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Krzysztof Strzecha 1 , Marek Krakós 2, Bogusław Więcek 3, Piotr Chudzik 4, Karol Tatar 4 , Grzegorz Lisowski 4,
Volodymyr Mosorov 1,* and Dominik Sankowski 1

����������
�������

Citation: Strzecha, K.; Krakós, M.;
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Abstract: This work deals with electromyography (EMG) signal processing for the diagnosis and
therapy of different muscles. Because the correct muscle activity measurement of strongly noised
EMG signals is the major hurdle in medical applications, a raw measured EMG signal should be
cleaned of different factors like power network interference and ECG heartbeat. Unfortunately, there
are no completed studies showing full multistage signal processing of EMG recordings. In this
article, the authors propose an original algorithm to perform muscle activity measurements based on
raw measurements. The effectiveness of the proposed algorithm for EMG signal measurement was
validated by a portable EMG system developed as a part of the EU research project and EMG raw
measurement sets. Examples of removing the parasitic interferences are presented for each stage of
signal processing. Finally, it is shown that the proposed processing of EMG signals enables cleaning
of the EMG signal with minimal loss of the diagnostic content.

Keywords: EMG signal processing; biosignals; IIR filtering; comb filter; FFT

1. Introduction

Biomedical signals as a time function are a complex electrical data measured for any
living body. A special case of biomedical signals is the electromyography (EMG) potentials
that reflect muscle activity. Such activity is controlled by the nervous system, and we can
distinguish two typical states called contraction and relaxation of muscles. The measured
EMG signal values are strongly dependent on the anatomical and physiological properties
of muscles. Thus, the EMG signal includes the contribution of different tissues.

To acquire EMG potentials, the different types of electrodes used: needle or superficial
have a significant impact on the muscle’s signal value. When surface electrodes are used,
EMG detectors collect signals from different motor units simultaneously and generate in-
teractions between different signals. Therefore, the correctness of EMG signals becomes an
essential requirement in biomedical engineering. The proper execution of test preparation,
body structure analysis and normalization, minimizes the errors of measurement with
surface electrodes [1–3]. The main reason for the interest in EMG signals analysis is the
clinical diagnosis of muscle innervation deficits. On the other hand, this method mainly
finds biomedical application in the rehabilitation of motor disabilities caused by neurogenic
damage to the muscular system. The shapes in EMG signals provide important informa-
tion regarding the diagnosis of neuromuscular disorders. The processing stages for EMG
signal registration should be properly developed, and hardware implementations can be
made for various EMG signals concerning applications. Nowadays, research and extensive
efforts have been made in developing better algorithms, upgrading existing methodologies,
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improving detection techniques to reduce noise, and improving EMG signal registration ac-
curacy [4,5]. Thus, many researchers have used different types of advanced methodologies,
including Least Mean Square (LMS) filtering [6], wavelet transform, Wigner–Ville distribu-
tion, independent component analysis, empirical mode decomposition and higher-order
statistics, for analyzing the EMG signal appropriately [7–9]. Frequency analysis is widely
used for processing biomedical signals in various applications. Among them, high-order
filtering and the Fourier Transform (FT), including the Short-time FT, are applied both
for analysis and modelling [10]. However, it is quite important to investigate the actual
problems of EMG signals analysis and justify the accepted measures because the technology
of EMG recording is relatively new. There are still limitations in surface electromyography
(sEMG), and there is no general approach for different muscle signal registration. Recent
advances in signal processing and mathematical models have made it practical to develop
advanced EMG detection and analysis techniques. The primary function of the electro-
diagnostic system is to record biological signals faithfully. To this end, it is important to
have an optimal ‘signal to noise ratio’, i.e., amplify the neuro-physiological signal voltage
while attenuating background noise. This is done using analog hardware and digital signal
processing techniques. Many EMG control systems are currently available in the market,
for instance, NeuroTrac® MyoPlus2 [11] or Baseline Load Cell MMT [12]. The full list of
modern electromyographs is available at [13]. However, these EMG acquisition systems
allow the processed data to be obtained based on implemented algorithms. Generally,
the descriptions of the applied algorithms are not available. According to the authors’
knowledge, there is no completed analysis of the applied signal processing algorithms in
such acquisition systems or estimation of their efficiency.

Electromyography is a diagnostic procedure that evaluates muscle health conditions
and the nerve cells that control them. These nerve cells are known as motor neurons. They
transmit electrical signals that cause muscles to contract and relax. An EMG translates
these signals into graphs or numbers, helping doctors to make a diagnosis [14].

A doctor will usually order an EMG diagnostic test when a patient is showing symp-
toms of a muscle or nerve disorder. These symptoms may include tingling, numbness, or
unexplained weakness in the limbs. EMG results can help the doctor diagnose muscle
disorders, nerve disorders, and disorders affecting the connection between nerves and
muscles [15].

EMG is not only used in medical diagnostic procedures. It is also utilized as a gesture
recognition tool that enables human physical activities to be entered into a computer, so
as a human–computer interaction form [16]. Moreover, there are attempts to use EMG
as a control signal for electronic mobile devices [17,18], prosthesis [19], and even flight
control systems [20,21]. An interface device based on an EMG can be widely used to control
moving objects, including an electric wheelchair [22]. This may be particularly useful for
people with limited abilities to use the joystick. There are proposals to use surface EMG
measurements to control video games [23]. EMG is also a tool used for diagnosing the
impact of a technical device on a patient. This application of EMG is used by engineers
designing rehabilitation devices [24–26]. Another very interesting application of EMG is
recognition of unvoiced or silent speech by observing the activity of muscles associated
with speech apparatus [27].

This research aims to develop and analyze raw signal processing steps to develop
efficient algorithms for EMG measurement. The first section provides an overview of
hardware delivering measured EMG signals that are considered in this study. The second
section contains the advanced EMG signal processing algorithms.

1.1. Characteristics of EMG Signals

As mentioned above, a typically measured electromyography signal originates from
numerous sources, not only from the muscle’s activity. Among them, there are biological,
environmental, electronic, and numerical interferences. Some of them are listed below.

• Low-frequency drift due to the input impedance of the analog system



Appl. Sci. 2021, 11, 4625 3 of 15

• Power line interference containing 50/60 Hz and the higher spectral components
• Electro-cardiac heartbeat
• Electrical contact between skin and electrodes (changeable with the movement of

a patient)
• Aliasing in high-frequency spectral range depending on the sampling clock
• Noise of the analog electronic circuit
• Quantization noise
• High-frequency noise generated by the digital part of electronics
• Numerical noise due to the representation of the number of the recorded data

and rounding
• Signal distortion due to the specific digital signal processing methods applied (spec-

trum leakage, group delays, nonlinear phase characteristics, etc.)

The interferences listed above were considered in order to develop a new effective
algorithm that can be implemented in a portable EMG signal processing device.

1.2. Typical EMG Signals of the Right Abdominal Muscle

To develop an efficient algorithm of EMG signal processing, the frequency character-
istics of the registered signals were first calculated. Raw signals contain a high level of
low-frequency disturbances due to the very high impedance of the front analog circuit.
This part of the signal’s spectrum has to be removed first using high or band-pass filtering.
The typical signals and their spectral characteristics are demonstrated in Figures 1 and 2.
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Figure 1. An example of the raw EMG signal of the right abdominal muscle with high impact of 50 Hz power line and
ECG disturbances, (a) raw signal, (b) after removing low-frequency spectral range using 3rd order Butterworth HP filter,
fc = 2 Hz.

1.3. EMG Signal with High Impact of 50 Hz and Higher-Order Components

As expected, there is a high impact of environmental power line parasitic signal
sources. It has been experimentally confirmed that the electrical contact between skin
and the surface electrodes has the dominant importance in reducing this parasitic impact.
The examples showing the contribution of 50 Hz and the higher spectral components are
presented in Figure 2.
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1.4. Superimposition of EMG and ECG Signals ct of 50 Hz and Higher-Order Components

It has already been mentioned above that the ECG signal significantly interferes with
EMG recordings. This strongly depends on the type of muscles being diagnosed and the
location of the electrodes attached to the skin. To evaluate the contribution of cardiac
activity in the presented experiments, only ECG signals were registered first. Next, the
spectrum was calculated and compared with typical EMG and ECG signals superimposed
on each other (see Figures 3 and 4).
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Figure 4. Example of the zoomed spectrum (a) ECG signal with high impact of environmental disturbances. 3rd order
Butterworth HP filter, fc = 2 Hz, (b) superimposed EMG and ECG signals with high impact of environmental disturbances.

As one can notice, the spectrum of ECG and EMG signals are overlapping. The main
part of the ECG signal energy lies in the low-frequency band below 20 Hz. Fortunately, the
EMG data has dominant spectral components around the 40 Hz range. This allows for the
reduction of the impact of ECG disturbance signal on the EMG signal.

2. Material and Methods

There are two types of muscles in the human body: rapidly contracting muscles
responsible for precise movements and contracting ones, whose function is to maintain
an upright body position. The EMG signal from fast-twitch muscles is definitely stronger
than from those that are constantly tense. Therefore, the EMG measurement method is
much more precise in the case of limb muscle injuries. Such diagnostics are most often
performed in patients with innervation deficiencies and after injuries or ischemic episodes.
Important information for the doctor is the degree of muscle damage and the disorder of
its innervation. Since these areas of the body are located distal from the heart, the signal
does not interfere with the electrical impulses generated by this organ when measuring
muscle tones.

During the measurement, it is imperative to use a reference electrode placed in a
different body area where muscle contraction activity is low. This significantly increases
the accuracy of the test. EMG examination is instrumental in diagnosing the gastrointesti-
nal and urinary system sphincter, as it enables correct diagnosis and implementation of
appropriate therapy. EMG tests should be carried out in a patient-friendly environment so
the patient can focus on its individual stages.

Various sets of EMG signal samples were collected from the abdominal muscles during
this research. The placement of the surface electrodes is shown in Figure 5. Such a place-
ment was chosen to visualize the significant effect of electro-cardiac activity on the recorded
signals. Also, this part of the body allows the quality of the skin-electrode electrical contact
to be changed easily. As a result, the different impacts of power line and environmental
disturbances superimposed on electromyography signals could be observed.
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Figure 5. Electrodes placement in the measurement of EMG signal for the right abdominal muscle
(lat. musculus rectus abdominis).

The measuring system is built of a microcontroller belonging to the dsPIC33 family,
equipped with two ADS1292 analog-to-digital converters and the BM78 Bluetooth com-
munication module. The used transducer is a specialized measuring system intended
for the measurement of biopotentials—Figure 6. Each of the two ADS1292 chips allows
differential measurement in two channels. Thus, the entire device enables the simultaneous
measurement of four interesting areas of the patient’s body. The transducers are of the
delta-sigma (∆Σ) type. They provide simultaneous sampling with 24-bit resolution. They
also have built-in programmable gain amplifiers. Thanks to these parameters, it is possible
to connect the measurement probes almost directly to their terminals through RC input
filters, avoiding additional sophisticated amplification circuits. An important parameter
of the converters is their sampling frequency, which in this particular circuit is chosen at
2kS/s. The measurement resolution of 48 nV/bit was achieved. The actual measurement
parameters are greatly influenced by the probes’ quality and the accuracy of their adherence
to the human body. When the probes show high impedance, the interference caused by the
devices located in close proximity, powered from the 50 Hz network, increases greatly. To
avoid data acquisition when the probes are disconnected, the device continuously monitors
the connection impedance. Thanks to the embedded forced test current mechanism, the
system can measure the voltage drop caused by this current. When the measurement
circuit impedance is higher than 20 kΩ, the device stops the acquisition and informs the
user about the poor quality of the probe connection.
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Data from the converters (4 times 2 kS/s) are received by the dsPIC33 microcontroller,
where they are subjected to the pipeline signal filtration. Power mains frequency 50 Hz
has to be removed as do other electroactive interference, e.g., generated by heart beating
excitations. The final step in data processing is calculating the RMS value of the signals as
the main diagnostic parameter. The processed data is sent via the Bluetooth module to the
master computer, as shown in Figure 7.
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The proposed processing algorithm of EMG signal consists of 3 stages, as shown in
Figure 8. The first one is used for removing the low-frequency spectral band, including
the ECG electro-cardiac disturbance. The comb filter reduces the impact of environmental
interferences mainly generated by the 50 Hz power lines.
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At first, the low-frequency drift signal is removed by the Band-Pass (BP) Infinite
Impulse Response (IIR) filter. In order to achieve a trade-off between effectiveness and
complexity of filtering, a 3rd order filter was chosen. Next, the comb 40th order filter was
implemented to reduce the impact of 50 Hz energy-line interferences. The final stage of the
proposed algorithm concerns the RMS signal generation by a parameterized procedure
with user-defined offset and window length.

2.1. Filtering of Low-Frequency Spectrum Components

Band-filtering is the EMG signal’s main operation during recording and process-
ing [28]. The basic problem in such processing is the reduction of the impact of superim-
posed parasitic disturbances. The first antialiasing filtering has to be implemented in the
front analog circuit. Among numerous sources of disturbances having a significant impact
on the EMG signal, the ECG (Electrocardiography) heartbeat activity is one of the most
important.

The maximally flat magnitude filter was proposed in the presented research. The
Infinite Impulse Response (IIR) Butterworth filters of different orders for high and band-
pass processing were implemented.

2.2. Third Order High-Pass IIR Filters

To reduce the low-frequency spectral range from the recorded signals, high-pass
filters were chosen and implemented using the MATLAB environment [29]. To achieve
the compromise between quality of filtering and numerical complexity, the 3rd order IIR
Butterworth filtering was used.
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The transfer function of such filters is presented by Equation (1)

H(z) =
∑3

i=0 biz−i

∑3
i=0 aiz−i

. (1)

where: ai, bi are the filter coefficients, and z is the Z-transform variable, corresponding to
the unit delay of the signal samples.

The time-domain formula implemented in a DSP processor can be expressed as follows

y(n) =
3

∑
i=0

b(i)x(n− i)−
3

∑
i=1

a(i)y(n− i). (2)

where x and y denote the samples of input and output signals of the filter, respectively.
The examples of raw and filtered signals are presented in Figures 9 and 10. Table 1

contains the filters’ coefficients for different cutoff frequencies. In order to ensure a
low level of rounding errors, 24-bit input data should be processed using at least 32-bit
fixed-point arithmetic.
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Figure 9. The example of the EMG signals measured on the right abdominal muscle, (a) raw signal, (b) after HP filtering
using 3rd order Butterworth HP filter, fc = 2 Hz.
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Figure 10. Zoom spectrum of EMG signal for right abdominal muscle after HP filtering using 3rd order Butterworth HP
filter, (a) for fc = 2 Hz, (b) for fc = 10 Hz.
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Table 1. Third order HP Butterworth filter coefficient value sets for removing low-frequency compo-
nents from an EMG signal.

fc = 2 Hz

ai, i = 0,1,2,3 bi, i = 0,1,2,3

1.0 0.993736502353988

−2.987433650055722 −2.981209507061963

2.974946132665443 2.981209507061963

−0.987512236110736 −0.993736502353988

fc = 10 Hz

1.0 0.969071174031813

−2.937170728449890 −2.907213522095439

2.876299723479331 2.907213522095439

−0.939098940325283 −0.969071174031813

fc = 20 Hz

1.0 0.939091652311958

−2.874356892677485 −2.817274956935874

2.756483195225695 2.817274956935874

−0.881893130592486 −0.939091652311958

fc = 30 Hz

1.0 0.910025430686161

−2.811573677324689 −2.730076292058484

2.640483492778340 2.730076292058484

−0.828146275386261 −0.910025430686161

fc = 40 Hz

1.0 0.881838198574415

−2.748835809214676 −2.645514595723244

2.528231219142560 2.645514595723244

−0.777638560238081 −0.881838198574415

2.3. Filtering of 50 Hz Signal and Higher-Order Harmonic Components

The very high impact of power line interferences with EMG signals was observed
during the research. In some cases, the higher-order harmonics of the 50 Hz component
had relatively large amplitudes. In order to reduce these harmonics in the EMG recordings,
either comb or notch filters can be applied [30,31].

2.4. Comb Filters

The transfer function of the comb filter is expressed by Equation 3

H(z) =
b
(
1− z−M)

1− az−M . (3)

where M depends on sampling frequency. In the developed system, fs = 2 kHz was
calculated as:

M =
fs

f0
=

2000 Hz
50 Hz

= 40. (4)

Parameters a and b can be chosen according to the width of the 3-dB stopband (∆f )
of the filter. The magnitude of the comb filter, raw and filtered signals, and the poles
distribution on the z-plane are presented in Figures 11 and 12. Table 2 contains the values
of comb filter coefficients for different widths of stopbands. To achieve the proper filtering
accuracy, one can consider using high-resolution calculus with filter coefficients represented
by the appropriate number of digits as presented in Table 2.
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Figure 11. Comb filter, (a) magnitude for M = 40 and ∆f = ±0.5 Hz, (b) poles and zeros distribution on the z-plane for
comb filter.
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Figure 12. EMG signal with high impact of environmental disturbances for right abdominal muscle, (a) after low-frequency
removal (3rd order Butterworth HP filter, fc = 10 Hz), (b) filtered by the comb filter (M = 40 and ∆f = ±0.5 Hz).

Table 2. Coefficients of comb filters for different stopbands.

ai bi

∆f = ±0.5 Hz −0.939062505817492 0.969531252908746

Df = ±1 Hz −0.881618592363189 0.940809296181594

∆f = ±2 Hz −0.775679511049613 0.887839755524807

RMS signal is calculated using the moving window of the length N and the chosen
offset as presented in Figure 13. The window length N depends on the sampling frequency
fs and should be selected as the multiple of fs/50, i.e., n = 40, 80, . . . for fs = 2 kS/s. This
results from the necessity of acquiring the integer number of periods of 50 Hz and the higher
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harmonics. It reduces the leakage problem of frequency analysis and, in consequence,
allows for a better estimation of power line disturbances interfering with the EMG signals.

RMS(j) =

√
∑N−1

i=0 s2(i + j)
N

. (5)

where: s(i) denotes the samples of input signal preprocessed by filtering, length n = 40, 80,
120, . . . , j = 0, offset, 2 offset, . . . , offset = N/k, k = 1, . . . , N.
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It has to be emphasized that the RMS signal recovery operates as a type of low-pass
filtering depending on the length and the offset of the moving window. The longer length,
the stronger the low-pass filtering. Choosing the appropriate values of length and offset is
a compromise between the attenuation of EMG signal, the complexity of calculus, and the
overall processing algorithm’s execution time. This is crucial for real-time applications.

3. Results and Discussion

In order to demonstrate the effectiveness of the proposed signal processing, several
measurements of the abdominal EMG signal were performed. Particular attention was
paid to signal processing with a relatively high influence of the 50 Hz power line and
cardiac disturbances. The filtering proposed in this article has been applied to reduce the
high impact of interference—Figure 14.
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Figure 14. Examples of filters’ characteristics for EMG signals, (a) magnitude of 3rd order BP filter (flc = 30 Hz, fhc = 400 Hz)
and 40th order comb filter for ∆f = ±0.5 Hz, (b) magnitude of 3rd order HP filter (fc = 30 Hz) and 40th order comb filter for
∆f = ±0.5 Hz.
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It should be emphasized that all the signals presented in the article were acquired by
the new system developed during this research. This system is used not only to measure
biopotentials, but also to stimulate muscle contraction. The proposed signal processing
allows the doctor to choose the appropriate filtering depending on the type of muscles
diagnosed. The system offers BP or HP preprocessing to eliminate low-frequency drift. All
processing is carried out in the form of the pipeline architecture. Just after pre-processing,
power line disturbance filtering can be implemented as the next stage in the pipeline
structure. The combined characteristics of these first two steps are shown in Figure 14.

Time-varying RMS recovery is the last step in the processing of EMG signals. The
RMS curve is computed as a function of time using a moving window for an EMG signal
contaminated with 50 Hz power line noise as shown in Figure 15. The moving windows
may overlap and may have a user-defined length. The experience gained in these studies
confirms that the disturbance of the 50/60 Hz power line strongly depends on the quality
of the electrical contact between the probes (electrodes) and the skin.
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Figure 15. Example of analysis, (a) a raw EMG signal of the right abdominal muscle with high content of power line
parasitic disturbances, (b) RMS-80/40 EMG signal of the right abdominal muscle with high content of power line parasitic
disturbances, HP filter (fc = 10 Hz), comb 40th order filter (∆f = ±0.5 Hz).

As already emphasized, depending on the position of the surface electrodes and the
type of muscle diagnosed, the biopotentials resulting from the heartbeat may overlap the
EMG signal. An obvious and general remark may be that the closer the electrode is to the
heart, the stronger the influence of the ECG signal, which should be reduced as much as
possible. The spectral bands of the ECG and EMG signals are only partially separated, as
described in the introduction. Therefore, it should be taken into account that strong filtering
of the low-frequency band corresponding to the heart rate may affect the EMG spectrum
and consequently, alter the time-dependent RMS plot. Figure 16 shows an example of an
RMS signal received for EMG recording with a high-level ECG signal superimposed and
the RMS signal after removing the low-frequency spectral band.
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Figure 16. Example of analysis, (a) a raw superimposed EMG measured on the left pectoral muscle with very high ECG
signal contribution, (b) RMS-80/40 EMG filtered by HP Butterworth filter (fc = 200 Hz).

Time-dependent RMS diagrams are computed in the last processing step. Selected
examples of RMS curves and for the same EMG input signal for different lengths and shift
values are shown in Figure 17. The RMS calculation is a type of low-pass filtering. The
window width defined for the RMS calculation affects the cutoff frequency of such a filter.
As a result, for a wider window, the RMS peak amplitudes and the details of the higher
frequency signal decrease.
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Figure 17. RMS-EMG signal of the right abdominal muscle with high content of power line parasitic disturbances, HP
Butterworth filter (fc = 20 Hz), (a) 40/40 (length/offset), (b) 80/80.

4. Conclusions

In this research, the advanced three-stage signal processing of EMG recordings was
presented. The IIR filtering was implemented to remove low-frequency drift, 50/60 Hz
power line, and ECG heart beating interferences to achieve satisfactory diagnostic data.
The RMS signal varying in time was calculated for the user-defined window moving along



Appl. Sci. 2021, 11, 4625 14 of 15

the recorded samplings. The proposed algorithm consisting of the different banks of filters
was successfully implemented in the portable DSP system.

The proposed algorithm is a compromise between the quality of processing and the
complexity of calculus. Removing the superimposed parasitic signals by IIR filtering leads
not only to registered data improvement but to EMG signals deteriorating as well. The
proposed processing of EMG signals enables cleaning up of the EMG signal with minimal
loss of the diagnostic content. The algorithm is fully implemented in software using
pipeline processing. One must bear in mind that the overall processing has to run in real-
time on a low-power and cost-effective DSP microprocessor system. In the authors’ opinion,
the EMG systems have to be parameterized to choose the signal processing appropriate for
a patient and his diagnosis.
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