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Abstract: Establishing dense correspondences across semantically similar images is a challenging
task, due to the large intra-class variation caused by the unconstrained setting of images, which
is prone to cause matching errors. To suppress potential matching ambiguity, NCNet explores the
neighborhood consensus pattern in the 4D space of all possible correspondences, which is based
on the assumption that the correspondence is continuous in space. We retain the neighborhood
consensus constraint, while introducing semantic segmentation information into the features, which
makes them more distinguishable and reduces matching ambiguity from a feature perspective.
Specifically, we combine the semantic segmentation network to extract semantic features and the 4D
convolution to explore 4D-space context consistency. Experiments demonstrate that our algorithm
has good semantic matching performances and semantic segmentation information can improve
semantic matching accuracy.

Keywords: semantic matching; semantic segmentation; spatial context consensus

1. Introduction

Image matching is a basic task in the computer vision field. Traditional image match-
ing including stereo matching [1–3] and optical flow [4,5] establishes a dense correspon-
dence field between two photos in the same scene based on photo-geometric consistency.
However, semantic matching is different, as it establishes the correspondence field be-
tween two images based on semantic consistency [6–10], in other words, it looks for
the point pair with the same semantics across two images. For example, the images in
Figure 1 have obvious variations of foregrounds and backgrounds. Although it is im-
practical to estimate correspondences by photo-geometric consistency, we can calculate
the matching relationships according to the same semantic contents. As a building block
technology, semantic matching has been widely used in computer vision applications, such
as style/motion transfer [11,12], image morphing [13], exemplar-based colorization [14],
and image synthesis/translation/super-resolution [15–17].

Figure 1. Semantic matching examples, in which colored line segments represent some semantic
matching pairs.

Traditionally, semantic correspondences between images have been obtained by hand-
crafted representations such as SIFT [18], DAISY [19], or HOG [20] that are extracted with
a controlled degree of invariance to local geometric and photometric transformations.
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With the remarkable success of deep learning technologies, convolutional neural networks
(CNNs) have shown strong capabilities to extract semantic features from images. Some
methods try to design specific CNNs to obtain learnable semantic representations [8,21,22].
These representations have advantages over hand-designed features, such as being aware
of local structural layouts [22]. However, these networks are directly trained on semantic
matching datasets [9,23], prone to overfitting since the datasets are small. For this reason,
some methods employ the networks pre-trained on the large-scale ImageNet database [24],
such as VGGNet [25] and ResNet [26], to extract features and lead to better semantic
matching performance. However, none of these methods consider the potential semantic
segmentation information in extracted features. In other words, the features used for
semantic matching are similar to those for semantic segmentation, because they both
describe semantics.

On the other hand, the correlations of representations can be computed and then guide
matching decisions with various forms of nearest neighbor (NN) matching; however, this
kind of NN matching establishes semantic matching for each point individually, which can
easily cause matching ambiguity in some texture areas or repeated regions. For example,
a wall with almost no texture has only a few distinguishable features for semantic matching.
Since the features of most points on the wall are very close, it is difficult to distinguish
them from each other, which usually results in matching errors. Fortunately, some simple
strategies can determine whether the matching of these regions is correct. They effectively
provide neighborhood evidence for the current matching decision, such as simply counting
the number of consistent matches within a certain image neighborhood [27,28] in a scale-
invariant manner [29] or using a regular image grid [30]. Recently, Rocco et al. [31] proposed
a learning method to explore neighborhood-consistent patterns of correspondence directly
from data. Specifically, it learns a series of convolution kernels and uses them to convolve
correlations, and then the neighborhood consistency constraint can be achieved.

In our method, we combine the semantic segmentation information and neighborhood
consistency constraint. On the one hand, it improves the diversity of representation, and on
the other hand, it effectively removes some potential matching errors before matching
assignments. Specifically, we use the semantic segmentation task to pre-train the network
and extract the output features close to the end of the network, since deeper features
contain more semantics. Afterward, several convolutional layers are followed to modify
the representation hidden space, so that the representation obtained by the pre-trained
network can be applied to the semantic matching task. Then we compute correlations and
convolve them using 4D convolution [31], in order to perceive the neighborhood consensus
of the correlation. Thanks to the keypoint annotation provided by some semantic matching
datasets, we use the matching relationships between keypoints to constrain the network
training. Experiments show that our method has good semantic matching accuracy and
semantic segmentation information is beneficial to the semantic matching task.

The layout of the remainder of this paper is as follows: Section 2 reviews the related
work. Section 3 describes the proposed algorithm in detail including the framework,
feature extraction network, 4D convolution, and objective function. Section 4 shows the
quantitative and qualitative matching performance, ablation analysis, and application.
Section 5 concludes the paper.

2. Related Work
2.1. Representation for Semantic Matching

Early works on semantic matching employ hand-crafted descriptors such as SIFT [18],
DAISY [19], and HOG [20] to extract semantic representations. SIFT representation de-
scribes the neighborhood feature of the scale-invariant landmark, which is robust to
perspective and lighting changes. The DAISY descriptor retains the robustness of SIFT and
can be computed quickly at every single image pixel. HOG representation is also similar
to SIFT, as it computes the locally normalized histogram of gradient orientation features,
but it considers the histograms in dense overlapping grids, providing a larger receptive
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field. Although these representations have a certain intra-class invariance and are robust to
the differences in object appearance, they provide limited matching performance due to
low semantic-discriminative power.

Recent methods use convolutional neural networks to extract semantic representations,
and some specific feature extraction networks have appeared [6,8,21]. Long et al. [6]
first introduced CNN features into the semantic matching task. Their work retains the
architecture of SIFT flow [12] and replaces the hand-crafted feature with the CNN feature.
The feature extraction networks of other methods [8,21] are similar with [6]. However,
such methods have essential problems: on the one hand, their network depth is shallow,
which restricts their extraction of deep semantics; on the other hand, the semantic matching
datasets have less data, and directly training on them limits the performance of the network.

To solve these problems, other methods use pre-trained deep neural networks such as
ResNet [26] and VGGNet [25] to extract semantic features [22,32,33]. Because these deep
networks are trained on the huge database [24], and their output deep features contain
rich semantics, [32] combines features from different layers of ResNet and then encodes
them to generate category-agnostic representation; [22] transforms the feature of VGGNet
with full-convolutional local self-similarity operation, which makes the representation
robust to intra-class variation; [33] uses self-similarity operator to modify ResNet’s features
to be able to perceive local context. Our approach differs from these methods, as we
embed semantic segmentation information into the representation and enhance its semantic
diversity and distinguishability.

2.2. Spatial Context for Semantic Matching

Although semantic matching can be established by performing a winner-takes-all
operation on each point, it ignores spatial contextual information from the neighborhood,
resulting in the reduction of matching accuracy. In other words, considering context helps
to improve the performance of semantic matching. To this end, a direct way is to explic-
itly add neighborhood continuity constraints to loss, such as smoothness and geometric
consistency constraints [34,35]. Another strategy is to consider the spatial context when
extracting semantic features so that the features can perceive local information. For example,
Irani et al. propose the local self-similarity (LSS) descriptor [36] to capture the self-similarity
structure. It is then extended to some deep learning versions [37,38]. More recently, some
methods [22,33,39] cast LSS as a CNN module, computing local self-similarity with a learn-
able sampling and convolution pattern. However, all of these methods ignore an essential
problem, that is, the correspondence for each pixel or patch is still determined indepen-
dently via variants of the nearest neighbor assignment so that the estimated semantic
matching field struggles to guarantee continuity. NCNet [31] provides a new idea that
considers the contextual consistency of semantic matching hidden in correlations because
correlation is the direct cue for matching decision. Our method retains this idea and uses
4D convolution to transform the correlation space to explore the spatial context consensus.

3. Approach

This section presents our method, which establishes a dense semantic matching field
between two images based on semantic consistency. On the one hand, our method extracts
semantic features with semantic segmentation information, on the other hand, it learns the
consistency of space context before the semantic matching decision, reducing matching
ambiguities. We start with a brief description of the overall pipeline of our approach
(Section 3.1), then describe the semantic feature extraction sub-network as well as the 4D
convolution in detail (Sections 3.2 and 3.3), finally present the losses used to constrain
network training (Section 3.4).

3.1. Network Architecture

Given a point in the image, our aim is to search for the semantically corresponding
point in another image to consist of a matching pair, in which two points have similar
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representations. In semantic matching, the representation should reflect high-level seman-
tics, while being insensitive to photometric and geometric variations. Here, we choose the
high-dimensional feature FI extracted by the neural network as the semantic representation,
since it satisfies the above two requirements simultaneously:

FI = Norm(Φr(I, θr)), I ∈ {A, B}. (1)

Here, the feature map is FI ∈ Rc×h×w, where (c, h, w) represent its channel, height,
and width, respectively. Φr is the activating output of the rth layer of feature extraction
network with the learnable parameter θr. {A, B} represent the source image and the target
image, and Norm(·) is L2 normalization. There are many ways to evaluate the correlation
between two features, such as the L1 or L2 norm of their difference. We use cosine similarity
to compute the correlation, following previous works [31,40], that is, calculating the dot
product of two features:

Cp,q = FA
T (p) · FB(q), (2)

where Cp,q represents the correlation between points p and q. Traversing all points on the
source and target feature maps, we obtain the correlation map C ∈ Rh×w×h×w with four
dimensions. When two features are similar, their correlation is closer to its upper limit 1.
In other words, the more similar the features, the greater the correlation value.

Figure 2 shows the network architecture of our method. Given an image pair (A, B),
the feature extractor extracts their semantic features. Since the deeper output of the feature
extractor has more semantic information and a larger receptive field, we use the output of
the last two activating layers to calculate the correlation map. These correlation maps are
combined to fuse correlations by element-wise product. As a result, only two points with
similar features in both activating layers will have a greater correlation, in other words,
if the features in any layer are not similar, the final correlation value will be suppressed.
To explore the consistency of the spatial context, we use 4D convolution to re-estimate the
distribution of correlation, which then guides the semantic matching decision by the soft
argmax function. Specifically, we compute the semantic mapping p→ q of point p in the
feature map FA by calculating an average position of all candidates in the feature map FB
with correlations as weights:

p→ q = ∑
q∈FB

softmax
(

β · Cp,q
)
· q, (3)

where β is the temperature parameter that controls the sharpness of the softmax function. All
components are differentiable so that the network can be trained in an end-to-end manner.

Figure 2. The pipeline of the proposed method. Two images (A, B) are fed into the feature extractor,
and then the features in different layers are used to calculate the correlation maps (C1, C2), which will
be combined and then go through 4D convolution, finally guiding the semantic matching assignment.
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3.2. Feature Extraction

The pre-trained networks on ImageNet database can achieve image classification.
Although these networks can extract the semantic features of the image, the extracted
features are relatively rough since the classification is an image-level task and it only
needs the semantics of the whole image without acquiring the semantics of each point.
This conflicts with the semantic matching task that needs pixel-level semantics for dense
matching. Fortunately, the semantic segmentation task meets this requirement, because it
classifies each point instead of the entire image. Therefore, we propose the semantic-
segmentation-based feature extractor that is pre-trained on the semantic segmentation
dataset such as COCO dataset [41] and PASCAL VOC dataset [42], then adapts to the
semantic matching task. Specifically, its construction process can be divided into two steps
as shown in Figure 3: the first step is to construct a fully convolutional network and train it
to achieve semantic segmentation; the second step intercepts part of the features and then
employs learnable convolution layers to transform the hidden space of features to fit the
semantic matching task. The detailed introduction is given below.

Figure 3. The construction of the feature extractor. It is divided into two steps. The first step is
(a): pre-training the semantic segmentation network, which inputs images, calculates a series of
feature maps and heat maps, and finally outputs semantic segmentation results. The second step
is (b): feature adaptation, where part of the semantic segmentation features (the orange block) are
fine-tuned to be semantic matching features (Φ3, Φ4) by convolution operation.

First, the fully convolutional neural network encodes the image into a series of se-
mantic feature maps, as shown in Figure 3a. The convolution operation explores the
neighborhood structure. For example, it can recognize the low-level structure such as
edges in the image. With the increase of convolution times, high-level structure, that
is, semantic information can be recognized. In Figure 3a, the last output tensor of the
network is the heat map. Different from the feature map, it comes from the feature map by
convolution and up-sampling, but the number of channels is equal to the category number
of semantic segmentation. For example, 21 candidate categories correspond to a heat map
with 21 channels.

Second, although the deeper feature maps of the fully convolutional neural network
describe more semantics, the size of these feature maps is too small. To balance the size
and semantics, we use the output of the 3rd and 4th layers of the network as feature maps,
instead of the last layer. However, the features of the semantic segmentation task cannot be
directly used for semantic matching, because the latter requires more neighborhood and
location information. For example, the points on a car could have the same features in the
semantic segmentation task, but in the semantic matching, it would cause severe matching
ambiguity. As a result, contextual information should be introduced into the features to
make them more distinguishable from each other. To this end, we propose to transform the
hidden space of the features to fit the semantic matching task. Specifically, we use multiple
convolution kernels to convolve the feature map Ψr of the pre-trained network to obtain a
new feature map Φr for the semantic matching task:

Φr = Conv(Ψr), (4)
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where r is rth layer of the pre-trained network, and Conv(·) is the convolution operation.
Here we further concatenate Φ3 and Φ4 to enhance the feature representation ability.

3.3. Four-Dimensional Convolution

The size of the 4D correlation map is (h× w)2, where (h, w) represent height and
width of the feature map. However, and the correlation number of correct matches is
very small, only (h× w). This means that the great majority of the information in the
correlation map corresponds to matching noise, in other words, the correlation map is
easily affected by noise. Since the correlation map serves as the direct cue for semantic
matching assignment, its accuracy directly determines the accuracy of the matching. As a
result, it is necessary to optimize the correlations to reduce noise interference.

There is a prior knowledge for filter correlations: a correct correlation has a coherent set
of supporting correlations in the neighborhood. In other words, the matching continuity in
the neighborhood of the image should be equivalently reflected in the correlation continuity
in the correlation map. Therefore, we explore neighborhood consensus of the correlation
space based on this prior knowledge. Here, we adopt a series of learnable convolution
kernels to slide in the correlation space to constrain the contextual consistency, thereby
correcting some outlier correlations.

Specifically, since the space of the correlation map is four-dimensional, that is, com-
bining two horizontal dimensions and two vertical dimensions of two feature maps, we
use 4D convolution to process the correlation map as shown in Figure 4. It shows the
convolution of Ci,j,k,l’s neighborhood, where (i, j) (k, l) are the coordinates of points p and
q in the feature maps FA and FB, respectively. Taking the width equal to 3 as an example,
the 4D neighbors can be denoted as Ci+∆i,j+∆j,k+∆k,l+∆l , where −1 ≤ ∆i, ∆k, ∆k, ∆l ≤ 1.
Each 4D convolution kernel convolves this neighborhood to learn a specific local structure
pattern. Its process can be regarded as a weighted average with a bias:

Ci,j,k,l =

(
∑
∆i

∑
∆j

∑
∆k

∑
∆l

W∆i,∆j,∆k,∆lCi+∆i,j+∆j,k+∆k,l+∆l

)
+ b, (5)

where the weight W∆i,∆j,∆k,∆l and the bias b are learnable parameters. Similar to 2D
convolution, we use a series of 4D convolutions to capture more complex local structures
to obtain more accurate correlations.

Figure 4. Four-dimensional convolution. The feature maps FA and FB are extracted by a fully
convolutional feature extractor. All pairs of individual matches p and q are represented in the 4D
space of matches (i, j, k, l), and the matching score is stored in the correlation Cp,q. The 4D convolution
can be regarded as the weighted sum of correlations within the 4D neighborhood.

3.4. Objective Function

Semantic matching lacks dense ground-truth correspondences, and manual annotation
is quite difficult. To train the semantic matching network without dense ground truth, one
approach is to use auxiliary labels. For example, the image can be rendered by a known
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3D model [21], the matching between images can be converted to the matching between
3D models, and the latter has known matching relationships. However, the final semantic
matching accuracy of this method depends on the correctness of auxiliary labels and the
accuracy of the conversion process. Another way is to construct training image pairs using
a pre-defined geometric transformation (affine/homography) model [40]. As a result, one
image can be transformed to another and their correspondences can be calculated since
the transformation model are known. However, such synthesized images are still different
from real images, that is, the difference between the synthesized image and the original
real image is rigid, while there are lots of non-rigid differences between two real images.
In contrast, our method directly uses specific labels provided by the semantic matching
dataset as the strong supervision signal to train the network, which avoids the potential
matching inaccuracy caused by rendering or transforming the image.

Instead of using the foreground-mask correspondences as supervision signals [34],
our method uses keypoint labels since they have pixel-level ground-truth matches. This
stronger supervision signal can guide the network to estimate the matching field between
images. Specifically, a landmark loss is defined, which is the average Euclidean distance be-
tween ground-truth keypoint p in the source image and the estimated one p′ by translating
its corresponding target keypoint q to the source with the predicted correspondence:

Llandmark =
1
N

N

∑
i

∥∥pi − p′i
∥∥2

2, (6)

where N is the number of keypoints. During training, the network can gradually estimate
the semantic matching field, where all the estimated keypoints are as close as possible to
the real keypoints in space.

In addition, an unsupervised loss named consistency loss is used to assist network
training, which works on all points in the image, but its constraint ability is not as strong
as the landmark loss. Specifically, consistency loss is defined as the average Euclidean
distance between initial point p in the source image and estimated point p′′ calculated by
source-to-target and then target-to-source mappings:

Lconsistency =
1

N′
N′

∑
i

∥∥pi − p′′i
∥∥2

2, (7)

where N′ is the number of all pixels in the image. We define the overall objective function as

L = λ1Llandmark + λ2Lconsistency, (8)

where λ1 and λ2 are the coefficients for landmark loss and consistency loss, respectively.

4. Experiments

In this section, we first describe the implementation details of the proposed algorithm
(Section 4.1). To analyze the performance of our method, we performed quantitative and
qualitative experiments as well as ablation analysis. The quantitative experiment (Section 4.2)
compares the matching accuracy of different methods. The qualitative experiment (Section 4.3)
evaluates the matching accuracy by analyzing warping quality based on the estimated semantic
matching field. The ablation experiment (Section 4.4) compares different variants of the
model to verify the effectiveness of each module. Finally, we show the application of
semantic matching in label transfer (Section 4.6).

4.1. Implementation Details

We train our network under the PyTorch framework [43] with ResNet-101 [26] as our
backbone, since ResNet has a good ability to extract semantics from images. In order to
obtain semantic features with segmentation information, we pre-trained a ResNet-101-
based fully convolutional network on the COCO2017 dataset [41], which has 20 scenarios.
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The stride of 4D convolution is set to 1, and its kernel size is set to 5 × 5 × 5 × 5. To ensure
that the convolution does not change the size of the correlation map, we set the padding to 2.
To train the network for semantic matching, we employ the training set of the PF-PASCAL
dataset [9] and resize the training image into 320 × 320.

4.2. Quantitative Results

The PF-PASCAL benchmark [9] is built from the PASCAL VOC 2011 dataset [44]
and contains 20 categories and a total of more than 1300 image pairs. These images are
annotated with keypoints, which are used for network training and the evaluation of
semantic matching performance. The PF-PASCAL dataset is divided into three subsets,
namely training set, validation set, and test set. We trained the proposed model on the
training set and used the test set to test the matching performance. To verify the domain
adaptability of the model, we applied the trained model to the PF-WILLOW dataset [23].
The PF-WILLOW dataset consists of 900 image pairs.

To quantitatively evaluate the semantic matching performance, we use the percentage
of correct keypoints (PCK) as the metric. Specifically, we first map the keypoints in the
target image to the source image according to estimated semantic correspondences, then
calculate the Euclidean distance between the estimated keypoint and the real keypoint
in the source image. If the distance is less than α ·max(h, w), where h and w are height
and width of the image or the bounding box, then the estimated keypoint is considered
accurate. The formula of PCK is as follows:

PCK =
1

Np
∑

(ps ,pt)∈P
1[d(ps, Tt→s(pt)) ≤ α ·max(h, w)], (9)

where Np is the number of keypoint pairs (ps, pt) on an image pair, and Tt→s is the
estimated matching field from the target image to the source image. The larger the PCK
value, the more keypoints with correct matching. The final PCK of a benchmark is evaluated
by averaging PCKs of all input image pairs.

Table 1 shows the quantitative experimental results. It can be seen that on the PF-
PASCAL dataset, our method has a higher PCK than other semantic matching methods,
indicating the superior performance of our algorithm. On the PF-WILLOW dataset, our
method also obtains higher PCK values than other algorithms.

Table 1. Evaluation results on PF-PASCAL and PF-WILLOW. The best average PCK scores are in
bold. The data are sourced from [45] and the running results of source codes.

Methods PF-PASCAL (α img) PF-WILLOW (α bbox)

α = 0.05 α = 0.10 α = 0.15 α = 0.05 α = 0.10 α = 0.15

UCN-ST [8] 0.299 0.556 0.740 0.241 0.540 0.665
SCNet [35] 0.362 0.722 0.820 0.386 0.704 0.853
A2Net [46] 0.428 0.708 0.833 0.363 0.688 0.844
CNNGeo [40] 0.460 0.758 0.884 0.382 0.712 0.858
SFNet [34] - 0.787 - - 0.740 -
Weakalign [47] 0.490 0.748 0.840 0.370 0.702 0.799
CAT-FCSS [22] 0.336 0.689 0.792 0.362 0.546 0.692
RTNs [45] 0.552 0.759 0.852 0.413 0.719 0.862
SAOLD [48] 0.528 0.727 0.792 - - -
NCNet [31] 0.542 0.789 0.860 0.440 0.727 0.854

Ours 0.555 0.842 0.932 0.454 0.747 0.863

4.3. Qualitative Results

In line with previous works, we used the keypoint-based PCK as the quantitative
metric for evaluating semantic matching accuracy, but we still hope to qualitatively evaluate
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the dense matching performance of our method. Therefore, we warped the image according
to the estimated dense semantic matching field and analyzed the matching accuracy of
all points according to the warping quality. Specifically, we warped the source image to
make it semantically aligned with the target image. Ideally, the warped images and target
images should have the same semantic content at the same position on the image. Figure 5
presents some warping examples based on our semantic matching method. It shows that
in different scenarios, on the one hand, the object in the warped image is similar to the
object in the target image, and on the other hand, the warped images are smooth with less
distortion and artifacts. This demonstrates that in addition to the keypoints, the network
can also establish good semantic correspondences for other points in the image.

We visualized the keypoint estimation errors as shown by the color line segments
in the first and fourth columns of Figure 5. In these source images, the dots represent
ground-truth keypoints; the boxes represent the estimated keypoints by translating ground-
truth keypoints from target images to the source according to the predicted semantic
correspondence. Ideally, the dot and the box should coincide on the image, that is, they
should have the same coordinates. However, due to the semantic matching error, there is a
spatial deviation between them, as shown by the line segment between the dot and the box.
The longer line segment means the greater error of semantic matching. Figure 5 shows that
in different scenarios, the spatial deviations between the real and estimated keypoints of
our method are small.

source target warp source target warp

Figure 5. Image warping and keypoint estimation visualization. The warped images are semantically
aligned with the target images. The color line segments (in columns 1 and 4) depict semantic matching
errors, where the dots represent ground-truth keypoints, while the boxes represent the estimated
keypoints by keypoint transferring from the target image to the source based on the predicted
semantic matching.
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4.4. Ablation Study

To verify the effectiveness of each module in the network, namely the 4D convolution
and the feature extractor based on semantic segmentation, we designed different algorithm
variants shown in Table 2, where X means that the module is included, while × indicates
that the module is not included. Comparing the first and second rows, PCK is significantly
improved after adding 4D convolution. When comparing the second and third rows, PCK
is further improved after the semantic segmentation information is added to the feature
extractor. It demonstrates that the feature based on semantic segmentation and the 4D
convolution both have positive effects on semantic matching.

Table 2. Ablation analysis. X indicates that the corresponding component is included, and ×
indicates that the component has been removed. The best PCK results are in bold.

Semantic Segment. 4D Convolution PF-PASCAL

α = 0.05 α = 0.10 α = 0.15

× × 0.306 0.499 0.612
× X 0.409 0.740 0.865
X X 0.555 0.842 0.932

A B1 B2 B3

Figure 6. Keypoint estimation visualization. A represents the source image, and B1, B2, and B3 are
target images. The dots in these images are the ground-truth keypoints, the boxes are the transferring
results of keypoints from source to target images according to semantic matching. The color line
segments are the keypoint estimation errors. B1, B2, and B3 correspond to different variant algorithms
from the first row to the third row of Table 2.

We visualized the keypoint estimation as shown in Figure 6 to analyze the importance
of each module from a qualitative perspective. The second to fourth columns are obtained
by the variant algorithms of the first to third rows of Table 2, respectively. The colored line
segments in the images connect real keypoints and estimated keypoints. They indicate
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semantic matching errors since the keypoint estimation is based on keypoint transferring
according to semantic matching. The longer the line segment, the greater the error. Figure 6
shows that by adding the 4D convolution and the information of semantic segmentation,
the colored line segments gradually become shorter, demonstrating the gradual reduction
of keypoint estimation errors and the improvement of semantic matching accuracy.

4.5. Limitation

If the object in the image is occluded, there might be incorrect semantic matching in
the occluded area. Figure 7 is a erroneous matching example due to occlusion, where the
car is partially occluded by a person (see the target image). Since it lacks the semantic
information of the car in occluded regions, the semantic matching cannot be estimated
correctly. Based on such incorrect semantic correspondences, the warped image cannot be
guaranteed to be semantically aligned with the target image (see the blue boxes).

source target warp

Figure 7. Erroneous semantic correspondence due to occlusion. The orange solid line is the estimated
match by our algorithm; the dashed line is the ground-truth match. The right image is a warping
result according to dense semantic matching between source and target images, which should be
semantically aligned with the target theoretically. The blue boxes mark the areas with mismatches
and bad warping.

4.6. Application

There are many applications of semantic matching. Here, we give an example of its
application in label transfer. Manual labeling is very time-consuming work; however, if
there are some known labels in the images, transferring them to other images through
algorithms can greatly reduce labor costs. For example, we can transfer the foreground
mask across images based on semantic consistency as shown in Figure 8. The first and
third columns are semantically similar images. According to the estimated pixel-to-pixel
semantic matches between them, the known foreground masks of one image are easily
transferred to another one. The last column shows transfer results.

A real mask B estimation

Figure 8. Semantic label transfer. The second column shows the real foreground masks of A. The last
column is the estimated mask of B, which is obtained by warping A’s mask according to the dense
semantic matching between A and B.
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5. Conclusions

We have proposed a convolutional neural network to achieve dense semantic match-
ing. To remove some potential matching errors, we combined the feature extraction based
on semantic segmentation and the neighborhood consensus exploration based on 4D con-
volution. Quantitative and quantitative experiments demonstrate that our method has
higher semantic matching accuracy than other methods, and can establish correct and
smooth semantic matching for all points (not only keypoints) in the image. The ablation ex-
periment shows the benefits of semantic segmentation information and 4D convolution on
matching accuracy. It indicates that the proposed consideration of semantic segmentation
information can enrich the semantic representation at the feature level, thereby reducing
mismatches. We have presented the application of semantic matching in label transfer.

There are two future research directions. One is to study the estimation of dense
semantic matching between two images with occlusion or truncation or different perspec-
tives. In these cases, a point may need to combine neighborhood features and matches,
or it may need to consider the global representation. Another direction is to study potential
applications, such as exemplar-based image translation and enhancement. These applica-
tions need to establish semantic matching between the template and the image, so that the
image can obtain information from the same semantic region on the template.
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