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Abstract: In 2014, we designed and implemented BeePi, a multi-sensor electronic beehive monitoring
system. Since then we have been using BeePi monitors deployed at different apiaries in northern Utah
to design audio, image, and video processing algorithms to analyze forager traffic in the vicinity of
Langstroth beehives. Since our first publication on BeePi in 2016, we have received multiple requests
from researchers and practitioners for the datasets we have used in our research. The main objective
of this article is to provide a comprehensive point of reference to the datasets that we have so far
curated for our research. We hope that our datasets will provide stable performance benchmarks
for continuous electronic beehive monitoring, help interested parties verify our findings and correct
errors, and advance the state of the art in continuous electronic beehive monitoring and related areas
of AI, machine learning, and data science.
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1. Introduction

In 2014, we designed and built BeePi [1–3], a multi-sensor electronic beehive monitor-
ing (EBM) system. While BeePi can be used to monitor bee traffic in the vicinity of beehives
of various common designs (e.g., Dadant, Top-Bar, Langstroth [4]), all our EBM research
has been conducted on honeybee colonies in Langstroth hives [5]. In this article, we use the
terms hive and beehive to refer to a Langstroth beehive and use the terms bee and honeybee to
refer to the Apis Mellifera honeybee [6].

The original BeePi monitor consisted of a raspberry pi 2 computer, a pi T-Cobbler,
a breadboard, a waterproof temperature sensor, a pi camera, a ChronoDot clock, and a
Neewer 3.5 mm mini lapel microphone placed above the landing pad of a Langstroth hive.
All BeePi hardware components, after being soldered and connected with jumper cables,
fit in a single Langstroth super (i.e., a wooden box of specific dimensions). Small holes
were drilled in the super’s walls for hardware ventilation. Since 2014 we have been using
the BeePi platform to design audio, image, and video processing algorithms to analyze
forager traffic in the vicinity of Langstroth hives [7–11]. With the exception of the raspberry
pi computer model, which has been upgraded in some deployed BeePi monitors to pi 3 or
to pi 4, we continue to use the same hardware design.

Reproducibility and replicability have been two fundamental objectives of the BeePi
project from its inception: other researchers, practitioners, and citizen scientists must
be able to reproduce our experiments and replicate our designs at minimum costs and
time commitments, which is why all BeePi monitors are built with off-the-shelf hardware
components and the BeePi software algorithms are developed on top of open source
packages with no license fees. Interested readers are referred to [1,2] for BeePi hardware
design diagrams, photos, technical specifications, and assembly videos.

Another fundamental principle guiding our research is the sacredness of honeybee
space: the deployment of sensors cannot interfere with the natural cycles of honeybees. This
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principle prevents us from deploying sensors inside the beehive or directly on honeybees
(e.g., RFID labels on foragers [12,13]).

To preserve the objectivity of our data and observations, we do not intervene in the
life cycle of the monitored colonies. For example, we do not apply any chemical treatments
(e.g., Varroa mite or hive beetle treatments) to our colonies or re-queen failing or struggling
colonies. When we hive new bee packages in late April or early May, we place a small jar of
natural raw honey into each new colony as a nutritional supplement at the beginning of the
season. No further treatment is applied to honeybee colonies during the beekeeping season.

Since our first peer-reviewed publication on the BeePi project in 2016 [3], we have been
receiving requests from researchers, practitioners, and citizen scientists for the datasets we
have curated for our research. The main objective of this article is to provide a comprehen-
sive point of reference to the datasets we have so far curated and used in our experiments.
We hope that our datasets will not only provide benchmarks for continuous EBM, but also
help interested parties verify our findings, discover and correct errors, and advance the
state of the art in EBM and related areas of AI, machine learning (ML), and data science.

BeePi monitors thus far have had seven field deployments. The first deployment
was in Logan, Utah (UT), USA (41.7370◦ N, 111.8338◦ W) in September 2014 when a single
BeePi monitor was placed on an empty Langsroth hive for two weeks to test our hardware
design and data collection software. The second deployment was in Garland, UT, USA
(41.73638◦ N, −112.16292◦ W) from December 2014 to January 2015 when a BeePi monitor
was placed on a hive with overwintering honeybee colony and successfully collected
≈200 MB of data. The third deployment was in North Logan, UT (41.7694◦ N, 111.8047◦ W)
from April to November 2016 when four BeePi monitors were placed on four beehives
at two apiaries and acquired ≈20 GB of data. The fourth deployment was in Logan and
North Logan, UT (April–September 2017), when four BeePi units were placed into four
beehives at two apiaries to collect ≈220 GB of data. The fifth deployment started in April
2018, when four BeePi monitors were placed on four beehives at an apiary in Logan, UT.
In September 2018, we decided to keep the monitors deployed through the winter to stress
test our hardware and software in the harsh winter weather conditions of northern Utah.
By May 2019, we had collected ≈400 GB of raw image, video, audio, and temperature data.
The sixth field deployment started in May 2019 with four freshly installed Russian bee
packages and ended in March 2021 with ≈350 GB of data collected. Two Russian colonies
died in March 2021. The seventh deployment started in late April 2021 with four BeePi
monitors: two monitors on the two older Russian colonies that survived and two new
Russian colonies hived in late April 2021.

During the first four deployments in 2014–2017, we experimented with three types of
power supply in BeePi: solar, battery, and grid [14]. A deployed BeePi monitor requires
≈440 mA to power its pi computer and the three sensors connected to it: the temperature
sensor, the microphone, and the pi camera. The hardware clock is powered by its own
button-size battery that lasts ≈1 year. The amount of current drawn by the temperature
sensor and the microphone appears to be insignificantly small insomuch as connecting
and disconnecting these sensors does not appear to change the measurable amount of
drawn current. With the camera unit disconnected, the amount of drawn current fluctuates
between ≈310 mA and ≈330 mA. Consequently, we estimate the camera to draw ≈120 mA
of 440 mA drawn by a single BeePi monitor.

In the solar version of BeePi, a solar panel was placed either on top of or next to
a beehive (See Figure 1). For solar harvesting, we experimented with Renogy 50 Watts
12 Volts monocrystalline solar panels, Renogy 10 Amp PWM solar charge controllers,
and Renogy 10 ft 10 AWG solar adaptor kits. We also experimented with two rechargeable
batteries: the UPG 12 V 12 Ah F2 lead acid AGM deep cycle battery and the Anker Astro
E7 26,800 mAh battery. Our field experiments in 2016–2017 [7,8,14] convinced us that
solar power was not a viable option in northern Utah. While some experiments ran to
completion and allowed us to acquire audio, video, and temeperature data, we found solar
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power harvesting to be unreliable for continuous data collection over longer time periods
(e.g., at least one calendar month without interruptions).

(a) BeePi monitor in private backyard (b) BeePi monitors on private farm

Figure 1. BeePi monitor (a) with a solar panel on the side; two BeePi monitors with solar panels
behind the hives.

Rechargeable batteries also had notable drawbacks. In particular, we discovered
that many UPG batteries stopped holding charge in cold (≤−15 ◦C ) or hot (≥+ 25 ◦C)
temperatures. We found the Anker battery’s performance to be significantly better than
that of the UPG battery. However, a fully charged Anker battery can power one deployed
BeePi monitor for ≈24 h, after which it must be replaced with a new fully charged battery,
which is not acceptable to many researchers and practitioners who drive long distances to
their apiaries. For these reasons, all deployed BeePi monitors have been powered from the
grid since 2017.

In the subsequent sections of this article, we specify how we have curated our datasets,
describe the experiments in which we have used them, and briefly summarize our findings.
We refer interested readers to the citations of our prior EBM research in the introduction
and the subsequent sections for detailed formal and experimental treatments of our results.
In Section 2, we present our audio datasets we have used in our research on audio beehive
monitoring. In Section 3, we describe our image datasets we have used in our research on
omni-directional bee traffic. In Section 4, we describe our video datasets we have used in
our research on omni-directional and directional honeybee traffic. In Section 5, we describe
our weather dataset curated in 2020 that we are currently using in our experiments to align
the weather data with video-based honeybee traffic curves. In Section 6, we summarize
our data curation efforts and provide information on the availability of our datasets.

2. Audio Datasets

We obtained our first audio datasets from six BeePi monitors deployed in Logan, UT
and North Logan, UT on Langstroth hives with Carniolan and Italian honeybee colonies
in 2017–2018 [8]. We placed the microphones ≈10 cm above the hives’ landing pads
(See Figure 2). Each monitor saved a 30-s audio wav file every 15 min on a USB storage
device connected to the monitor’s pi computer. Each 30-s audio sample was automatically
segmented into 2-s wav samples with a 1-s overlap, which resulted in 28 2-s wav samples
per one 30-s audio file.

We obtained the ground truth by manually labeling 2-s audio samples. Three human
listeners listened to each sample and placed it into one of the three non-overlapping
categories: bee buzzing (B), cricket chirping (C), and ambient noise (N). The B category
consisted of the samples where at least two listeners heard bee buzzing. The C category
consisted of the audio files collected at night where at least two listeners heard the chirping
of crickets and no bee buzzing. The N category included all samples where none of the
human listeners could clearly hear either bee buzzing or cricket chirping. The N category
included samples with static microphone noise, thunder, wind, rain, vehicles, human
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conversation, sprinklers, and other types of ambient noise. We used the same curation
techniques on all audio datasets described in this article.

(a) BeePi monitor in North Logan, UT (b) BeePi monitor in Logan, UT

Figure 2. Microphones placed ≈10 cm above landing pads in BeePi monitors in North Logan, UT (a)
and Logan, UT (b).

We called the first labeled dataset BUZZ1. As shown in Table 1, this dataset includes
10,260 audio samples: 6494 training samples (63%), 2616 training samples (25%), and 1150
validation samples (12%) used for model selection. The samples in the validation dataset
are separated from the audio samples in the training and testing samples by beehive
and location.

Table 1. Audio sample distribution in BUZZ1.

Bee (B) Cricket (C) Noise (N) Total

Training 2128 2128 2238 6494

Testing 872 872 872 2616

Validation 300 500 350 1150

Total 3300 3500 3460 10,260

Several months later we curated another dataset, which we called BUZZ2, of 12,914
audio samples by taking 7582 (76.4%) labeled samples for training from a beehive in one
apiary and 2332 (23.52%) labeled samples for testing from a different beehive in a different
apiary. The sample distribution of BUZZ2 is given in Table 2. All training and testing
data were obtained from Italian honeybee colonies in 2017 whereas the validation data
for model selection were obtained from two Carniolan colonies in 2018. Thus, in BUZZ2,
the train/test samples are separated by beehive and location while the validation beehives
are separated from the train/test beehives by beehive, location, time (2017 vs. 2018), and bee
race (Italian vs. Carniolan).

Table 2. Audio sample distribution in BUZZ2.

Bee (B) Cricket (C) Noise (N) Total

Training 2402 3000 2180 7582

Testing 898 500 934 2332

Validation 1000 1000 1000 3000

Total 4300 4500 4114 12,914
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We used BUZZ1 and BUZZ2 in our raw audio classification experiments with convo-
lutional neural networks (ConvNets) and four standard ML methods: logistic regression
(LR), k-nearest neighbors (KNN), support vector machines (SVM), and random forests
(RF). All ConvNets were trained, tested, and validated on raw audio data (i.e., amplitude
vectors) without any feature extraction. The standard ML models were trained on feature
vectors of 193 elements extracted with Librosa [15], an open source Python library for audio
analysis: 40 Mel Frequency Cepstral Coefficients (MFCCs), 12 chroma coefficients, 128 mel-
spectrogram coefficients, seven spectral contrast coefficients, and six tonnetz coefficients.

On BUZZ1, a shallower ConvNet with a custom layer outperformed three deeper
ConvNets and performed on par with the standard ML methods trained to classify feature
vectors extracted from raw audio samples. On BUZZ2, a more challenging audio dataset,
all ConvNets outperformed the four ML methods and a ConvNet trained to classify
spectrogram images of audio samples. We observed that a major trade-off between deep
learning (DL) and standard ML was between feature engineering and training time: while
the ConvNets required no feature engineering and generalized better on raw audio files
(i.e., amplitude vectors), they took considerably more time to train than the standard
ML methods.

To continue our investigation of audio beehive monitoring, we curated two more
audio datasets (BUZZ3 and BUZZ4) in 2019 from the audio samples acquired by different
BeePi monitors in Logan and North Logan, UT. BUZZ3 includes 15,254 audio samples
manually labeled as B (5121 samples), C (5346 samples), and N (4787 samples). In 2020,
we augmented BUZZ3 with a fourth category of lawn mowing (L) into which we placed
3340 audio samples where two out of the three human listeners could hear a lawn mower’s
sound. Thus, BUZZ3 is a proper subset of BUZZ4. The sample distribution of BUZZ3 and
BUZZ4 are given in Table 3.

Table 3. Audio sample distribution in BUZZ3 (first three columns) and BUZZ4 (first four columns).

Bee (B) Cricket (C) Noise (N) Lawn (L) Total

Training 2880 3600 2520 2120 11,120

Testing 1071 577 1098 840 3586

Validation 1170 1169 1169 380 3888

Total 5121 5346 4787 3340 18,594

We used BUZZ1, BUZZ2, and BUZZ3 to investigate whether automated feature
engineering could improve standard ML methods to perform on par with DL methods [16].
We experimented with recursive feature elimination (RFE) [17], sequential feature selection
(SFS) [18], relief-based feature selection [19], and RF feature selection [20] to find optimal
feature subsets. Our feature space included thirty-four audio features (e.g., zero crossing
rate, energy, spectral flux, MFCCs, etc.) extracted with the pyAudioAnalysis library [21].
We confined our investigation to LR, KNN, SVM, and RF and compared their performance
with that of the top performing ConvNets we had previously trained on BUZZ1, BUZZ2,
and BUZZ3 [8].

Table 4 shows the accuracies of our models on BUZZ1, BUZZ2, and BUZZ3 with
the thirteen MFCCs selected by all automated feature engineering methods. On BUZZ1,
the best validation accuracy of 98.43% was achieved by the RF with 100 decision trees; on
BUZZ2, the best validation accuracy of 95.33% was achieved by LR; on BUZZ3, the best
validation accuracy of 97.91% was achieved by RF.
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Table 4. Model accuracies with 13 MFCCs; best validation accuracies are in bold.

Model Dataset Test. Acc. (%) Valid. Acc. (%)

KNN BUZZ1 99.58 83.21
BUZZ2 98.84 90.83
BUZZ3 77.49 86.68

RF (100 trees) BUZZ1 99.54 98.43
BUZZ2 99.05 90.46
BUZZ3 79.16 97.91

LR BUZZ1 96.11 94.78
BUZZ2 77.78 95.33
BUZZ3 79.97 95.32

SVM (One vs. Rest) BUZZ1 99.17 98.00
BUZZ2 97.64 72.46
BUZZ3 85.21 95.55

We also compared the accuracies of the best performing models on each dataset with
the accuracies of the best performing ConvNet that we had previously trained, tested,
and validated on the same datasets [8]. Table 5 gives the model accuracies. The RF model
slightly outperformed the ConvNet on BUZZ1 and BUZZ2 while the ConvNet slightly
outperformed LR on BUZZ2. The validation accuracies of all models were above 95% on
all datasets. A lesson we learned from this investigation is that standard ML models are
a viable alternative to ConvNets on these datasets, because they train much faster than
ConvNets and produce smaller RAM and disk memory footprints.

Table 5. ConvNet, RF, and LR accuracies on BUZZ1, BUZZ2, and BUZZ3; best validation accuracies
are in bold.

Dataset Model Test. Acc. (%) Valid. Acc. (%)

BUZZ1 ConvNet 99.93 95.21
RF 99.54 98.43

BUZZ2 ConvNet 95.67 96.53
LR 77.78 95.33

BUZZ3 ConvNet 93.04 96.97
RF 79.16 97.91

In 2020, we continued our investigation of optimal feature sets for audio classification
with standard ML models and experimented with RFE and SFS [22]. RFE is a wrapper-
based method that iteratively fits a given model to a given dataset, computes the feature
importance coefficient of each feature, and eliminates a specified number of least important
features until the target number of features is selected. We varied the target number of
features (i.e., the hyperparameter n_features_to_select in the scikit-learn library)
from 1 to 34 and eliminated 1 feature at each iteration. The feature importance is provided
by the scikit-learn model object’s coeff_ or feature_importances_ attribute [23]. RFE
cannot be used on models (e.g., KNN) that do not implement these attributes.

SFS is a greedy search method that provides a reasonable alternative to the exhaustive
search through each feature subset of the feature power set, whose cardinality, in our case,
is 234. SFS reduces the dimensionality of the feature space by adding or removing one
feature at a time on the basis of the model’s performance. The iteration stops when the
target number of features is selected.

There are two types of SFS methods: forward selection and backward selection.
Forward selection starts with an empty set of features. Given a model M and n features,
n instances of M are trained for each feature. The validation accuracy of each instance is
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computed and the feature that results in the greatest classification accuracy is added to the
initially empty set of optimal features. The process continues with n − 1 instances of the
model M trained with each of the remaining n − 1 features and the previously selected
feature, and the next best feature is added to the set of optimal features. The process
continues until the target number of features is selected.

The backward selection method is the reverse of the forward selection. It trains a
model on the entire feature set first and then removes one feature per iteration so that the
feature being removed is the one that contributes the most to the model’s classification
accuracy upon its removal. This process continues until the target number of features is
selected. In our investigation, we used sequential forward selection. Thus, the abbreviation
SFS in the remainder of the article refers to sequential forward selection.

Table 6 summarizes the results of our experiments with RFE and SFS on BUZZ1,
BUZZ2, BUZZ3, and BUZZ4. On BUZZ1, the best validation accuracy was achieved by
an RF of 100 trees for which 5 features were selected with RFE. On BUZZ2 and BUZZ3,
the best validation accuracies were achieved by KNN with 7 and 6 features, respectively,
selected by SFS. On BUZZ4, the best validation accuracy was achieved with SVM with 11
features selected by RFE.

Table 6. Datasets, models, feature selection methods (Feat. Sel.), numbers of features (Num. Feat.),
and test and validation accuracies on BUZZ1, BUZZ2, BUZZ3, BUZZ4.

Dataset Model Feat. Sel. Num. Feat. Test. Acc. (%) Valid. Acc. (%)

BUZZ1 RF (100 trees) RFE 5 99.82 99.08

BUZZ2 KNN SFS 7 96.81 95.43

BUZZ3 KNN SFS 6 83.21 97.54

BUZZ4 SVM RFE 11 71.75 95.65

Table 7 shows the features selected by RFE and SFS for the best models on each
dataset. On BUZZ1, for the RF model, feature 5 (spectral entropy) and MFCC features
10–15 were selected with RFE; on BUZZ2, for the KNN model, feature 5 (spectral entropy)
and MFCC features 12–15, MFCC feature 18, and MFCC feature 20 were selected with SFS;
on BUZZ3, for the KNN model, feature 5 (spectral entropy) and MFCC features 10–14 and
MFCC feature 16 were selected with SFS; on BUZZ4, for the SVM model, feature 3 (spectral
centroid), feature 4 (second moment of spectrum), feature 5 (spectral entropy), and MFCC
features 9, 11–14, and 18–20 were selected with RFE. This investigation corroborated our
earlier finding [16] that MFCCs are useful features in standard ML models trained to
separate bee buzzing from other audio categories in external audio beehive monitoring.

Table 7. SFS-based features for best models on BUZZ1, BUZZ2, BUZZ3, BUZZ4; feature numbers
correspond to the indices of the feature array extracted with pyAudioAnalysis library [21].

Dataset Model RFE/SFS Features

BUZZ1 RF (100 trees) RFE: [5, 10, 13, 14, 15]

BUZZ2 KNN SFS: [5, 12, 13, 14, 15, 18, 20]

BUZZ3 KNN SFS: [5, 10, 12, 13, 14, 16]

BUZZ4 SVM RFE: [3, 4, 5, 9, 11, 12, 13, 14, 18, 19, 20]

3. Image Datasets

In 2018–2019, we started designing algorithms to analyze omnidirectional bee traffic
in videos taken in the vicinity of landing pads of Langstroth hives. In [9], we defined
omnidirectional bee traffic as
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"... the number of bees moving in arbitrary directions
in close proximity to the landing pad of a given hive
over a given period of time."

We designed a two-tier algorithm (2TA) to count bee motions in bee traffic videos in
the vicinity of a Langstroth hive. The 2TA combines class-agnostic motion detection (tier 1)
with class-specific image classification (tier 2) (See Figure 3). Tier 1 generates a set of regions
where moving objects may be present. Tier 2 applies trained class-specific classifiers (e.g.,
ConvNets and RFs) to the image regions centered around the motion points generated by
tier 1 to detect the presence or absence of specific objects (e.g., bees) in the regions. In tier
1, we used three motion detection algorithms in OpenCV 3.0.0 (i.e., KNN [24], MOG [25],
and MOG2 [26]). In tier 2, we used trained ConvNets, SVMs, and RFs. Each motion region
generated in tier 1 is classified by a trained classifier into two classes: BEE or NO_BEE.

Figure 3. Bee motion counting in 2TA: tier 1 does motion region generation; tier 2 does motion region
classification.

We curated two image datasets to train, test, and validate the tier 2 classifiers. The first
dataset, which we called BEE1, consists of 54,382 32 × 32 images [27]. We manually labeled
each of the 54,382 images with two categories: BEE, if the image contained at least one
complete bee, or NO_BEE, if it contained no complete bee or only a small part of a complete
bee (See Figure 4). The BEE1 images were obtained from 40 videos randomly selected
from the video dataset of ≈3000 videos captured by four BeePi monitors deployed on four
Langstroth hives (See Figure 5). All four monitors were deployed on hives with Italian
colonies. Each video had a resolution of 360 × 240 with a frame rate of ≈25 frames per
second. Two monitors were deployed in an apiary in North Logan, UT and the other two
in an apiary in Logan, UT, from April 2017 to September 2017. The two apiaries were
≈17 km apart. We randomly selected 19,082 BEE and 19,057 NO-BEE images for training;
6362 BEE and 6362 NO_BEE for testing, and 1801 BEE and 1718 NO_BEE for validation.
We used the training and testing images for model fitting and the validation images for
model selection. We ensured that the data for the training and testing datasets and the data
for the validation datasets came from different hives.

The second dataset, which we called BEE2, contained 112,879 images obtained from
the videos acquired by four BeePi monitors on four Langstroth beehives with Carniolan
honeybee colonies in Logan, UT in May and June 2018. All colonies were hived in late April
2018. A total of 5509 1-super videos and 5460 2-super videos were obtained with the BeePi
monitors. We refer to a video as 1-super when it is captured by a BeePi monitor mounted
on a hive that consists of one deep Langstroth super. We refer to a video as 2-super when it
is captured by a BeePi monitor mounted on a hive that consists of two deep Langstroth
supers. All videos had a 1920 × 1080 resolution. The 1-super videos were acquired from
5 May 2018 to the first week of June 2018 when the second supers were mounted on all
four beehives and the BeePi monitors started acquiring videos from the second supers. All



Appl. Sci. 2021, 11, 4632 9 of 18

2-super videos were captured from the first week of June 2018 to the end of the first week
of July 2018.

Figure 4. 49 sample images from BEE1 dataset used for experiments in [9]; first 4 rows are images
manually labeled as BEE; last 3 rows are images manually labeled as NO_BEE.

(a) BeePi camera looking down on
hive’s pad

(b) BeePi camera in wooden box protecting it against ele-
ments

Figure 5. BeePi monitor’s camera looks down on hive’s landing pad (a) and is protected along five
sides against elements with custom wooden box (b).

We randomly selected 50 1-super videos and 50 2-super videos. We obtained the
ground truth classification using the MOG2 algorithm to automatically extract 58,201
150 × 150 detected motion regions from the 1-super videos and 54,678 90 × 90 detected
motion regions from the 2-super videos. We manually labeled each region as BEE (if it
contained at least one complete bee) or NO_BEE (if it contained no complete bees or only a
small part of a complete bee). Figures 6 and 7 show samples of 1-super and 2-super images,
respectively, in BEE2. We called the 1-super image dataset as BEE2_1S and the 2-super
image dataset as BEE2_2S. Table 8 gives the exact numbers of labeled images in BEE2_1S
and BEE2_2S used for training, testing, and validation. In both BEE2_1S and BEE2_2S,
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the images used for training and testing, on the one hand, and validation, on the other,
came from different hives.

Figure 6. Sample of 1-super images from BEE2 (BEE2_1S) we used in [9]; the first four rows include
images classified as BEE; the last three rows consist of images classified as NO_BEE.

Figure 7. Sample of 2-super images from BEE2 (BEE2_2S) we used in [9]; first four rows include
images classified as BEE; last three rows consist of images classified as NO_BEE.

We used BEE1 to train, test and validate on several hundred automatically and man-
ually designed ConvNets in Python 3.4 with TFlearn [28] on an Ubuntu 16.04.S LTS
computer with an AMD Ryzen 7 1700X Eight-Core Processor with 16 GiB of DDR4 RAM
and a GeForce GTX 1080 Ti GPU with 11 GB of onboard memory. All ConvNets were
trained for 50 epochs with a batch size of 50 and normalized all images to have pixel
values on each channel to be [0, 1]. We compared the performance of the ConvNets, RFs,
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and SVMs on BEE1. We designed RFs and SVMs with the scikit-learn library. We varied
the number of trees in RFs from 20 to 100 in increments of 20 and trained and tested all
RFs with the gini entropy function. We then used BEE2 to train, test, and validate the same
ConvNets, RFs, and SVMs on BEE2_1S and BEE2_2S [29].

Table 8. Numbers of images in BEE2_1S and BEE2_2S (collectively referred to as BEE2) used for
training, testing, and validation.

Trn/Tst (BEE) Trn/Tst (NO_BEE) Vld (BEE) Vld (NO_BEE)

BEE2_1S 11,094 36,143 8298 2666
BEE2_2S 17,176 21,310 6823 9369

Total 28,270 57,453 15,121 12,035

Table 9 summarizes the best validation accuracies in each model category on BEE1,
BEE2_1S, and BEE2_2S. On BEE1, the best automatically designed ConvNet had a valida-
tion accuracy of 99.09%; the best manually designed ConvNet had a validation accuracy
of 99.45% on BEE1. The best performing RF on BEE1 had 40 trees and had a validation
accuracy of 93.67%. All SVMs used the linear kernel with the max-iter parameter varying
from 10 to 1000, an L2 penalty, a squared hinge loss function, and a tolerance of 0.0001. The
best SVM had a validation accuracy of 63.66%. On BEE2_1S, the best ConvNet achieved a
validation accuracy of 94.08%, the best RF had 100 trees and achieved a validation accuracy
of 74.29%, and the best SVM had a validation accuracy of 69.36%. On BEE2_2S, the best
ConvNet had a validation accuracy of 78.90%, the best RF had 60 trees and achieved a
validation accuracy of 64.02%, and the best SVM achieved a validation accuracy of 64.53%.

Table 9. Validation accuracies of each model type on BEE1, BEE2_1S, and BEE2_2S; best accuracies
are in bold.

Model BEE1 Acc. (%) BEE2_1S Acc. (%)) BEE2_2S Acc. (%)

ConvNet 99.45 94.08 78.90
RF 93.67 74.29 64.02
SVM 63.66 69.36 64.53

The performance of all classifiers on BEE1 was better than their performance on BEE2.
An important qualitative difference between BEE1 and BEE2 is that the validation datasets
of BEE2 contain more images of bee shadows than the validation set of BEE1. The image
size of BEE1 (32 × 32) is smaller than the image size of BEE2 (64 × 64), which indicates that
ConvNets, RFs, and SVMs may generalize better on smaller images than on larger ones.

In 2019, we curated another dataset, which we called BEE3 [30] (See Figure 8), tak-
ing another random sample of 50 1-super and 50 2-super videos acquired from four
Langstroth beehives with Carniolan honeybee colonies in Logan, UT in May and June
2018. We labeled the acquired images from these videos with three labels: BEE, NO_BEE,
and SHADOW_BEE. The first two categories were used in the same way as in BEE1 and
BEE2. The third category was used on images where two (out of three) human evaluators
detected the shadow of a bee. Since the numbers of images labeled as SHADOW_BEE
was small compared to the numbers of images labeled as BEE or NO_BEE, we took an-
other random sample of 50 videos taken between 12:00 and 16:00 p.m. in the same apiary
and manually cropped regions with bee shadows to increase the numbers of images in
the SHADOW_BEE category. Table 10 gives the final distribution of images in BEE3 in
each category.
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Figure 8. Sample of images from BEE3; first two rows include images classified as BEE; second two
rows are images classified as NO_BEE; third three rows are images classified as BEE_SHADOW.

Table 10. Numbers of images in BEE3 used for training, testing, and validation.

Label Train Test Validation Total

BEE 12,948 4236 5187 22,371
NO_BEE 12,857 4242 5179 22,278
SHADOW_BEE 12,006 3993 4350 16,749

TOTAL 37,811 12,471 14,716 64,998

We tested 25 different ConvNets on BEE3 [30], including our own manually and
automatically designed ConvNets as well as ResNet 32 [31], AlexNet [32], and VGG 16 [33].
We compared their performance with RFs and the best SVM One-Vs-Rest (OVR) classifier
with a linear kernel. All ConvNets were implemented, trained, tested, and validated in
Python 3.4 with TFlearn [28] on an Ubuntu 16.04.S LTS computer with an AMD Ryzen 7
1700X Eight-Core Processor with 16 GiB of DDR4 RAM and a GeForce GTX 1080 Ti GPU
with 11 GB of onboard memory. All ConvNets were trained for 50 epochs with a batch size
of 50 and normalized all images to have pixel values on each channel to be [0, 1].

We compared the performance of the ConvNet models on BEE3 with that of RFs and
SVMs implemented with the scikit-learn library. We varied the number of trees in RFs
from 20 to 100 in increments of 20 and trained and tested all RFs with the gini entropy
function. Table 11 gives the accuracies of the best models of each type on BEE3. ResNet
was the top ConvNet with a validation accuracy of 91.00%. The best RF had 80 trees and
achieved a validation accuracy of 83.36%. The SVM OVR classifier with a linear kernel
achieved a validation accuracy of 65.34%.

Table 11. Test and validation accuracies of best models of each type on BEE3; best accuracies are
in bold.

Model BEE3 Test Acc. (%) BEE3 Valid. Acc. (%)

ResNet 16 96.58 91.00
RF (80 trees) 92.67 83.36
SVM (OVR) 73.53 65.34
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4. Video Datasets

In 2020, we started applying concepts of particle image velocimetry (PIV) to the
analysis of honeybee traffic videos [10]. Our first algorithm used PIV to compute motion
vectors, classified them as incoming, outgoing, or lateral by vector direction, and returned
the classified vector counts as measurements of directional traffic levels.

To evaluate this algorithm, we created our first video dataset, which we called
BEE_VID1, that consists of four 30-s videos. We took ≈3500 timestamped 30-s bee traffic
videos acquired by two deployed BeePi monitors in Logan, UT in June and July 2018. Each
video had 744,640 × 480 frames. From this collection, we took four random samples of 30
videos each: (1) a sample from the early morning (06:00–08:00); (2) a sample from the early
afternoon (13:00–15:00); (3) a sample of videos from the late afternoon (16:00–18:00); (4) a
sample from the evening (19:00–21:00). From each of the four video samples, we randomly
selected one video. Thus, we acquired one early morning video, one early afternoon video,
one late afternoon video, and one evening videos. The total frame count for the four videos
is 2976 frames. We labeled the first video as no traffic (NT_VID), the second video as
medium traffic (MT_VID), the third video as high traffic (HT_VID), and the fourth video as
low traffic (LT_VID), which reflects the general bee traffic patterns we have observed in
multiple videos acquired with different BeePi monitors at different apiaries in northern
Utah in 2018–2020.

For each of these four videos, we manually counted full bee motions, frame by frame,
in each video. A full bee motion is the change of position of a complete honeybee body in a
given frame taken at time t > 1 (i.e., Ft) relative to the previous frame taken at time t − 1
(i.e., Ft−1). The number of bee motions in the first frame of each video F1 is taken to be 0.
In each subsequent frame, we manually counted the number of full bees that made any
motion when compared to their positions in the previous frame. We also counted as full
bee motions complete bee bodies appearing in Ft and not present in Ft−1 (e.g., when a bee
flies into the camera’s field of view when Ft is captured).

Manual count of full bee motions to obtain the ground truth was labor intensive:
it took us ≈2 h to count bee motions in NT_VID, ≈4 h in LT_VID, ≈5.5 h in MT_VID,
and ≈6.5 h in HT_VID, for a total of ≈18 h. Table 12 gives the results of the top four
2TA configurations [9] on the four videos. In each of the top 4 configurations, tier 1 used
MOG2 [26] and tier 2 used the trained ConvNets VGG16, ResNet32, and ConvNetGS4.

Table 12. Performance of 2TA on 4 videos: columns VGG16, ResNet32, ConvNetGS4 give the bee
motion counts returned by configurations MOG2/VGG16, MOG2/ResNet32, MOG2/ConvNetGS4,
respectively; last column gives human bee motion counts for each video; counts closest to human
counts in righmost column are in bold.

Video VGG16 ResNet32 ConvNetGS4 Human Count

NT_VID 151 75 127 73
LT_VID 47 25 43 353
MT_VID 1245 145 316 2924
HT_VID 16,647 13,362 15,109 5738

In 2021, we created another video dataset, which we called BEE_VID2, for our contin-
uing investigation of PIV principles in the analysis of bee traffic. This dataset includes the
four videos from BEE_VID1 and 28 new 30-s videos from two BeePi monitors deployed in
an apiary in Logan, UT from May to November 2018. The new videos had a resolution of
1920 × 1080 pixels and a frame rate of ≈25 frames per second.

We used BEE_VID2 to design and evaluate BeePIV, a video-based algorithm to mea-
sure both omnidirectional and directional honeybee traffic [11]. In BeePIV, frames from bee
traffic videos are converted to particle motion frames with uniform white background and
multiple motion points generated by a single bee are clustered into a single particle. PIV
is subsequently applied to the particle motion frames to compute particle displacement
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vectors that are classified as incoming, outgoing, and lateral. The respective vector counts
are used as measures of incoming, outgoing, and lateral bee traffic. We are currently using
BeePIV to compute bee motion curves for different hives to verify our hypothesis that
the incoming and outgoing bee traffic patterns closely follow each other. Our preliminary
experiments (See Figure 9) indicate that this hypothesis may be valid. We plan to continue
our work on improving the accuracy of BeePIV by integrating various image pre-processing
techniques (e.g. [34]).

(a) May 2018 (b) July 2018

Figure 9. Incoming and outgoing bee motion count curves for two hives in Logan, UT.

5. Weather Datasets

There have been numerous investigations of correlating honeybee behavior with
weather (e.g., [12,35–37]). In 2020, we started investigating possible correlations between
audio and video bee traffic features and weather [38]. We curated our first dataset, which
we called BEEPI_WEATHER1, to investigate possible correlations between bee audio
and traffic patterns and different weather variables. To create BEEPI_WEATHER1, we
used the publicly available data from the Utah Climate Center (UCC) [39]. The UCC
has a weather station on the Utah State University (USU) campus in Logan, UT, which
is located ≈3 km east of the apiary in Logan, UT where 4–5 BeePi monitors have been
regularly deployed since 2018. This weather station collects weather data every hour for
educational and research purposes. The station measures 43 different weather and climate
variables [40], of which we chose 21 variables such as relative humidity, evapotranspiration,
solar radiation, precipitation, air temperature, wind speed, etc. We took the measurements
of these variables from March 2018 to July 2019 and aligned them with the video bee
traffic measurements obtained with BeePIV [11] from the videos recorded by deployed
BeePi monitors.

Our preliminary experiments (See Figures 10 and 11) indicate that there may be
a negative correlation between the concentration CO2 in the air and forager traffic as
measured by the omnidirectional bee motion counts computed by BeePIV. Each of the four
graphs show that as CO2 concentration decreases, forager traffic increases and that smaller
changes in CO2 concentration appears to have no impact forager traffic. The correlation
value between CO2 concentration and bee motion traffic for the majority of days in June
and July 2018 is ≈−0.60.

We also investigated the impact of net radiation on forager traffic. Net radiation is the
balance between the amount of incoming solar radiation absorbed by the Earth’s surface
and the amount of radiation reflected back from the Earth [41]. Net radiation estimates the
total energy available at the Earth’s surface. Different places on the surface of the Earth
absorb different amounts of solar radiation.
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(a) BeePi 1, 17 June 2018 (b) BeePi 1, 12 July 2018

Figure 10. Alignment of CO2 measurements from USU UCC weather station with BeePIV motion
counts from videos from BeePi monitor 1 in Logan, UT.

(a) BeePi 2, 17 June 2018 (b) BeePi 2, 12 July 2018

Figure 11. Alignment of CO2 measurements from USU UCC weather station with BeePIV motion
counts from videos from BeePi monitor 2 in Logan, UT.

While we observed some positive correlation (0.60 and above) between net radiation
and forager traffic on several individual days (See Figure 12) the distribution of correlation
values for the entire months of June and July 2018 had a median value of 0.40, which
indicates that there may not be a strong correlation between net radiation and forager
traffic in these two months.

(a) BeePi 1, 17 June 2018 (b) BeePi 1, 12 July 2018

Figure 12. Alignment of net radiation measurements from USU UCC weather station with BeePIV
motion counts from videos from BeePi monitor 1 in Logan, UT.

While curating BEEPI_WEATHER1, we had many informal discussions with several
researchers at the UCC, which convinced us that we should build our own weather station
to monitor the local weather conditions at each apiary. Such weather variables as wind
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speed, net radiation, and C02 concentration may vary from neighborhood to neighborhood.
In 2020, we designed and built the first version BeePiW, a multi-sensor weather station and
deployed it at a private apiary in Logan, UT. BeePiW has seven sensors: (1) a temperature
sensor to measure ambient temperature; (2) a barometer to measure atmospheric pressure
(3) a humidity sensor to measure relative humidity; (4) an anemometer to measure wind
speed and direction; (5) a rain sensor to measure rainfall; (6) a pyronameter to measure solar
irradiance; (7) an electromagnetic field sensor to measure electro-magnetic frequencies,
radio frequencies, and electric fields. All sensors are connected to a raspberry pi computer
that controls data acquisition. The data are saved on a USB storage device connected
to the pi computer. We are currently curating a new weather dataset, which we called
BEEPI_WEATHER2, which aligns the weather data collected by our BeePiW weather
station in 2020 and 2021 with omnidirectional and directional forager traffic obtained
with BeePIV. We plan to release BEEPI_WEATHER2 and document our experiments and
findings with this dataset in a future publication.

6. Summary

In this article, we provided a comprehensive point of reference to the datasets we
have so far curated and used in the BeePi project. We hope that our datasets will provide
benchmarks for continuous EBM and help interested parties verify our findings, discover
and correct errors, and advance the state of the art in EBM and related areas of AI, ML,
and data science.

The datasets BEE1 [42], BEE2_1S [43], BUZZ1 [44], and BUZZ2 [44] can be downloaded
directly from the links given in the references. The video dataset BEE_VID1 is available in
the supplementary materials to our first article on the application of PIV to the analysis of
honeybee traffic [10].

We currently lack sufficient resources to host all our datasets online and encourage
interested parties to make email arrangements with the author if they want to obtain BEE3,
BEE4, BEE_VID2, BUZZ3, BUZZ4, and BEEPI_WEATHER1. We are working on curating
another weather dataset, which we called BEEPI_WEATHER2, to couple omnidirectional
and directional bee traffic to the weather data collected with our BeePiW stations in 2020
and 2021.

Our future research will focus on curating more image and audio datasets to improve
the accuracy of BeePIV in measuring incoming, outgoing, and lateral forager traffic and
to investigate correlations and alignments between weather and video-based honeybee
traffic. As opportunity arises, we will integrate audio features to correlate them with bee
traffic and weather.
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Abbreviations
The following abbreviations are used in this manuscript:

EBM Electronic beehive monitoring
RFID Radio frequency identification
ML Machine learning
ConvNet Convolutional neural network
RF Random forest
LR Linear regression
KNN K-nearest neighbors
MFCC Mel frequency cepstral coefficient
DL Deep learning
SVM Support vector machine
RFE Recursive feature elimination
SFS Sequential feature selection
PIV Particle image velocimetry
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