣∣+ w6

∣∣∣∣1− ue−TBM

ue−SBM

∣∣∣∣+ w7

∣∣∣∣1− ve−TBM

ve−SBM

∣∣∣∣,
(90)

where the e-TBM response parameters are evaluated using a numerical model and the
assumed design variables are

• cross-section area, A;
• shear area in x and y directions, As,x and As,y;
• second inertia moments around x and y, Ix and Iy;
• torsional stiffness, It.

and the assumed weights, to make the convergence easier and to drive the solution to
better approximate the first three natural frequencies and the two static displacements, are
summarized in Table 3.

Table 3. Weights used in Equation (90).

k 1 2 3 4 5 6 7

wk 1.00 1.00 0.67 0.33 0.33 1.00 1.00

Assuming the following data

• L = 179.4 m (building height);
• M = 2.792 × 107 kg (total mass of the building);
• number of elements of the FE model equal to the number of floors, NFE = 46;
• E = 2.1 × 1011 N/mm2 (Young’s modulus);
• G = 8.75 × 1010 N/m2 (Shear modulus).

and using genetic algorithms to minimize the function in (90), the design variables result
as follows: A = 36.7125 m2, As,x = 0.1628 m2, As,y = 0.1652 m2, Ix = 168.1814 m4,
Iy = 173.9372 m4, It = 6.5456 m4.

Table 4 compares the response of the obtained e-TBM with the e-SBM and the detailed
FE model. The calibration makes the e-TBM response almost identical to the e-SBM. This is
confirmed by the relative difference between the e-TBM and FE model response (eF), which
is very close to the corresponding values in the last column in Table 2. It is worth noting
that the minimum of Equation (90) is very close to zero, i.e., 0.1194, and a sensitivity
analysis suggests that a global minimum is found. Indeed, Figure 3 shows the sensitivity
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analysis for couples of design variables, keeping the remaining four at the optimal values.
In particular Figure 3a–c show the variation of the objective function with the second inertia
moments, Ix and Iy, the shear areas, As,x and As,y, the cross-section area and torsional
stiffness, A and It, respectively. The red dot in the three sub-figures indicates the value of
the function in (90) at the optimal design parameters. Another interesting feature of this
case study is that the weights used in Equation (90) seem to have no effect given the perfect
match of the chosen response parameters.

Table 4. Natural frequencies of the three models and relative errors: between e-TBM and e-SBM (eS);
between e-TBM and FE model (eF).

Parameter e-SBM e-TBM eS [%] FE Model eF [%]

ω1 1.3991 1.4111 0.859 1.3003 8.520
ω2 1.4097 1.4256 1.130 1.3146 8.434
ω3 5.5019 5.5019 0.000 6.1787 −10.946
ω4 5.6150 5.6152 0.004 6.3512 −11.614
ω5 5.6200 5.6200 0.000 6.3859 −11.986
u 0.4675 0.4675 0.000 0.4836 −3.329
v 0.4780 0.4780 0.000 0.4933 −3.102

(a) (b) (c)

Figure 3. Sensitivity analysis and minimum at the optimal design parameters: second inertia moments, Ix and Iy, (a), shear
areas, As,x and As,y, (b) and cross-section area and torsional stiffness, A and It (c).

The ability of the e-TBM to describe the tall building dynamic structural response
can be also verified with time domain seismic analysis. To this aim, spectrum-compatible
acceleration time histories are generated using the method proposed in [18] and the corre-
sponding response time series is computed by direct integration using Newmark’s method.
The following parameters were chosen for the design spectrum of Eurocode 8 [19]: S = 1.15,
ag = 0.35 · 9.81 m/s2, β = 2.5, TB = 0.2 s, TC = 0.6 s, TD = 2 s, k1 = 1, k2 = 2, η = 1.

A total of 10 acceleration time histories are generated with 30 s duration, 10 s stationary
interval between 4 s and 14 s, and sampling rate, fs = 0.005 s. Figure 4 compares the target
spectrum (continuous line) and the mean response spectrum of the generated acceleration
time series (dotted line).

Figures 5 and 6 compare, respectively, the top level displacement and the base shear
time histories of the detailed FE model (left panels) and the e-TBM (right panels) for one
acceleration time series in the x direction.
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Figure 4. Comparison between the target spectrum (blue continuous line) and the mean spectrum of
the 10 generated time series (red dotted line).

(a) (b)

Figure 5. Top-level displacement in x direction in the detailed FE model (a) and in the e-TBM (b).

(a) (b)

Figure 6. Base shear in x direction in the full F.E.M. model (a) and in the Timoshenko beam model (b).

Table 5 compares the average response results for the ten seismic acceleration time
series in the two directions x and y. In particular, the average values of the maxima, µmax,
the mean values, µave and the standard deviation values, µσ are estimated. The comparison
shows good results for displacements with differences below 4%, while a slight loss of
accuracy is experienced by the base shear with differences of the order of 20%. The main
advantage of the proposed approach is the paramount reduction of computational cost once
the mechanical parameters are calibrated. Indeed, the ratio between time to complete the
10 s seismic analysis, described above, with the detailed FE model and the reduced order
e-TBM is higher than 300 when using a personal laptop with an Intel Core i5 processor.
In particular, the Newmark direct integration of 10 acceleration time histories in the x
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and y direction using the e-TBM and the complete FE model (i.e., with all the beam and
column elements in Figure 1) needed 104 s and 10 h, respectively. This result confirms
the effectiveness of the proposed procedure to perform both global response structural
optimization strategies and reliability analyses.

Table 5. Response statistics for the e-TBM and the FE model top displacements (u(H) and v(H)) and base shear (Vx and Vy).

Seismic Direction Response µmax µave µσ

FE Model e-TBM FE Model e-TBM FE Model e-TBM

x u(H) 0.318 0.320 0.000 0.000 0.105 0.105
x Vx 27410 34622 −14.38 −12.4 6687.9 6704.3
y v(H) 0.318 0.317 0.000 0.001 0.106 0.107
y Vy 27549 31598 −14.34 −13.8 6835.5 6748.9

4. Discussion and Perspectives

The work presented in this paper proposed a novel two-step approach to calibrate a
reduced-order 3D Timoshenko beam model to accurately describe the structural response
of complex tall buildings affected by stochastic loads without the need for time-consuming
and expensive detailed finite element models. The novelty of the paper consists of merging
two equivalent beam models proposed in the literature in order to enhance the advantages
and to overcome the drawbacks of each of the two. The first step consisted of computing
the mechanical characteristics of an equivalent sandwich beam model using the sub-
structures approach, first proposed by Potzta and Kollar, and evaluating both the static
and modal response (natural frequencies and mode shapes). These response parameters
were used in the second step to calibrate the mechanical features of the Timoshenko beam
model recently proposed by these Authors, which is able to describe the coupled bending,
shear and torsional behavior. The calibration was obtained by a suitable optimization
genetic algorithm that can be driven to better describe the response parameters of interest
using appropriate weights in the function to be minimized. The proposed procedure
improves the equivalent sandwich beam model, whose dynamic response solution needs
specific parameters depending on the mode shape of interest. On the contrary, once the
equivalent Timoshenko beam is calibrated, an exact closed-form solution is obtained for all
the modal response.

A tall building with a square plan but different stiffness to horizontal loads in two
directions was used as a case study. The main results, validated using a detailed finite
element model, can be summarized as follows:

1. the equivalent sandwich beam modal response differs by less than 12% from the
detailed numerical model in the first five natural frequencies;

2. the modal response of the calibrated equivalent Timoshenko beam perfectly matches
the corresponding sandwich beam model and therefore has the same accuracy in
describing the actual tall building response;

3. seismic response maximum and average displacements estimated using direct time
integration differ less than 4% from the detailed model;

4. computational time ratio for 10 s of seismic dynamic analysis between the detailed
numerical model and the reduced-order equivalent Timoshenko beam model is higher
than 300.

The obtained results confirm the effectiveness of the proposed procedure to calibrate
equivalent Timoshenko beam models without the need for preliminary time-consuming
complex numerical finite element models to describe the tall building structural response.
This is of paramount importance when performing structural optimization strategies for
the global response in the context of reliability analysis. The main immediate perspective
of this work is the validation of the proposed novel calibration procedure for complex
irregular tall buildings (non-symmetric).
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Abbreviations

The following abbreviations are used in this manuscript:
AS Axial Strain
BW Braced Wall
LBFR Lattice Braced Frames
CO Column
CTB Coupled Two Beams
CW Coupled Walls
CW-FR Coupled Wall–Frame System
EB Equivalent Beam
EBB Eulero Bernoulli Beam
e-SBM Equivalent Sandwich Beam Model
e-TBM Equivalent Timoshenko Beam Model
FE Finite Element
FR Frame
MS Modal Shape
MSCW Multi Span Coupled Wall
NF Natural Frequency
RBDO Reliability-Based Design Optimization
RFF Rigid or flexible foundation
SB Sandwich Beam
SB-L Sandwich Beam Like
SHB Shear Beam
SL Seismic Load
SW-O Shear Wall with Open Cross-Section
S-TO Structures with Open Thin-Cross-Section
TB Timoshenko Beam
TBA Timoshenko Beam with Axial Strain
VVL Vertical Varying Axial Load
VVM Vertical Varying Mass
VVS Vertical Varying Stiffness
WA Wall

Appendix A. Summay of the Equivalent Beam Models

The main equivalent beam models reported in the literature are summarized in
Table A1. Refer to Section 4 for the list of abbreviations.

The first column presents the main authors and the years when models were proposed.
The second column lists the bracing system that can be described by the model. The third
column reports the equivalent beam model used: Eulero Bernulli beam, EBB (i.e., bending
stiffness only); shear stiffness only beam, SHB; Timoshenko beam, TB (i.e., shear and
bending stiffness in series); Timoshenko beam with axial strain, TBA, coupled two beams,
CTB (i.e., bending beam coupled with shear a beam); sandwich beam, SB (i.e., bending
beam coupled with a Timoshenko beam). When bending and torsion coupling is considered
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(i.e., asymmetric buildings) a check mark is placed in the fourth column and the torsional
stiffness used is described in the third column between parenthesis: GJt and EIω are the
De Saint-Venant and secondary stiffesses, respectively. When a symmetry plane is needed
it is indicated in the note column. A check mark is placed in the columns 5 to 9 when the
model describes, respectively, stiffness vertical variations, axial strain, natural frequencies,
mode shapes and seismic loads. Additional features are summarized in the note column.

Table A1. Summary of the main equivalent beam models reported in the literature.

Model Bracing EB Coupling VVS AS NFs MSs SL Note

Skattum (1971) [20] CW SB-L X X X

Heidebrecht et al. (1973) [21] WAs, FRs CTB X Static
analysis

Rosman (1974) [22] WA, FR CTB X Buckling
Rosmann (1981) [23] CO, WA, BW EBB

(EIω)
X X X Buckling

Rutenberg (1975) [24] CW SB X X
Rutenberg et al. (1977, 1978) [25,26] FR, WA CTB

(GJt ,
EIω)

X X X 1-sym plane

Mukherjee and Coull (1977) [27] SW-O EBB
(GJt ,
EIω)

X X RFF

Reinhorn et al. (1977, 1979) [28,29] FR, WA CTB
(GJt ,
EIω)

X X X X 1-sym plane

Basu et al. (1982) [30,31] CW-FR X X X Graphic
solution

Basu (1983) [32] CW X X X Graphic
solution

Basu et al. (1984) [33] CW-FR CTB X X X Graphic
solution

Balendra et al. (1984) [34] FR, WA CTB
(GJt ,
EIω)

X X X X 1-sym plane,
RFF

Stafford Smith et al. (1986, 1991) [35–37] FR, LBFR, WA,
CW

SB X X X
Graphic
solution,

first two NFs

Wang et al. (2000)[38] FR, WA SB (GJt ,
EIω)

X X X 1-sym plane,
first two NFs

Ng and Kuang (2000) [39] FR, WA CTB
(GJt ,
EIω)

X X X

Kuang and Ng (2001) [40] WA EBB
(EIω)

X X X

Kuang and Ng (2004) [41] FR, WA, CW CTB
(GJt ,
EIω)

X X X

Kuang and Ng (2009) [42] FR SHB
(GJt)

X X X

Li et al. (2000) [43] WA EBB X X X X VVM, VVL,
axial Load

Rahgozar et al. (2004) [44] FR, WA TB X X X VVM

Swaddiwudhipong et al. (1989, 2001, 2002) [45–47] FR, WA TBA X X X Axial force
on frames

Zalka (2000, 2001, 2013) [15,48,49] FR, LBFR, WA,
CW

SB (GJt ,
EIω)

X X X

Static
analysis,
buckling,
first NF

Potzta, Kollár, Tarján (2002,2003,2004) [11,14,50] FR, LBFR, WA,
CW

SB (GJt ,
EIω)

X X X X X X Buckling

Kaviani et al. (2008) [51] FR, LBFR, WA,
CW

SB (GJt ,
EIω)

X X X X VVM

Rafezy et al. (2007) [52] FR SB (GJt) X X X X
Rafezy and Howson (2008) [53] FR, WA CTB

(GJt ,
EIω)

X X X X

Miranda et al.(2005) [54–56] FR, WA CTB X X X X
Time history

analysis,
floor acc.

Georgoussis (2006) [57] FR, WA, CW SB X X X X
Meftah et al. (2007) [58] WA, S-TO EBB

(GJt ,
EIω)

X X X X

Meftah and Tounsi (2008) [59] WA, S-TO EBB
(EIω)

X X X

Bozdogan and Ozturk (2007) [60] MSCW SB X X X X X Discrete
solution
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Table A1. Cont.

Model Bracing EB Coupling VVS AS NFs MSs SL Note

Bozdogan (2009) [61] FR, WA SB X X X X X Discrete
solution

Bozdogan (2011) [62] FR, WA SB X X X X X
Discrete

solution,wall
shear strain

Bozdogan and Ozturk (2012) [63] FR, WA CTB
(GJt ,
EIω)

X X X X X Discrete
solution

Cluni et al. (2013, 2020) [8,64] FR, LBFR, WA,
CW

TB X X X X Closed form
solution

Piccardo et al. (2015, 2016, 2019) [7,65,66] FR, WA TB X X X X
Luongo et al. (2020, 2021) [9,10] FR TB X X X X

Greco et al. (2020) [67] FR SHB X X X

References
1. Howson, W.P. Global analysis-back to the future. Struct. Eng. 2006, 84, 18–21.
2. Spence, S.; Gioffrè, M. Efficient algorithms for the reliability optimization of tall buildings. J. Wind Eng. Ind. Aerodyn. 2011,

99, 691–699. [CrossRef]
3. Spence, S.M.; Gioffrè, M. Large scale reliability-based design optimization of wind excited tall buildings. Probabil. Eng. Mech.

2012, 28, 206–215. [CrossRef]
4. Spence, S.M.; Gioffrè, M.; Kareem, A. An efficient framework for the reliability-based design optimization of large-scale uncertain

and stochastic linear systems. Probabil. Eng. Mech. 2016, 44, 174–182. [CrossRef]
5. Bartoli, G.; Cluni, F.; Gusella, V.; Procino, L. Dynamics of cable under wind action: Wind tunnel experimental analysis. J. Wind

Eng. Ind. Aerodyn. 2006, 94, 259–273. [CrossRef]
6. Gioffrè, M.; Gusella, V. Peak response of a nonlinear beam. J. Eng. Mech. 2007, 133, 963–969. [CrossRef]
7. Piccardo, G.; Tubino, F.; Luongo, A. Equivalent Timoshenko linear beam model for the static and dynamic analysis of tower

buildings. Appl. Math. Model. 2019, 71, 77–95. [CrossRef]
8. Gioffrè, M.; Cluni, F.; Gusella, V. Characterization of an Equivalent Coupled Flexural-Torsional Beam Model for the Analysis of

Tall Buildings under Stochastic Actions. J. Struct. Eng. 2020, 146. [CrossRef]
9. D’Annibale, F.; Ferretti, M.; Luongo, A. Static and dynamic responses of micro-structured beams. Appl. Sci. 2020, 10, 6836.

[CrossRef]
10. Luongo, A.; D’Annibale, F.; Ferretti, M. Shear and flexural factors for static analysis of homogenized beam models of planar

frames. Eng. Struct. 2021, 228, 111440. [CrossRef]
11. Potzta, G.; Kollar, L. Analysis of building structures by replacement sandwich beams. Int. J. Solids Struct. 2003, 40, 535–553.

[CrossRef]
12. Kollár, L.P. Flexural–torsional buckling of open section composite columns with shear deformation. Int. J. Solids Struct. 2001,

38, 7525–7541. [CrossRef]
13. Kollár, L.P. Flexural–torsional vibration of open section composite beams with shear deformation. Int. J. Solids Struct. 2001,

38, 7543–7558. [CrossRef]
14. Potzta, G. Approximate analysis of building structures subjected to earthquakes. Ph.D. Thesis, Technical University of Budapest,

Budapest, Hungary, 2002.
15. Zalka, K.A. Structural Analysis of Regular Multi-Storey Buildings; CRC Press: Boca Raton, FL, USA, 2013.
16. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1996.
17. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
18. Cacciola, P. A stochastic approach for generating spectrum compatible fully nonstationary earthquakes. Comput. Struct. 2010,

88, 889–901; Cited by 65. [CrossRef]
19. EN 1998-1: Eurocode 8: Design of Structures for Earthquake Resistance; BSi: Brussels, Belgium, 2004.
20. Skattum, K.S. Dynamic analysis of coupled shear walls and sandwich beams. Ph.D. Thesis, California Institute of Technology,

Pasadena, CA, USA, 1971.
21. Heidebrecht, A.C.; Smith, B.S. Approximate analysis of tall wall-frame structures. J. Struct. Div. 1973, 99, 199–221. [CrossRef]
22. Rosman, R. Stability and dynamics of shear-wall frame structures. Build. Sci. 1974, 9, 55–63. [CrossRef]
23. Rosman, R. Buckling and vibrations of spatial building structures. Eng. Struct. 1981, 3, 194–202. [CrossRef]
24. Rutenberg, A. Approximate natural frequencies for coupled shear walls. Earthq. Eng. Struct. Dyn. 1975, 4, 95–100. [CrossRef]
25. Rutenberg, A.; Tso, W.; Heidebrecht, A. Dynamic properties of asymmetric wall-frame structures. Earthq. Eng. Struct. Dyn. 1977,

5, 41–51. [CrossRef]
26. Rutenberg, A.; Glück, J.; Reinhorn, A. On the dynamic properties of asymmetric wall-frame structures. Earthq. Eng. Struct. Dyn.

1978, 6, 317–320. [CrossRef]
27. Mukherjee, P.R.; Coull, A. Free vibrations of open-section shear walls. Earthq. Eng. Struct. Dyn. 1977, 5, 81–101. [CrossRef]

http://doi.org/10.1016/j.jweia.2011.01.017
http://dx.doi.org/10.1016/j.probengmech.2011.08.001
http://dx.doi.org/10.1016/j.probengmech.2015.09.014
http://dx.doi.org/10.1016/j.jweia.2006.01.002
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:9(963)
http://dx.doi.org/10.1016/j.apm.2019.02.005
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002815
http://dx.doi.org/10.3390/app10196836
http://dx.doi.org/10.1016/j.engstruct.2020.111440
http://dx.doi.org/10.1016/S0020-7683(02)00622-4
http://dx.doi.org/10.1016/S0020-7683(01)00024-5
http://dx.doi.org/10.1016/S0020-7683(01)00025-7
http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1016/j.compstruc.2010.04.009
http://dx.doi.org/10.1061/JSDEAG.0003440
http://dx.doi.org/10.1016/0007-3628(74)90040-1
http://dx.doi.org/10.1016/0141-0296(81)90001-8
http://dx.doi.org/10.1002/eqe.4290040107
http://dx.doi.org/10.1002/eqe.4290050104
http://dx.doi.org/10.1002/eqe.4290060306
http://dx.doi.org/10.1002/eqe.4290050107


Appl. Sci. 2021, 11, 4655 20 of 21

28. Reinhorn, A.; Rutenberg, A.; Glück, J. Dynamic torsional coupling in asymmetric building structures. Build. Environ. 1977,
12, 251–261. [CrossRef]

29. Glück, J.; Reinhorn, A.; Rutenberg, A. Dynamic torsional coupling in tall building structures. Proc. Inst. Civ. Eng. 1979,
67, 411–424. [CrossRef]

30. Basu, A.K.; Dar, G.Q. Dynamic characteristics of coupled wall-frame systems. Earthq. Eng. Struct. Dyn. 1982, 10, 615–631.
[CrossRef]

31. Basu, A.K.; Nagpal, A.K.; Nagar, A.K. Dynamic characteristics of frame-wall systems. J. Struct. Div. 1982, 108, 1201–1218.
[CrossRef]

32. Basu, A.K. Seismic design charts for coupled shear walls. J. Struct. Eng. 1983, 109, 335–352. [CrossRef]
33. Basu, A.K.; Nagpal, A.K.; Kaul, S. Charts for seismic design of frame-wall systems. J. Struct. Eng. 1984, 110, 31–46. [CrossRef]
34. Balendra, T.; Swaddiwudhipong, S.; Quek, S.T.; Lee, S.L. Free vibration of asymmetric shear wall-frame buildings. Earthq. Eng.

Struct. Dyn. 1984, 12, 629–650. [CrossRef]
35. Smith, B.S.; Crowe, E. Estimating periods of vibration of tall buildings. J. Struct. Eng. 1986, 112, 1005–1019. [CrossRef]
36. Smith, B.S.; Yoon, Y.S. Estimating seismic base shears of tall wall-frame buildings. J. Struct. Eng. 1991, 117, 3026–3041. [CrossRef]
37. Stafford Smith, B.; Coull, A. Tall Building Structures: Analysis and Design; Wiley: Hoboken, NJ, USA, 1991.
38. Wang, Y.; Arnaouti, C.; Guo, S. A simple approximate formulation for the first two frequencies of asymmetric wall–frame

multi-storey building structures. J. Sound Vib. 2000, 236, 141–160. [CrossRef]
39. Ng, S.; Kuang, J.S. Triply coupled vibration of asymmetric wall-frame structures. J. Struct. Eng. 2000, 126, 982–987. [CrossRef]
40. Kuang, J.; Ng, S.C. Dynamic coupling of asymmetric shear wall structures: An analytical solution. Int. J. Solids Struct. 2001,

38, 8723–8733. [CrossRef]
41. Kuang, J.S.; Ng, S. Coupled vibration of tall building structures. Struct. Des. Tall Spec. Build. 2004, 13, 291–303. [CrossRef]
42. Kuang, J.S.; Ng, S.C. Lateral shear-St. Venant torsion coupled vibration of asymmetric-plan frame structures. Struct. Des. Tall

Spec. Build. 2009, 18, 647–656. [CrossRef]
43. Li, Q.; Fang, J.; Jeary, A. Free vibration analysis of cantilevered tall structures under various axial loads. Eng. Struct. 2000,

22, 525–534. [CrossRef]
44. Rahgozar, R.; Safari, H.; Kaviani, P. Free vibration of tall buildings using Timoshenko beams with variable cross-section. WIT

Trans. Built Environ. 2004, 73. [CrossRef]
45. Swaddiwudhipong, S.; Piriyakoontorn, S.; Lim, Y.B.; Lee, S.L. Analysis of tall buildings considering the effect of axial deformation

by the Galerkin method. Comput. Struct. 1989, 32, 1363–1369. [CrossRef]
46. Swaddiwudhipong, S.; Lee, S.L.; Zhou, Q. Effect of axial deformation on vibration of tall buildings. Struct. Des. Tall Build. 2001,

10, 79–91. [CrossRef]
47. Swaddiwudhipong, S.; Sidji, S.S.; Lee, S.L. The effects of axial deformation and axial force on vibration characteristics of tall

buildings. Struct. Des. Tall Build. 2002, 11, 309–328. [CrossRef]
48. Zalka, K. Global Structural Analysis of Buildings; CRC Press: Boca Raton, FL, USA, 2000.
49. Zalka, K. A simplified method for calculation of the natural frequencies of wall–frame buildings. Eng. Struct. 2001, 23, 1544–1555.

[CrossRef]
50. Tarján, G.; Kollár, L.P. Approximate analysis of building structures with identical stories subjected to earthquakes. Int. J. Solids

Struct. 2004, 41, 1411–1433. [CrossRef]
51. Kaviani, P.; Rahgozar, R.; Saffari, H. Approximate analysis of tall buildings using sandwich beam models with variable

cross-section. Struct. Des. Tall Spec. Build. 2008, 17, 401–418. [CrossRef]
52. Rafezy, B.; Zare, A.; Howson, W.P. Coupled lateral–torsional frequencies of asymmetric, three-dimensional frame structures.

Int. J. Solids Struct. 2007, 44, 128–144. [CrossRef]
53. Rafezy, B.; Howson, W.P. Vibration analysis of doubly asymmetric, three-dimensional structures comprising wall and frame

assemblies with variable cross-section. J. Sound Vib. 2008, 318, 247–266. [CrossRef]
54. Miranda, E.; Taghavi, S. Approximate floor acceleration demands in multistory buildings. I: Formulation. J. Struct. Eng. 2005,

131, 203–211. [CrossRef]
55. Taghavi, S.; Miranda, E. Approximate floor acceleration demands in multistory buildings. II: Applications. J. Struct. Eng. 2005,

131, 212–220. [CrossRef]
56. Reinoso, E.; Miranda, E. Estimation of floor acceleration demands in high-rise buildings during earthquakes. Struct. Des. Tall

Spec. Build. 2005, 14, 107–130. [CrossRef]
57. Georgoussis, G.K. A simple model for assessing periods of vibration and modal response quantities in symmetrical buildings.

Struct. Des. Tall Spec. Build. 2006, 15, 139–151. [CrossRef]
58. Meftah, S.A.; Tounsi, A.; El Abbas, A.B. A simplified approach for seismic calculation of a tall building braced by shear walls and

thin-walled open section structures. Eng. Struct. 2007, 29, 2576–2585. [CrossRef]
59. Meftah, S.A.; Tounsi, A. Vibration characteristics of tall buildings braced by shear walls and thin-walled open-section structures.

Struct. Des. Tall Spec. Build. 2008, 17, 203–216. [CrossRef]
60. Bozdogan, K.B.; Öztürk, D. An Approximate Method for Free Vibration Analysis of Multi-Bay Coupled Shear Walls. Math.

Comput. Appl. 2007, 12, 41–50. [CrossRef]

http://dx.doi.org/10.1016/0360-1323(77)90027-0
http://dx.doi.org/10.1680/iicep.1979.2465
http://dx.doi.org/10.1002/eqe.4290100410
http://dx.doi.org/10.1061/JSDEAG.0005961
http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:2(335)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1984)110:1(31)
http://dx.doi.org/10.1002/eqe.4290120505
http://dx.doi.org/10.1061/(ASCE)0733-9445(1986)112:5(1005)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:10(3026)
http://dx.doi.org/10.1006/jsvi.2000.2984
http://dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:8(982)
http://dx.doi.org/10.1016/S0020-7683(01)00052-X
http://dx.doi.org/10.1002/tal.253
http://dx.doi.org/10.1002/tal.456
http://dx.doi.org/10.1016/S0141-0296(98)00124-2
http://dx.doi.org/10.2495/SU040231
http://dx.doi.org/10.1016/0045-7949(89)90313-1
http://dx.doi.org/10.1002/tal.175
http://dx.doi.org/10.1002/tal.203
http://dx.doi.org/10.1016/S0141-0296(01)00053-0
http://dx.doi.org/10.1016/j.ijsolstr.2003.10.021
http://dx.doi.org/10.1002/tal.360
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.019
http://dx.doi.org/10.1016/j.jsv.2008.04.018
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:2(203)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:2(212)
http://dx.doi.org/10.1002/tal.272
http://dx.doi.org/10.1002/tal.286
http://dx.doi.org/10.1016/j.engstruct.2006.12.014
http://dx.doi.org/10.1002/tal.346
http://dx.doi.org/10.3390/mca12010041


Appl. Sci. 2021, 11, 4655 21 of 21

61. Bozdogan, K.B. An approximate method for static and dynamic analyses of symmetric wall-frame buildings. Struct. Des. Tall
Spec. Build. 2009, 18, 279–290. [CrossRef]

62. Bozdogan, K.B. A method for lateral static and dynamic analyses of wall-frame buildings using one dimensional finite element. Sci. Res.
Essays 2011 , 6, 616–626.

63. Bozdogan, K.B.; Ozturk, D. Vibration analysis of asymmetric shear wall-frame structures using the transfer matrix method. J. Sci.
Technol. Transact. B. Eng. 2012, 36, 1–12.

64. Cluni, F.; Gioffrè, M.; Gusella, V. Dynamic response of tall buildings to wind loads by reduced order equivalent shear-beam
models. J. Wind Eng. Ind. Aerodyn. 2013, 123, 339–348. [CrossRef]

65. Piccardo, G.; Tubino, F.; Luongo, A. A shear–shear torsional beam model for nonlinear aeroelastic analysis of tower buildings. Z.
Für Angew. Math. Und Phys. 2015, 66, 1895–1913. [CrossRef]

66. Piccardo, G.; Tubino, F.; Luongo, A. Equivalent nonlinear beam model for the 3-D analysis of shear-type buildings: Application
to aeroelastic instability. Int. J. Non-Linear Mech. 2016, 80, 52–65. [CrossRef]

67. Greco, A.; Fiore, I.; Occhipinti, G.; Caddemi, S.; Spina, D.; Caliò, I. An equivalent non-uniform beam-like model for dynamic
analysis of multi-storey irregular buildings. Appl. Sci. 2020, 10, 3212. [CrossRef]

http://dx.doi.org/10.1002/tal.409
http://dx.doi.org/10.1016/j.jweia.2013.09.012
http://dx.doi.org/10.1007/s00033-014-0456-z
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.07.013
http://dx.doi.org/10.3390/app10093212

	Introduction
	The Novel Equivalent Beam Model Calibration
	The Timoshenko Beam with De Saint-Venant Torsional Behavior (e-TBM)
	The Sub-Structure Approach (e-SBM)
	Modal Analysis
	Torsional Stiffness

	Estimation of Parameters and Genetic Algorithms

	Results
	Case Study Tall Building
	Sub-Structures' Stifness Parameters
	Torsional Stiffness, Natural Frequencies and Static Displacements of The e-SBM
	Calibration of The e-TBM 

	Discussion and Perspectives
	Summay of the Equivalent Beam Models
	References

