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Abstract: This work reports, for the first time, the synthesis of silver nanoparticles using extracts of
the species of Sargassum natans and Sargassum fluitans (AgNPs-S). Their antibacterial and catalytic
properties are compared with silver nanoparticles obtained by chemical synthesis (AgNPs-C). The
characterization of AgNPs-S and AgNPs-C was carried out using ultraviolet–visible spectroscopy
(UV–Vis), dynamic light scattering (DLS), zeta potential, a scanning electron microscope (SEM),
X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric
analysis. The synthesis of silver nanoparticles using Sargassum extract was optimized through
varying experimental parameters, such as the type of solvent used to prepare the extract, the volume
of the extract, and the pH of the system. The most efficient sample (AgNPs-S) was prepared with a
water–ethanol-based extract, using a 3:1 volumetric ratio of extract: a precursor salt with the addition
of 1 mL of NaOH pH = 14. The AgNPs-C were spherical in shape, with an average particle size of
11.55 nm, while the AgNPs-S were polyhedral shaped, with an average particle size of 26.39 nm. The
synthesized AgNPs-S were found to have significantly higher catalytic activity for the degradation of
methylene blue and more effective antibacterial activity against Staphylococcus aureus and Pseudomonas
aeruginosa than AgNPs-C.

Keywords: Sargassum extract; silver nanoparticles; catalytic activity; antibacterial activity

1. Introduction

For years, the surface waters of the Caribbean and western central Atlantic were
considered oligotrophic, with low surface chlorophyll, and hence occasionally described
as “ocean deserts” [1]. Nevertheless, in 2009 and 2010, massive phytoplankton blooms
were recorded in the eastern Caribbean. Satellite information showed that such events
had not occurred in the previous 30 years [2,3]. Even so, the following year, the same
unusual case was seen, and since 2011, huge amounts of Sargassum have been reported
intermittently in what was until then known as the Atlantic Sargassum belt [4,5]. The
unusual is becoming the usual, as aggregations of Sargassum have washed up on the shores
around the Caribbean, with a maximum of over 20 million metric tons in June 2018 [4,6].
Chavez et al. [7] reported for the Mexican Caribbean yearly averages of 3.2 × 103 and
1.7 × 103 m3/km/month for 2018 and 2019, respectively.

The enormous amount of Sargassum and its rotting on the waterfront is far from attrac-
tive to visitors, bringing about anxiety on the part of the travel industry [7]. In addition,
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negative environmental consequences on the coastline are a cause for concern [8–10]. The
solution was seen to be the mechanical collection of Sargassum before its arrival on beaches
and tourist destinations. However, this, too, produces problems [11–20]. The management
and disposal of the collected Sargassum has, as yet, been little studied. Storing it or bury-
ing it seems unviable, due to the contamination produced; the problem has simply been
moved inland.

On the other hand, in recent years, the synthesis of nanoparticles using molecules
present in plants, fungi, bacteria, or algae has been hailed as an ecofriendly process, often
labelled “green synthesis” or “biosynthesis”. Thus, many studies have been undertaken on
biosynthesized silver nanoparticles (AgNPs), thanks to their excellent natural physicochem-
ical properties [21–26]. The biosynthesis of AgNPs using the biomolecules of Sargassum
seems to offer a win-win solution, with unwanted Sargassum collected on the Mexican
Caribbean being used for sustainable activity for the inhabitants of the region, and the
actual collection of the Sargassum from the shore being given added value. This type
of algae has a high bioactive compound content, which includes polysaccharides and
terpenoids [27]. Its ability as a reducing agent is attributed to these types of phenolic com-
pounds [28], while polysaccharides are involved in the stabilization of nanoparticles [27].
It has recently been reported [29] that Sargassum species arriving on the Caribbean coast
have a high phenolic compound content, which can be used to reduce metal ions.

The objective of this research was, therefore, to explore the use of this collected
Sargassum as a source of reducing agents and stabilizers for the green synthesis of metallic
nanoparticles. As AgNPs have been extensively studied, they are the obvious first choice
for green synthesis, since the range of reported data allows for a broad comparison with
other sources of synthesis. The results of synthesizing AgNPs using Sargassum as a natural
source for the green synthesis of AgNPs are presented, along with their catalytic activity by
means of methylene blue degradation and antibacterial properties against Staphylococcus
aureus and Pseudomonas aeruginosa.

2. Materials and Methods
2.1. Materials

The Sargassum used in this work was collected from the Mexican Caribbean coast.
Previous studies indicate that the Sargassum arriving in this region is a mixture of two
species: Sargassum natans and Sargassum fluitans [29,30]. Analytical-grade AgNO3 was
used as the precursor salt for the synthesis of AgNPs. For the chemical synthesis of the
nanoparticles, NaBH4 and polyvinylpyrrolidone (PVP) were used as reducer and stabilizer
agents. Both reagents are of analytical grade. Reagent-grade NaOH was used to vary
the pH of the green synthesis. Reagent-grade methylene blue was used to evaluate the
catalytic properties of silver nanoparticles. All the reagents were purchased from Sigma-
Aldrich. The aqueous solutions of chemical reagents and dilutions were prepared using
distilled water.

2.2. Preparation of Sargassum Extract

Sargassum extract was obtained by the infusion method. The Sargassum was given
several washes, using distilled water, to remove dirt and sand. Then, 1 g of Sargassum was
weighed out and placed in a 100 mL beaker, and 50 mL of the solvent used was added to the
beaker. In this study, three solvents were evaluated: water, ethanol, and a water–ethanol
mixture (50%). The mixture was subsequently stirred magnetically for 30 min at 60 ◦C.
The mixture was then filtered, using Whatman # 41 filter paper, and the liquid extract was
allowed to cool to room temperature, then refrigerated and stored at 4 ◦C for later use.

2.3. Green Synthesis of AgNPs

The synthesis of AgNPs using the Sargassum extract was carried out by mixing the
10 mM AgNO3 solution, prepared with distilled water, with the extract. The experimental
was conducted at room temperature under resting conditions. First, the type of extract was
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evaluated using 2 mL of AgNO3 mixed with 1 mL of the extract obtained with a different
solvent (water, ethanol, or 50% water–ethanol). Subsequently, the volumetric ratio between
the extract and the precursor salt was varied, in such a way that ratios 1:4, 1:3, 1:2, 1:1, 2:1,
3:1, and 4:1 were evaluated. Finally, the change in pH was evaluated, adding 1 mL of a
NaOH solution of a different pH value (8, 10, 12, and 14). The samples obtained were stored
for later UV–vis characterization. Once the UV–vis characterization was carried out, the
most efficient sample was selected according to the characteristics of the absorption peak.
Only this sample was named AgNPs-S, and it was used to perform the characterization
and to evaluate the catalytic and antibacterial properties.

2.4. Chemical Synthesis of AgNPs

The chemical synthesis of AgNPs was carried out based on the chemical reduction
method previously reported in the literature [31,32]. Four mL of PVP, which acts as a
stabilizing agent, were added to 4 mL of 10 mM AgNO3 in a 50 mL beaker. Subsequently,
10 mM NaBH4 was gradually added, at a rate of 100 µL per minute, until 4 mL was added.
The mixture was kept at room temperature under magnetic stirring for 3 h. Finally, this
sample, called AgNPs-C, was stored for later analysis and characterization.

2.5. Characterization of AgNPs

Silver nanoparticles, obtained by both green and chemical methods, were charac-
terized using different techniques to determine their physical characteristics. UV–vis
spectroscopy was performed using a METASH 5000M spectrophotometer. The spectra
were recorded between 800 and 200 nm, with a step of 1 nm, using quartz cells. The
nanoparticle samples were diluted with distilled water in a 1:10 ratio. X-ray diffraction
was used to determine the crystalline nature and crystal size of the AgNPs-S and AgNPs-C,
using a a Rigaku Ultima IV diffractometer. The radiation used was Cu Kα and the 2θ
degree range was from 20 to 80◦.

The morphology and particle size of the AgNPs-S and AgNPs-C were evaluated using
a Hitachi SU8230 cold-field emission scanning electron microscope with a voltage of 1 kV.
The particle size distributions were calculated by dynamic light scattering (DLS), using
a Litesizer 500 from Anton Paar. The measurements were taken with a semiconductor
laser diode (λ = 658 nm) with a fixed side angle (90◦) and a disposable cell in automatic
mode, with the instrument optimizing the number of runs, the optical filter, and the focus
position. The data were collected with a measurement duration of 10 s and the temperature
of the sample at 25 ◦C. The colloidal stability was determined using zeta potential with the
Litesizer 500 as an average of three measurements. For this analysis, the samples AgNPs-S
and AgNPs-C were placed into an Anton Paar Univette reusable cuvette. The temperature
was set at 25 ◦C and the pH value of the dispersed silver nanoparticles was adjusted by
adding aqueous 1 M HNO3 or 1 M NH3OH. The amount of water, organic compounds,
and, consequently, the silver concentration in the AgNPs-S and AgNPs-C samples were
determined by thermogravimetric analysis (TGA), using a Mettler Toledo TGA/DSC 2+
thermal analyzer. The analysis was performed with a heating rate of 10 ◦C/min between 30
and 700 ◦C. Finally, Fourier transform infrared (FTIR) spectroscopy was used to determine
the functional groups present in the organic compounds of the Sargassum extract. The
compounds involved in the reduction and stabilization of the AgNPs were synthesized
with the Sargassum extract, using a Perkin Elmer Spectrum Two FTIR spectrometer. On
dried samples, the FTIR spectra were recorded using a wavelength from 400 to 4000 cm−1.

2.6. Catalytic Properties of AgNPs

Catalytic activity was evaluated through the degradation of methylene blue. The
concentration of the dye was evaluated at 1, 2, 3, 4, and 5 ppm. According to the TGA results,
the concentration of the AgNPs-S and AgNPs-C samples was 2.23 mg/mL and 3.8 mg/mL,
respectively. Therefore, the AgNPs-C was diluted to obtain the same concentration, that is,
2.23 mg/mL. The degradation reaction was carried out by adding 30 µL of nanoparticles to
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10 µL of 20 mM NaBH4 and 1 mL of methylene blue in a quartz cell. The degradation of
methylene blue was analyzed by UV–vis spectroscopy, monitoring the intensity of the dye
absorption band, which appears at 664 nm in the ultraviolet–visible spectrum.

2.7. Antibacterial Properties of AgNPs

Gram-positive Staphylococcus aureus #6538 and gram-negative Pseudomonas aeruginosa
#13338 were purchased from American Type Culture Collection (ATCC) and grown in
Luria Bertani media (LB). The antibacterial activity (AA) of AgNPs-S and AgNPs-C was
evaluated by the microdilution method. Different concentrations of AgNPs were used
(1000, 500, 250, 125, and 62.5 µg/mL) suspended in a phosphate buffered saline (PBS) media
at 1 wt.% as a dispersant agent. The PBS buffer (200 mL) was prepared with 159.24 mg
of KH2PO4, 258.6 mg of K2HPO4, and 1.753 g of NaCl dissolved in distilled water. The
interaction of bacteria and AgNPs were evaluated after 1 and 24 h of contact, in three
independent, duplicated experiments. First, inoculums of each microorganism were grown
in LB media at 37 ◦C for 16 h and adjusted by optical density to obtain a final concentration
of 2 × 105 CFU/mL. A 1:1 mix of bacteria and nanoparticles was performed at 1 and 24 h
and incubated at 37 ◦C. An aliquot (50 µL) of each sample was plated in LB dishes and
incubated at 37 ◦C for 16 h. AA was calculated following the methodology of previous
work [21]. Data were subjected to statistical analysis using one-way ANOVA with Minitab
19.2 ®, followed by Tukey’s comparison test.

3. Results and Discussion

Some important parameters can be considered in the green synthesis process to obtain
highly stable nanoparticles, such as the selection of the best plant and the optimization of
the reaction conditions: for example, light, temperature, pH, mixing speed, concentration,
etc. The optimization of these crucial factors could affect the morphology and other
properties of the nanoparticles [33,34]. Therefore, we first propose modifying the solvent
used to make the extract, the salt concentration, and the pH in order to obtain a synthesis
route that provides silver nanoparticles with a monodisperse size, with good catalytic and
antibacterial properties.

Figure 1a shows the UV–vis analysis of the AgNPs samples synthesized with the
three solvents at a 1:2 volumetric ratio of extract salt. When the ethanol Sargassum extract
is employed, no absorption peak is observed, suggesting the nonpresence of AgNPs.
On the other hand, when the extract obtained with water is used, an absorption peak
appears at 441 nm, which is a characteristic surface plasmon resonance (SPR) band for
silver. However, this peak is very wide and has a very low intensity, indicating a low
concentration of nanoparticles of a wide size range. Finally, the spectrum corresponding to
the sample in which the water–ethanol Sargassum extract is used shows an absorption peak
at 432 nm. Furthermore, the absorption peak has a high absorbance, suggesting a high
concentration of AgNPs. Figure 1b shows the UV–vis spectra by varying the volumetric
ratio of extract salt using the water–ethanol Sargassum extract. As seen, as the volume of
extract increases, the AgNPs absorption peak increases in intensity, indicating an increase
in the concentration of nanoparticles. Regarding the position of the AgNPs absorption
peak, there is no significant variation. In all the spectra, this signal is between 422 nm and
430 nm.
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Figure 1. UV–vis analysis of the AgNPs synthesized with Sargassum extract, varying: (a) the extract-
ing solvent (the volumetric ratio of extract:salt was 1:2), (b) the water–ethanol extract:precursor salt
volumetric ratio, and (c) the pH of the NaOH solution added, using the water–ethanol extract with an
extract:salt volumetric ratio of 3:1. (d) The UV–vis spectrum of AgNPs synthesized by the chemical
method.

Although the spectrum corresponding to the 4:1 ratio shows a more intense absorption
peak, its position (430 nm) and width suggest the presence of larger AgNPs, with a wide
size dispersion. Thus, the spectrum with the absorption peak of greatest intensity, centered
at the lowest wavelength (422 nm), is that of the 3:1 volumetric ratio. Therefore, this
sample was selected for the subsequent analysis. According to various reports [35–37],
the synthesis of uniform and monodisperse nanoparticles occurs most readily in alkaline
conditions. Figure 1c shows the UV–vis spectra of the samples in which 1 mL of NaOH is
added at different pH values. It can be seen that, as a NaOH solution of higher alkalinity
is used, the absorption peak of the AgNPs increases significantly. Furthermore, as far as
its position is concerned, the peak shifts towards shorter wavelengths. In this way, the
sample with NaOH (pH = 14) shows the most intense absorption peak, centered at 408 nm,
indicating the presence of a high concentration of AgNPs of a small and uniform size.
Therefore, the most efficient sample was selected to carry out the characterization and
evaluation of the antibacterial and catalytic properties. This sample is named AgNPs-S
from here on. The selection was carried out based on the comparison of all UV–vis spectra.
As can be seen, AgNPs-S corresponds to the sample in which the water–ethanol-based
extract was used with a volumetric extract:precursor salt ratio of 3:1 and a pH=14—that
is, the sample corresponding to the dark red spectrum in Figure 1c. Finally, Figure 1d
shows the UV–vis spectrum of AgNPs-C obtained by chemical synthesis, using NaBH4
and PVP as reducing and stabilizing agents, respectively. The spectrum shows a narrow
peak, centered at 395 nm, suggesting the presence of small nanoparticles with a narrow
dispersion of size. This sample, named AgNPs-C, was used to compare the catalytic and
antibacterial activities of the nanoparticles.
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Figure 2 shows the X-ray diffraction (XRD) patterns of the prepared AgNPs. Figure 2a
shows the XRD pattern of the AgNPs-C obtained from the conventional chemical reduction
method, where diffraction peaks at 2θ = 38.20◦, 44.22◦, 64.55◦, and 77.91◦ were assigned
to (111), (200), (220), and (311) planes, respectively, of the face-centered cubic (fcc) lattice
of Ag (JCPDS No. 87-0597). The XRD pattern of the AgNPs-S (Figure 2b) shows similar
diffraction peaks of Ag with a fcc lattice. However, other diffraction peaks were observed at
2θ = 31.76◦ and 45.50◦, corresponding to the cubic phase of sodium chloride (NaCl, JCPDS
No. 75-0306), and a further diffraction peak was observed at 2θ = 34.80◦, corresponding to
the cubic phase of potassium chloride (KCl, JCPDS No. 75-1674). NaCl and KCl phases may
be associated with seawater residues in the Sargassum, since it was only shade dried, hand
crushed, and washed with deionized water. The crystallite size of the nanoparticles was
calculated using the Debye–Scherrer equation [38], using the half width of the intense (111)
reflection. The results were 10.12 and 23.85 nm for the AgNPs-C and AgNPs-S samples,
respectively. The values of the crystallite sizes are close to those measured with STEM
images, showing that the particles are single crystal.
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It is known that the antibacterial effect of AgNPs is closely related to their size and
shape [39,40]. Therefore, an exhaustive characterization is recommended to understand
the properties of the nanoparticles obtained. Figure 3 shows the bright field-scanning
transmission electron microscopy (BF-STEM) images of the AgNPs obtained. Figure 3a
shows the BF-STEM image of the AgNPs-C. As can be observed, the AgNPs-C have
homogeneous particle sizes. Figure 3b shows a BF-STEM image of higher magnification.
It is clear from the image that there are no agglomerates in the sample and that the
morphology of the nanoparticles is almost spherical. The average particle size seen in
the BF-STEM images was 11.55 nm (Figure 3c). Figure 3d shows the AgNPs-S, which
have different morphologies from the AgNPs-C. In this case, most of the nanoparticles are
polyhedral in shape (Figure 3e). In the inset of Figure 3e, a color look-up table (LUT) image
clearly illustrates that the nanoparticle (green) is coated by an organic compound (yellow)
from the Sargassum extract. The average particle size of the STEM images, corresponding
to AgNPs-S, was 26.39 nm (Figure 3f) greater than the AgNPs-C. It has been reported that
polyhedral AgNPs (decahedral) have higher bactericidal activity than spherical AgNPs [41],
as the (111) surface planes are more catalytic than the (100) surface planes; therefore, despite
the size difference, we would expect AgNPs-S to have an enhanced antibacterial effect.
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The DLS technique was also used to determine the particle size and size distribution
profile of the AgNPs. To carry out this analysis, the AgNPs-S and AgNPs-C samples were
diluted in order to set the concentration at 0.223 mg/mL. Figure 4 shows that the average
particle size of the AgNPs-C was 12.71 nm, with a standard deviation of 0.739 nm. For
the AgNPs-S, the average particle size was 27.59 nm with a standard deviation of 3.38 nm.
As can be seen, the dispersion of the nanoparticle size corresponds to a single modal
distribution for both samples; however, AgNPs-S shows a wide particle size distribution as
observed by BF-STEM. The average particle size determined by DLS was slightly larger
than that determined by BF-STEM. This is because the DLS technique measures the mean
hydrodynamic diameter of the AgNPs coated by the organic layer, and this hydrodynamic
diameter is affected mainly by the viscosity and concentration of the medium. On the
other hand, BF-STEM only gives the diameter of the nanoparticles obtained from processed
images with high contrast. It is clear from the BF-STEM images and DLS values that there
were no aggregates. The almost complete nonaggregation of both samples and their good
size homogeneity is an outstanding result because these characteristics are usually very
difficult to achieve, in particular with green-synthesized nanoparticles.

The zeta potential is a key indicator of the stability of colloidal dispersions. This
technique gives a measurement of the “effective” electric charge on the nanoparticle
surface and quantifies the charge stability of the colloidal nanoparticles. Particles with a
negative zeta potential will bind to positively charged surfaces, and vice versa. Hence,
the zeta potential also suggests how the particle will interact with other nanoparticles.
Therefore, this becomes an important parameter when designing a nanoparticle for a
specific application. Figure 5 shows the results of the zeta potential analysis. Data collected
from the silver nanoparticles show negative potentials, with values of less than 30 mV,
which indicates good physical stability of both nanosuspensions and guarantees that the
particles do not aggregate. The sign minus is mostly conferred by the radical groups, such
as carboxylic and hydroxyl radicals, present at the surface of the nanoparticles. As can be
seen, the zeta potential becomes more negative as the solution goes from acid to alkaline.
At pH 3 both types of nanoparticles exhibit almost the same zeta potential, but, as the pH
is increases, the zeta potential of AgNPs-S falls lower than that of AgNPs-C. This suggests
that in alkaline media, the AgNPs-S nanoparticles are more stable and explains why at pH
14, the synthesis of uniform and monodisperse nanoparticles occurred.
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Figure 4. DLS graph of the AgNPs-C and AgNPs-S in distilled water. The DLS values shown are the
mean number to compare with BF-STEM images easily.
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Figure 5. Analysis of zeta potential of the AgNPs-C and AgNPs-S at 0.223 mg/mL.

There are different methods to determine the concentration of nanoparticles in a solu-
tion. Among them, TGA is an easy and common method [42–45]. TGA measures the mass
change in materials, associated with thermal degradation and its transition phase [46,47].
Thus, TGA can quantitatively resolve complex mixtures because of the characteristic ther-
mal decomposition temperature of each component. Nanoparticle concentration has been
determined by the TGA technique and reported previously [42–45]. So, to determine the
concentration of silver in the AgNPs-C and AgNPs-S samples, 40 µL of each were analyzed
using TGA. Figure 6a shows the graph obtained for the AgNPs-C. As can be seen, there is
a significant weight loss between 30 ◦C and 123 ◦C. This is due to the evaporation of water
and organic compounds from the samples. Above this temperature, there are no changes
in the sample weight. Therefore, it can be assumed that the weight only corresponds to
Ag. Taking into account that the volume used in the analysis is 40 µL, the concentration
of nanoparticles is 3.8 mg/mL for the AgNPs-C sample. Figure 6b shows the analysis of
the AgNPs-S sample. The behavior of the TGA curve is very similar. Abrupt weight loss
occurs between 30 ◦C and 115 ◦C. This variation is due to the evaporation of water and
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organic compounds from the Sargassum extract. After 115 ◦C, the behavior of the curve
is linear, and the weight value of the sample is constant. In this case, the concentration of
AgNPs-S is 2.23 mg/mL. The efficacy of the TGA method rests on the fact that the organic
components are completely volatilized, and the metallic component is left as a residue.
The concentration of nanoparticles is of great importance since, based on these values, the
evaluation of the catalytic and antibacterial properties was carried out.
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Figure 6. TGA analysis of the samples: (a) AgNPs-C and (b) AgNPs-S.

Figure 7 shows the FTIR spectra of the ethanol–water Sargassum extract and AgNPs-S.
As can be seen, both signals are similar. Regardless of the differences, the wavelength
bands above 2000 cm−1 are aligned. However, below this value, the bands of the AgNPs-
S synthesis shift to those from the Sargassum extract. The spectra also have variations
in intensity, with almost all the bands from Sargassum being more intense than those
from AgNPs-S. The bands that remain in the latter spectrum correspond to the stabilizing
compounds of the nanoparticles. In a detailed analysis, a very strong, broad band is seen in
the region between 3700 and 2500 cm−1, which is composed of various signals. Centered
around 3400 cm−1, there is a broad band caused by the overtone of the C=O stretching
band. In addition, between 3000 to 2840 cm−1 are the C-H stretching band (centered at
2925 cm−1) and the O-H stretching band of carboxylic acid at 3300–2500 cm−1 (centered
around 3000 cm−1). At 2350 cm−1, there is a sharp transmittance oscillation caused by
the O=C=O stretching of carbon dioxide. Cyclic amides show bands around 1750 and
1700 cm−1. Both FTIR present C-H bending bands between 1465 and 1365 cm−1, and
the O-H bending band of carboxylic acid is centered at 1416 cm−1. They also exhibit
C-O stretching bands at 1259 and 1080 cm−1. Also present at 873 cm−1 is the one-band
product of C-H bending. These results suggest the involvement of phenolic compounds
and polysaccharides in the synthesis of nanoparticles, as has been previously reported [30].

The catalytic properties of the silver nanoparticles were evaluated through the degra-
dation of methylene blue. Monitoring was carried out using UV–vis to obtain a spectrum
every minute. From the calibration curve, the concentration and percentage of degradation
in each spectrum were determined. Figure 8 shows the degradation curves obtained when
evaluating methylene blue concentrations from 1 ppm to 5 ppm. Figure 8a corresponds
to the AgNPs-S sample. As can be seen, in all cases, a rapid degradation occurs in the
first minutes. When methylene blue was used at 1 ppm, a maximum degradation of 99.9%
was achieved after 5 min. After this time, there were no changes in the concentration of the
dye. The curves obtained for 2 ppm and 3 ppm show very similar behavior. The degra-
dations obtained after 10 min were 99.8% and 98.9% for 2 ppm and 3 ppm, respectively.
When methylene blue is used at 4 ppm, rapid degradation of the dye occurs in the first
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4 min. Afterwards, the reaction begins to stabilize and degradation occurs slowly, until
an efficiency of 95.7% in 10 min is obtained. Finally, the evolution of the degradation of
methylene blue at 5 ppm occurs similarly. However, in this case, the maximum degradation
was 95.6%. On the other hand, Figure 8b shows the degradation curves when using the
AgNPs-C sample. The curves corresponding to methylene blue at 1 ppm, 2 ppm, and
3 ppm are very similar, obtaining degradations of 99.7%, 97.2%, and 91.7%, respectively. In
samples in which the dye was used at 4 ppm and 5 ppm, a rapid degradation is observed
in the first 2 min. After this time, the degradation rate becomes slow and the reaction
stabilizes. In this way, degradation percentages of 79% and 75% are obtained for methylene
blue at 4 ppm and 5 ppm, respectively. Comparing the results obtained from the AgNPs-S
and AgNPs-C samples, it can be seen that nanoparticles synthesized with Sargassum are
more efficient in all the conditions evaluated. The percentage and the rate of degradation
are higher when using the AgNPs-S sample. These results demonstrate the ability of
nanoparticles synthesized with Sargassum extracts to degrade organic dyes quickly and
effectively.
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Figure 7. FTIR analysis of the Sargassum extract and AgNPs-S.
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Figure 8. Curves of methylene blue degradation at different concentrations using: (a) AgNPs-S, and
(b) AgNPs-C; the nanoparticle concentration in both samples was 2.23 mg/mL.

Recent advances have been made in green methods to synthesize antimicrobial sys-
tems based on nanomaterials [48–50], which aim to benefit the use of natural resources
obtained from seaweed. In this regard, the antibacterial activity assays (AA) of AgNPs-S
obtained from Sargassum by the green method (Figure 9a,c) and their comparison with the
conventional chemical method (Figure 9b,d) were evaluated after 1 and 24 h of interaction
in liquid media against S. aureus (Figure 9a,b) and P. aeruginosa (Figure 9c,d). It can be
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seen that the AA of AgNPs-S is higher than AgNPs-C in both microorganisms evaluated.
This may be associated with the size of the nanoparticles and their stability in the PBS
aqueous media. It has been reported [51] that the stability of AgNPs in a PBS buffer is
not affected in the early stages of contact (1 and 24 h). In this work, no apparent color
changes of AgNPs-S and AgNPs-C solutions in the PBS buffer were observed during the
antibacterial test, indicating the stability of the nanoparticles. After 1 h of contact, the
AA of AgNPs in contact with gram-positive bacteria (Figure 9a,b) is directly proportional
to the number of nanoparticles. However, after 24 h of contact, all the evaluated AgNPs
showed complete bacterial inhibition for different concentrations, demonstrating their
potential antibacterial properties. High susceptibility of gram-negative P. aeruginosa was
determined in contact with AgNPs-S, with an AA of over 80% in all the concentrations
evaluated. This behavior is associated with the differences in the bacterial wall composition
of the microorganisms, where gram-negative bacteria have a higher susceptibility when
in contact with metal nanoparticles by the complex formation between nanoparticles and
peptidoglycan presenting on the surface of bacteria [52]. Finally, a statistical analysis, using
one-way ANOVA followed by Tukey’s comparison test, was carried out. All experiments
were carried out in triplicate. The data obtained from the statistical analysis are shown in
the Table 1. The results presented are the average measurements (mean) of the runs (n = 3)
with standard deviation (SD) with a p > 0.05.
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Figure 9. The impact of AgNPs on the antibacterial activity (AA) percentage after 1 h (lighter)
and 24 h (darker) of contact against gram-positive S. aureus and gram-negative P. aeruginosa. (a)
AgNPs-S against S. aureus, (b) AgNPs-C against S. aureus, (c) AgNPs-S against P. aeruginosa, and (d)
AgNPs-C against P. aeruginosa. Error bars represent statistical differences at p ≤ 0.05 calculated by
the Tukey–Kramer test.
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Table 1. Results of ANOVA statistical analysis for the impact of AgNPs on antibacterial activity.

S. aureus
(Mean AA ± SD)

P. aeruginosa
(Mean AA ± SD)

t = 1 h t = 24 h t = 1 h t = 24 h

AgNPs-S
(Concentration µg/mL)

1000 73.71 ± 9.0 99.66 ± 0.3 65.85 ± 8.5 99.95 ± 1.0

500 58.85 ± 4.2 99.33 ± 0.6 54.85 ± 8.0 99.71 ± 1.5

250 48.75 ± 9.5 98.23 ± 2.7 32.85 ± 6.5 99.85 ± 0.5

125 41.28 ± 4.5 98.33 ± 1.5 74.57 ± 6.0 99.71 ± 1.5
62.5 38.42 ± 5.5 98.33 ± 2.0 10.00 ± 9.0 99.85 ± 0.5

AgNPs-C
(Concentration µg/mL)

1000 92.28 ± 6.0 99.95 ± 0.2 94.42 ± 1.5 99.99 ± 0.2
500 78.28 ± 9.0 99.99 ± 0.1 93.71 ± 3.0 99.71 ± 1.5
250 67.71 ± 4.0 99.90 ± 0.5 83.85 ± 8.5 99.85 ± 1.0
125 51.03 ± 1.5 99.99 ± 0.1 84.28 ± 5.0 99.71 ± 1.5
62.5 37.28 ± 1.0 99.99 ± 0.1 89.42 ± 8.0 99.85 ± 0.5

The impact of AgNPs on antibacterial activity obtained from different Sargassum
species has been reported previously [50,53]. In both studies, AA is attributed to the
size of the nanoparticles (20–100 nm) and the qualitative inhibition zone against several
microorganisms. According to our results, stable AgNPs ranging around ca. 20 nm
can be produced from Mexican Sargassum using a green method and result in obtaining
high antibacterial properties at various nanoparticle concentrations. The antibacterial
mechanisms of AgNPs have been attributed to the imbalance generated by the contact of
nanoparticles and microorganisms, which produce irreversible changes in permeability,
oxidative stress, and cell wall rupture [54–56]. According to Morones et al. [57], antibacterial
activity is induced by the nanoparticle size and distribution in aqueous media at early
stages of contact. This suggests that the simultaneous processes can be summarized in three
steps: (1) nanoparticles can adhere to the bacterial cell wall and interfere in permeability,
(2) nanoparticles can penetrate the bacteria and interact with intracellular components,
such as DNA and mitochondria, by the formation of reactive oxygen species (ROS), and
(3) the Ag ion can be released from AgNPs in aqueous media. As a result, AgNPs can be
considered a new generation of bactericidal nanomaterials.

4. Conclusions

In this paper we report the use of Sargassum extract to synthesize silver nanoparticles.
By varying the different parameters, such as the solvent used to make the extract, the volu-
metric ratio of extract to precursor salt (AgNO3), and the pH, a synthesis route was defined.
The Sargassum extract obtained with the water–ethanol mixture was shown to contain a
higher content of organic compounds that act as reducing agents and stabilizers for the
synthesis of AgNPs. Variation in the volume of the extract can improve the synthesis of
nanoparticles. Finally, alkaline conditions favor the synthesis of uniform and monodisperse
nanoparticles.

From the results, it is seen that green synthesis provides monodispersed polyhedral
nanoparticles of around 26 nm (±2 nm) and high stability (confirmed by zeta potential),
with a concentration of 2.23 mg/mL. This good size homogeneity and lack of agglomeration
are outstanding and, following evaluation of their catalytic and antibacterial activity, show
better performance than those obtained by chemical synthesis, despite their smaller sizes
and higher concentration, 11.55 nm and 3.8 mg/mL, respectively.

In conclusion, algae-based synthesized AgNPs have excellent antibacterial and cat-
alytic activity and are cheap, practical, sustainable, widely available, and environmentally
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safe. The synthesized nanoparticles could be of great use in various fields, such as the
chemical and textile industries, and especially in environmental remediation.
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