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Abstract: In password guessing, the Markov model is still widely used due to its simple structure and
fast inference speed. However, the Markov model based on random sampling to generate passwords
has the problem of a high repetition rate, which leads to a low cover rate. The model based on
enumeration has a lower cover rate for high-probability passwords, and it is a deterministic algorithm
that always generates the same passwords in the same order, making it vulnerable to attack. We
design a dynamic distribution mechanism based on the random sampling method. This mechanism
enables the probability distribution of passwords to be dynamically adjusted and tend toward
uniform distribution strictly during the generation process. We apply the dynamic distribution
mechanism to the Markov model and propose a dynamic Markov model. Through comparative
experiments on the RockYou dataset, we set the optimal adjustment degree α. Compared with the
Markov model without the dynamic distribution mechanism, the dynamic Markov model reduced
the repetition rate from 75.88% to 66.50% and increased the cover rate from 37.65% to 43.49%. In
addition, the dynamic Markov model had the highest cover rate for high-probability passwords.
Finally, the model avoided the lack of a deterministic algorithm, and when it was run five times, it
reached almost the same cover rate as OMEN.

Keywords: information security; password guessing; Markov model; machine learning; dynamic
mechanism; probability adjustment

1. Introduction

With the development of information, more and more services need security protec-
tion, and identity authentication has gradually become a primary means to protect users’
information. Password-based authentication was created with the advent of mainframes,
and has been widely used in mainframe access control since the 1960s. Now, passwords
have become one of the most critical means of preventing users from being attacked in the
Internet world [1]. Passwords are not only easy for users to understand and memorize, but
also relatively simple for programmers to deploy at low cost, so they have been generally
recognized and adopted by academia and industry [2]. Password authentication will still
be a crucial method in the future [3].

However, on the one hand, users often need to manage dozens or hundreds of pass-
word accounts, and the numbers are growing. Additionally, the requirements for setting
passwords on various websites are often very different [4]. On the other hand, users’
energy for dealing with information security affairs is pretty limited, and this will not
be greatly improved over time [5]. This fundamental contradiction leads to potentially
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vulnerable behaviors, such as using weak passwords with low information entropy, reusing
the same password on multiple websites, and recording passwords on paper [6]. All of
these behaviors can bring out vulnerable factors including simple numbers, familiar words,
too short length, the inclusion of personal information, and so forth. Consequently, the
vulnerable factors make attacking passwords possible [7].

Password attack technology is mainly used for recovering passwords [8] and measur-
ing their strength [9]. In the virtual environment, passwords are often set for files to protect
specific data. If users forget or lose their passwords for encrypted files, it is necessary to
recover them. In addition, sometimes the security department will need to recover illegal
documents [10], which will also include operating system password recovery, mailbox
password recovery, encrypted file password recovery [11], and so forth. The primary pur-
pose of evaluating password strength is to analyze the ability of a given plaintext password
to resist brute force cracking [12]. In general, some passwords can be cracked with some
techniques or tools, so in the field of password strength measurement, the number of times
or time spent cracking is taken as the evaluation index.

The password attack method utilizing the password generative model is an offline
attack [13] that does not need to interact with the server. The password can be saved in
either plaintext or hash value, and the number of password guessing is usually signif-
icant. It is a kind of trawling attacking method [14], which does not use any personal
user information (such as birthday, email, etc.) during the attack. Accompanied by the
development of machine learning technology, various password generative models have
been proposed [15–17]. Attackers first generate a large number of passwords using a
generative model, then try to crack the system using the generated passwords one by one.
Most of the early password generative models relied on heuristic rules set by experts, such
as replacing lowercase letters in passwords with uppercase letters, changing words, and
so forth [18]. These pure rule-based models have poor universality, and their effect is not
satisfactory. Recently, models based on machine learning have become mainstream, such as
the Markov [19], PCFG [20], RNN(LSTM) [21], and GAN [22] models. They explicitly or im-
plicitly model the probability of a password with mathematical theory foundation support,
and perform better in practice. Compared with the other three models, the Markov model,
based on statistical machine learning, has certain advantages in training and inference
speed, because it only needs to count and randomly sample instead of performing many
neuronal operations [23]. At the same time, it maintains almost the same level of gener-
ated password quality because its assumptions accord with human language habits. The
Markov model is still widely used because of its superior comprehensive performance [24].

Nevertheless, our observation finds that the Markov model suffers from a high repeti-
tion rate, and this problem becomes more severe as the number of passwords the model
generates increases. It is obvious that a high repetition rate will also lead to an insufficient
cover rate [25]. The enumeration method is different from the random sampling method,
which is a deterministic algorithm. It usually has a worse cover rate of high-probability
passwords, and always generates the same passwords in the same order when generating
them [26], which makes it easy to attack. To solve the above problems, we introduce a
dynamic distribution mechanism into the random sampling method. Then, we add a
dynamic distribution mechanism to the Markov model, and eventually build a dynamic
Markov model.

The structure of this paper is as follows. In Section 2, we briefly introduce other
password cracking methods, including the brute force cracking and dictionary methods.
We introduce the password generative models mainly include the statistical learning
models (such as Markov and PCFG model) and the deep learning models (such as RNN
and GAN model). In Section 3, we first analyze the shortcomings of the standard Markov
model based on random sampling and OMEN based on enumeration. For the above
problems, we introduce the dynamic distribution mechanism and prove its mathematical
basis. Finally, we apply the dynamic distribution mechanism to the Markov model and
propose a dynamic Markov model. In Section 4, we carry out the experiment, and compare
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the performance of several related models from multiple perspectives. In Section 5, we
summarize and analyze the proposed model based on theoretical analysis and experiments.
The last section presents our conclusion.

2. Related Work

In order to improve the success rate of password cracking, the patterns of passwords
have been studied intensely. Through the analysis of most users’ passwords [27,28], it is
found that in addition to choosing some words as passwords, users often simply change
words to meet the requirements of a website password setting strategy, and about 1 in
10 people choose to use the top 10 passwords. By mining several leaked public data sets,
Wang concluded that passwords, like human languages, all satisfy Zipf distribution [29],
that is, the frequency of the password decreases by polynomial, and high-frequency and
low-frequency passwords occupy important parts of the whole password set [30]. The
phenomenon that most Chinese passwords contain numbers, and more than a quarter
of them are only composed of numbers, was found by [31]. English passwords prefer
English letters, and most passwords are composed of letters and numbers according
to an analysis of the character structure of passwords [32]. The study of the length of
passwords indicates that more than 90% of passwords are between 6 and 11 characters,
but for websites with high importance, the password length is usually greater than 11
characters [33]. Additionally, name, name ID, birthday, username, email prefix, ID number,
phone number, and even love information may be used [34].

Generally speaking, password cracking methods consist of brute force [35] and dic-
tionary [6] cracking. In the brute force cracking method, with multi-thread, distributed,
and GPU assistance [36], an attacker can test potential passwords through exhaustive
algorithms in a relatively simple password space. However, as the maximum password
length and character set size increase, the size of the password space will grow exponen-
tially, making it difficult to traverse and search all passwords under limited computing
resources [37]. The dictionary cracking method generates a dictionary consisting of a vari-
ety of passwords and guesses using the dictionary. Furthermore, some rules are adopted to
promote diversity. John the Ripper [38] designs word transformation rules that simulate
the scene when the user creates a password. Hashcat [39] modifies, cuts and expands
words, and adds some human preferred rules. Analogously, it has inefficient performance
when the string space becomes vast. Rather than depending on traverse searching, which
ignores the password difference or sets heuristic rules, password generative models try to
generate high-quality passwords by machine learning theory.

2.1. Markov Model

Narayanan first introduced the Markov model in the password guessing task [19]. The
password possesses local relevance, which means each character only has a relationship
with the previous n characters. The order of generating passwords from left to right
conforms to human habits, and the concise assumption is reasonable in natural language
processing. Based on the Markov model, Tansey expanded the number of layer to n and
equipped each layer with different weights, where n represents the expected length of the
password [40]. Each node in the multi-layer Markov model not only can switch to itself,
but also save related information of front characters. Due to the supplemented probability
distribution, the model improves the quality of password generation. OMEN [26], proposed
by Durmuth, can generate passwords in descending order of frequency. Then, passwords
with high probability appear early, which contributes to increasing the cracking speed.
Wang improved the Markov model for targeted attacks [41]. Specifically, it treats username,
email prefix, name, birthday, phone number, and identification number as equal characters.
The targeted Markov model makes full use of the user’s personal information and shows
excellent performance. The Markov model, as a classic algorithm for natural language
processing, also shows good effects with passwords. Additionally, considering the speed
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perspective, the Markov model surpasses the other password generative models [42]. In a
word, the Markov model is still popular for its overall performance.

2.2. Other Password Generative Models

Other password generative models use distinct principles and can achieve a great
cracking effect. The PCFG model [20] cuts the password according to the type of character
(including letter (l), number (n), and special symbol (s)). It counts all generated struc-
tures from the training dataset and calculates the probability information during training,
eventually uses a queue to generate passwords. Houshmand adopted keyboard rules in
FCFG [43], and could crack extra passwords that obey these rules. Veras conducted deep
semantic mining of the letter part, which particularly increased the cracking ability for long
passwords [44]. Li proposed a personal-PCFG model that equally dealt with username,
email prefix, and so forth. The reinforced model has better performance especially in target
attacks [45]. With the success of deep learning, neural networks that have more capacity
and stronger representation ability have attracted attention. Sutskever generated text using
recurrent neural networks, showing that the RNN model has the ability to handle text
sequences [46]. Melicher took passwords as an extension of human language [21], and first
tried to generate passwords in the RNN framework. The RNN generated one character at
each time step and used the generated character as the input for the next time step until the
terminator appeared or the maximum length was reached. In other studies, RNN [47] was
replaced with LSTM [48], promoting the effect of capturing the long-range dependence of
characters. Teng devised a PG-RNN that increased the number of neurons, and got compet-
itive results on multiple datasets [34]. The generative adversarial network [15] is currently
the best among the generative models, especially in computer vision. PassGAN was in-
troduced in [22] to generate passwords. Then, PassGAN was enhanced [49] to directly
learn the probability distribution of the password encoding matrix. After training with the
Wasserstein loss function [50,51], it just needs to provide the generator with random noise
sampled in Gaussian distribution, and then the generator outputs the coding matrix of the
password. Nam used the relative GAN to improve the loss function, and the performance
of GAN in password guessing was greatly improved by multi-source training [52]. In
addition, the generator was improved in [53] with recurrent neural networks, which could
acquire better generation effect.

Overall, first, compared with the Markov model, the relatively low speed is an appar-
ent disadvantage for the other models [23]. In the training stage, the PCFG model needs
to additionally count structure probability information. For the models based on neural
networks, many weight parameters must be trained by the backpropagation algorithm [54].
In the generation stage, the PCFG model has to generate extra structure. The RNN and
GAN models contain large scale multiplication operations and activation functions. These
complicated operations inevitably slow down inference speed in contrast with random
sampling [55]. Second, viewed from the perspective of quality, the PCFG model’s straight-
forward splitting of strings deviates from the actual situation, and models based on neural
networks have limit representation ability in passwords [56]. In addition, considering
the problem of generating repeated passwords, models based on neural networks usually
do not perform satisfactorily if they are not trained well; in particular, the GAN model
frequently experiences mode collapse [57]. Statistical machine learning models such as
the Markov model and PCFG models, also generate large-scale repeated passwords if
the random sampling method is used. In summary, the Markov model has an advantage
in terms of comprehensive performance, yet a high repetition rate would be one factor
prohibiting the model from cracking efficiently.

3. Method
3.1. Standard Markov Model

It is impossible to accurately model the probability of a password directly. The Markov
model makes a concise hypothesis for the expression of password probability, and then the
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password can be statistically modeled. In the Markov model, the probability distribution
of characters in each state is only related to the characters in the front n state, where n is
defined as the order of the model, as shown in Figure 1.

Figure 1. Markov model (order of model is 2).

Each character in the password can be combined with the previous n characters to
form an n-gram fragment, which is denoted as ci|ci−1, . . ., ci−n where ci is the character
in the ith state, and | is used to isolate the current and previous state characters, so the
n-gram fragment represents the dependencies between the current and previous character.
For example, a password P : c1c2. . . cm containing m characters can be divided into m
n-gram fragments: c1; c2|c1; . . .; cm|cm−1, cm−2, . . ., cm−n. It should be noted that the first
n n-gram fragments are not n order gram, which should strictly be 0-gram, 1-gram, n-
gram. Here, we call them all n-gram fragments for convenience. Each n-gram fragment
ci|ci−1, . . ., ci−n corresponds to a conditional probability p(ci|ci−1, ci−2, . . ., ci−n), and these
n-gram fragments are independent of each other, so the probability of password P is the
product of m conditional probability values:

p(c1c2. . .cm) =
m

∏
i=1

p(ci|ci−1, ci−2, . . ., ci−n). (1)

The Markov model should be trained well before generating passwords. In prepara-
tion, we have to collect a public password dataset containing quantities of real passwords
as a training set. While training the Markov model, we first split each training password
into multiple n-gram fragments, count the occurrence frequency of all n-gram fragments,
and then collect n-gram fragments that have the same conditional character; eventually
we perform the probability normalization operation to obtain the corresponding n-gram
conditional probability distribution. The process is depicted in Figure 2. We define the
n-gram table as the set of all n-gram conditional probability distributions. After the train-
ing process succeeds, the n-gram table stores the conditional probability distribution of
all characters learned by the model, and the explicitly statistical modeling of password
probability is completed. When we need to generate a password, we just continuously
sample the characters in the n-gram table one by one. We denote this kind of Markov
model that uses random sampling as the standard Markov model in the next.
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Figure 2. Markov model training process (order of model is 2).

In order to further analyze the password probability distribution, we have to make
a clear definition of the support set and original probability distribution of the Markov
model. We define the maximum length of the string as mMAX, and the character set is
V = A, B, . . . , Z, a, b, . . . , z, 0, 1, . . . , 9,+, ∗, . . . , !. For any string C : c1c2. . .cm in string space
SS, all satisfy both (1) m ≤ mMAX , and (2) ci ∈ V, ∀i. The Markov model explicitly fixes the
probability of each string in string space SS. For part of the strings C ∈ SS, probability P(C)
can be obtained by querying the n-gram table, while for another part of strings C

′ ∈ SS,
some n-gram fragments do not exist in the n-gram table, which means their probability is 0.
We can form a set of all strings whose probability value is more than 0, and define this set
support set SM. Obviously, support set SM is a subset of string space SS. The sum of the
probabilities of all strings in SM is 1, where high probability means the string has a higher
probability of being a password, and low probability means the string is not likely to be a
password. Only a string with a probability more than 0 can be considered as a password.
Any password the model may generate must belong to SM, so the size of SM means the
cracking potential of the model. The training process not only enables the Markov model to
learn support set SM from string space SS, but also assigns a corresponding probability to
each password in SM. We call this distribution the original distribution Dori. It is apparent
that original distribution Dori is only determined by the training data set.

3.2. Defects in Markov Model
3.2.1. Problems in Standard Markov Model

Cracking passwords using the standard Markov model has the problem of generating
large scale repeated passwords. To illustrate this problem, we utilized the RockYou [58]
dataset to train the model. RockYou dataset is a large scale dataset that includes almost
21,000,000 real passwords, therefore it is widely used in password guessing tasks. We
made the model generate 109 passwords, and we observed the result from two aspects: the
number of repeated passwords and the repetition rate. The repetition rate expresses the
proportion of repeated passwords in the generated passwords. The results (Table 1) show
that there are only 2.41× 108 unique passwords, and the other 7.59× 108 passwords are all
repeated passwords, which means the model wastes about 76% of computing resources.
In addition, we find that there is a positive correlation between the number of generated
passwords and the number and proportion of repeated passwords. More unique passwords
are accompanied by more waste, which severely limits the cracking efficiency.

Repeated passwords not only constrain efficiency, but also restrict the cover rate. The
cover rate indicates the hit ratio of generated passwords to the passwords in the test set.
One reason is that repeated passwords take up many appearance opportunities within
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limit generation time, so the other passwords that are possible to hit have no chance
to be generated. Another reason is that the essence of the standard Markov model is
equal to random sampling in the original distribution Dori. Due to the randomness of
the sampling method, high-probability passwords will appear with high frequency, while
low-probability passwords will not show up often or even disappear, and then passwords
with low probability in the test set are hard to cover.

Table 1. Number of repeated passwords and repetition rate for standard Markov model.

Total Number 105 106 107 108 109

Repeated number 3.41× 104 4.79× 105 5.94× 106 6.86× 107 7.59× 108

Repetition rate 34.12% 47.93% 59.37% 68.61% 75.89%

3.2.2. Problems in OMEN

Compared with the other Markov model, OMEN, which uses the enumeration method,
gets the best cover rate result [26] but it does not perform best in any probability range.
In our experiment, we first divided the RockYou test set into 10 regions according to the
probability value (obtained by the Markov model, which is trained on the train dataset).
OMEN was also trained in the training dataset and generated 109 passwords. We find that
OMEN performs worse in the high probability range, as shown in Table 2. For example, in
the range 10−5 to 10−6, the standard Markov model hits 3000 more passwords.

Table 2. Cover numbers of three models for different probability of passwords.

Probability Total Dynamic Markov Standard Markov OMEN

10−2∼10−3 4 4 4 4
10−3∼10−4 243 243 243 243
10−4∼10−5 2701 2701 2701 2671
10−5∼10−6 19,827 19,827 19,826 19,456
10−6∼10−7 116,095 116,094 115,973 112,954
10−7∼10−8 284,911 284,897 271,945 268,945
10−8∼10−9 390,731 350,988 272,115 340,801
10−9∼10−10 410,065 122,463 95,250 287,433
10−10∼10−11 334,797 13,275 13,507 140,972
10−11∼10−12 231,826 980 1168 26,988

<10−12 310,024 68 161 817

In addition, OMEN is a deterministic algorithm, while the standard Markov model is
a stochastic algorithm. After the model finishes the training process and corresponding
parameters are all fixed, OMEN always generates the same passwords with the same order
each time, whereas the standard Markov generates different passwords each time. Thus,
in some cases, determinacy could be used to prevent passwords from being cracked by
OMEN as possible, while this is not possible in the standard Markov model. For instance,
we generate T passwords as set Sd using OMEN, and randomly select a password Ptar that
not in Sd. We also require that Ptar must have been modeled, that is, its probability is not
zero. At this point, we can guarantee that OMEN will not hit Ptar within T generations,
because it does not appear in the first T generations. However, it is possible for every
password that has been modeled to emerge at any moment if the standard Markov model
is applied, hence it has absolute advantages in this particular case.

3.3. Dynamic Distribution Mechanism

For all of the above problems, we propose the dynamic distribution mechanism during
the generation process in the Markov model to reduce the repetition rate, so as to improve
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the cover rate. In establishing the dynamic distribution mechanism, we mainly consider
four points, as follows:

First, the dynamic distribution mechanism is apply only in the random sampling
method. Second, each time a password PG is generated, the dynamic distribution mecha-
nism is adopted. It prohibits PG by reducing its probability value, thereby reducing the
possibility of subsequent appearance of PG. As the probability of the password in the
Markov model is the product of multiple conditional probabilities, the passwords’ proba-
bility expression has a complex interwoven relationship, then we can consider subtracting
p(PG) by a small constant. Third, since the sum of the probability of all passwords in
support set SM is 1, prohibiting PG would inevitably lead to a change in probability of
other passwords in SM. Here, we could increase the probability value of all passwords in
SM other than PG, thus the model would focus more on obtaining other passwords in the
next. Finally, it should be pointed out that for strings other than SM, we think they have
little meaning for cracking, and adjusting their probability would require a large amount of
computing resources, so the dynamic distribution mechanism only changes the probability
of passwords in support set SM.

There are several advantages to the dynamic distribution mechanism:

1. It can decrease the repetition rate. Once a password is generated, it will be restricted,
and the chance of being randomly sampled will be reduced. At the same time, the
chance of other passwords being randomly sampled will be increased. The degree
of constraint is related to the probability value. Considering the situation that the
higher the password’s probability, the larger its contribution to the repetition rate,
so this mechanism can decrease the repetition rate accordingly. On the other hand,
we find that the dynamic distribution mechanism pushes the probability distribution
of passwords toward uniform distribution Uuni according to Theorem 1. The closer
the probability distribution gets to the uniform distribution Uuni, the smaller the
repetition rate.

2. It can improve the cover rate. Compared with simple random sampling, the dynamic
distribution mechanism can help the model to adjust distribution constantly. This ad-
justment makes the model avoid useless attempts, but encourages it to try completely
new passwords.

3. It can cover high-probability passwords better. In the random sampling method, the
appearance frequency of passwords is relevant to their probability. The dynamic
distribution mechanism designs a smooth and slow process which ensures that some
passwords will keep a high probability value for a long time. At the same time, its
effect of reducing repeated passwords expands the search range of high-probability
passwords. Therefore, usually, high-probability passwords are almost all sampled if
the number of generation operations is large enough. However, enumeration methods
(such as OMEN) use local instead of global sorting, so they generate passwords in an
approximate but not strict descending probability order. In fact, it is impossible to
go through all the passwords and sort them strictly in descending probability order.
Hence, usually some high-probability passwords are missed, which is also shown in
the experiment in Table 2.

Theorem 1. For any original distribution Dori, randomly select a password Pi which satisfies
pori

i × N ≥ 1, where N is total number of passwords in SM, then reduce its probability by α ,
and increase the other passwords probability by α/(N − 1), then the new passwords probability
distribution Dnew will be closer to the uniform distribution Duni.

Proof of Theorem 1. We use KL divergence DKL(Duni||Dori) to measure the distance be-
tween the original and uniform distribution, which is:

DKL(Duni||Dori) = − lg N − 1
N

N

∑
i=1

lg pori
i . (2)
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In the neighborhood of pori:[pori
1 , pori

2 , . . ., pori
N ], we perform a one-order Taylor expan-

sion about DKL(Duni||Dori) which gets f (p):

f (p) = − lg N − 1
N

N

∑
i=1

lg pori
i −

1
N

N

∑
i=1

1
pori

i
(pi − pori

i ). (3)

In Dnew, the probability of Pi is pori
i − α, while the other passwords probability is

pori
j + α/(N − 1) and j ∈ 1, 2, . . . , N\i. The approximate KL divergence DKL(Duni||Dnew)

is:

DKL(Duni||Dnew) ≈ − lg N − 1
N

N

∑
i=1

lg pori
i +

1
N

α

pori
i

− 1
N ∑

j∈{1,2,...,N}\i

1
pori

j

α

N − 1
.

(4)

The approximate difference of two KL divergence A is defined as:

A = DKL(Duni||Dnew)− DKL(Duni||Dori). (5)

Therefore, A can be reduced to:

A =
1
N

α

pori
i
− 1

N ∑
j∈1,2,. . . ,N\i

1
pori

j

α

N − 1
. (6)

According to the inequality:

1
x1

+
1
x2

+ . . . +
1
xn
≥ n2

x1 + x2 + . . . + xn
. (7)

So,

A ≤ 1
N

α

pori
i
− 1

N
α

N − 1
(N − 1)2

1− pori
i

(8)

Obviously, if pori
i × N ≥ 1, we have A ≤ 0, so DKL(Duni||Dnew) ≤ DKL(Duni||Dori).

3.4. Dynamic Markov Model

We employ the dynamic distribution mechanism in the standard Markov model and
propose a dynamic Markov model. Given the way passwords are modeled by Markov
chain, we have to make subtle adjustments in practice. There are three deviations compared
with the ideal theory in Theorem 1.

When the model generates password PG : c1c2. . .cm, it is impossible to verify whether
N× p(PG) is more than 1 or not, because N is unknown, therefore the model has to replace
the verification method with another simplified method. As multiple n-gram fragments
jointly determine the probability of the password, it is very complicated to deal with the
probability of the whole password, so the dynamic Markov model executes operations at
the n-gram level instead of the password level. So we judge whether the probability value
of the n-gram fragment is greater than α. Moreover, the experimental results also prove
that this simplification can effectively make the distribution of the password more uniform.

In order to reduce the probability of PG, we can only adjust the conditional probability.
If m conditional probability values are all adjusted, the model will consume too much
calculation time, affecting the overall password generating speed. Simultaneously, a large
number of passwords will be affected, and the probability distribution will change greatly,
so it is difficult to guarantee the cover rate. For example, 123456 and 123456789 are both
high-probability passwords; 123456 has been generated and 123456789 has not appeared.
Adjusting 6 conditional probability values of password 123456 will greatly reduce the
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probability of 123456789, so randomly getting 123456789 becomes more difficult. Hence,
the dynamic Markov model randomly selects one of m conditional probability to adjust
each time. This approach of modifying the probability is matched with password modeling
mode, and it limits the influence range of modifying as much as possible.

We need to increase the probability of passwords in SM except for PG, but it is impos-
sible to traverse all of these passwords. Therefore, we increase the probability of some
passwords which have the selected n-gram fragments, while the probability of other unre-
lated passwords reamins the same. The dynamic Markov model ensures that the changes
of the password probability distribution just restrict on the support set SM and do not prop-
agate into the string space SS. Although that only modifies a small part of the password, it
avoids the time-consuming modification of all passwords every time.

Overall, because the number of passwords in the support set N is unknown and large,
and Markov’s modeling strategy for passwords makes them share n-gram fragments, the
dynamic Markov model makes the above three modifications on the basis of comprehensive
consideration of computational efficiency and practical difficulties. It successfully realizes
the application of the dynamic distribution mechanism. It should be noted that there is a
balancing effect in the dynamic distribution mechanism itself. For example, changing the
probability distribution of the n-gram fragment c|a, b would result in the over modification
of some passwords (such as those that contain c|a, b; d|a, b; e|a, b; etc.), but would have no
effect on other passwords (such as those that do not contain these above n-gram fragments).
These two simultaneous effects would be partially offset during the multiple processes of
random sampling to generate passwords.

Our dynamic distribution mechanism works as follows in practice: for example,
first randomly select n-gram fragment c3|c1, c2. For the discrete conditional probability
distribution p(c|c1, c2), reduce the value of p(c3|c1, c2) with a fixed value α and adjust it to
p(c3|c1, c2)− α, increase the value of p(ĉ3|c1, c2) evenly, and keep the value of p(c̃3|c1, c2)
always 0, where ĉ3 represents the character not c3 and appears in the conditional probability
distribution p(c|c1, c2), and c̃3 is the other characters in character set V except c3 and ĉ3. In
summary, when the model adjusts the conditional probability distribution p(c|c1, c2), it
automatically adjusts the probability distribution of other passwords in SM. For passwords
that contain n-gram fragments c3|c1, c2, the probability decreases, and the probability of
passwords containing fragments ĉ3|c1, c2 increases, as shown in Figure 3. The change degree
of the probability depends on the situation of including n-gram fragments. The complete
password generating algorithm of dynamic Markov model is shown in Algorithm 1.

Figure 3. Generating passwords using dynamic Markov model.
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Algorithm 1 dynamic Markov model

Require: number of generative passwords: N, max length of password: mMAX, n-
gram fragment: c3|c1, c2, other characters except c3 in distribution p(c|c1, c2): ĉ3, fixed
value of reduced probability: α.
for i = 1:N

initial blank string S
do

generate random number r ∼ N(0, 1)
generate a character c by randomly sampling in n-gram table using r
append c to S

until c = \n or |S| = mMAX
randomly choose an n-gram fragment (for example, c3|c1, c2) in string S
if p(c3|c1, c2) > α

adjust p(c3|c1, c2) to p(c3|c1, c2)− α
count total number of ĉ3: Ndec
for ĉ3:

adjust p(ĉ3|c1, c2) to p(ĉ3|c1, c2) + α/Ndec
end for

end if
end for

4. Experiments

To verify the performance of the dynamic Markov model, we chose to experiment on
public dataset. The training of a password generative model requires a large and realistic
data set, and the RockYou dataset satisfies both requirements. RockYou.com [58] stores
passwords in plaintext form in the database, and the SQL vulnerability of the site led to
a user password leak. Millions of passwords were stolen by intruders and spread on the
network for many years; this dataset has been widely applied in academic research related
to passwords. The RockYou dataset includes 21,315,685 passwords in total, among which
8,274,727 passwords are unique after deduplication. We randomly shuffled the data set
initially, and took the first 80% of the data as the training set and the bottom 20% as the
test set. The training set contained 17,052,548 passwords, with 6,909,743 unique passwords.
The test set included 4,263,137 passwords, with 2,174,626 unique passwords .

In the experiment, the training set was used to train the password generative model,
and both the cover rate and repetition rate were used to evaluate the performance. Assum-
ing that the model generates N passwords and the number of unique passwords is n, the
repetition rate RR is

RR(model) = 1− n
N

. (9)

If the test set has T passwords and t unique passwords, then the cover rate CR is

CR(model) =
n
t

(10)

Our experimental hardware environment is: Intel(R) Xeon(R) Silver 4116 CPU with
2.10 GHz main frequency, 12 cores and 128 GB memory. The software environment is: the
Ubuntu 16.04.6 LTS operating system. The programming language is Python3.6.

4.1. Effect of Parameter α

There exists a vital parameter α that has a significant and decisive impact on the
performance of the dynamic Markov model. This parameter represents the amplitude
of each probability adjustment and directly controls the speed at which the probability
distribution of passwords tends to be uniform. If α is too large, most of the n-gram
fragments cannot be adjusted, because the probability value is less than α, and the cover
rate is greatly reduced (for example, when α is 10−5, the cover rate is less than 20%),
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making the model useless. On the contrary, if the value of the parameter is small, the effect
difference between parameters is not apparent (for example, when α is set as 10−11 and
10−12, the cover rate and repetition rate are almost the same), so we conducted experiments
on parameter α from 10−5 to 10−11, and tried a variety of different values, including
10−5, 10−6, 10−7, 10−8, 10−9, 10−10, and 10−11. First, we used the training set to train the
dynamic Markov models with different values of α, and we selected the model order n as
3. Next, we used these 7 password generative models to generate passwords. In order to
evaluate the model comprehensively, we generated 109 passwords and calculate the CR
and RR values in each scale. The experimental results are shown in Figures 4 and 5.

The experimental results prove that the scale of parameter α has a remarkable impact
on the performance of the model. For the repetition rate, choosing a smaller α would get
a larger RR value. When α is equal to 10−5, RR is always below 0.5. As the parameter
decreases, the gap between adjacent parameters becomes smaller. Both parameters 10−11

and 10−10 have essentially the same effect. As for the cover rate, a smaller α means a higher
cover rate. Analogously, the gap between neighboring parameters also becomes smaller
as the parameter decreases. When parameter α is selected as 10−9, 10−10, or 10−11, they
achieve the same and the best result. The best dynamic Markov model in the RockYou
dataset is obtained when parameter α is 10−9.

0 2x108 4x108 6x108 8x108 109
number of password

40%

50%

60%

70%

re
pe

tit
io
n 
ra
te

10−5
10−6
10−7
10−8
10−9
10−10
10−11

Figure 4. Repetition rate for different α values in 7 dynamic Markov models.

For the above results, we infer the core reason is that some high-probability passwords
share the same n-gram fragment. After the dynamic Markov model randomly generates a
high-probability password, it chooses an n-gram fragment to reduce its probability, which
inevitably reduces the probability of those passwords that contain this n-gram fragment
so they become low-probability passwords. This mechanism makes it difficult for these
passwords to be randomly generated afterward, therefore the cover rate decreases. A
larger parameter α helps generate more unique passwords. Because the probability of
some important n-gram fragments is reduced too much, some low-probability passwords
have more chance to be generated, but these passwords usually have the limit potential for
cracking. When parameter α is selected appropriately, the password probability adjustment
variation is relatively low, which can effectively prevent high-probability passwords from
being submerged and reduce the repetition rate. This experimental phenomenon also
shows us that the adjustment range of the password probability should be limited at a
relatively flat level, so it is reasonable to randomly select one n-gram fragment instead of
all n-gram fragments to adjust.
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Figure 5. Cover rate for different α values in 7 dynamic Markov models.

4.2. Comparison of Performance

Then, we compare our model’s performance with the standard Markov model and
OMEN. In the RockYou dataset, we selected the best parameter α as 10−9 in the dynamic
Markov model. We trained these models, generated 109 passwords, and calculated the CR
and RR values. The experimental results are shown in Figures 6 and 7.
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Figure 6. Repetition rate for three models.

The experimental results show that with the help of the dynamic distribution mech-
anism, the performance of the dynamic Markov model surpasses the standard Markov
model in all aspects. The cover rate (CR) increases by 5.84% (from 37.65% to 43.49%) and
the repetition rate (RR) decreases 9.38% (from 75.88% to 66.50%). Compared with OMEN,
there is 13.61% gap in cover rate, and OMEN generates almost no repeated passwords.

Regarding the comparison results of the two random sampling methods, the dynamic
Markov model changes the probability distribution continuously in the process of generat-



Appl. Sci. 2021, 11, 4607 14 of 18

ing passwords, which finally reduces the probability value of high-probability passwords,
thus reducing the repetition rate. At the same time, reducing the repetition rate would
make more unique passwords appear, and hence improve the cover rate. Additionally,
it is hard for an enumeration method (such as OMEN) to produce repeated passwords,
therefore the corresponding RR is almost 0. The mechanism of generating passwords by
approximate probability reduction also ensures that the cover is high enough.
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Figure 7. Cover rate for three models.

4.3. Cover Number in High Probability Passwords

Next, we compare our model’s performance with the dynamic Markov model and
OMEN in the high probability range. We again selected the best parameter α as 10−9 in the
dynamic Markov model. For the test set, we calculated every password’s probability by
the n-gram table and divided them into 11 bins in terms of probability. We finally counted
the number of hits, and the cover results are shown in Table 2.

The experimental results show that the dynamic Markov model and the standard
Markov model both perform better than OMEN in the high probability range. In ranges
of 10−4∼10−5, 10−5∼10−6, 10−6∼10−7, and 10−7∼10−8, random sampling achieves better
cover numbers than OMEN. Especially in range 10−7∼10−8, the dynamic Markov model
hits more about 16,000 passwords. In the range 10−8∼10−9, the dynamic Markov model
still surpasses OMEN, but the standard Markov model fails. In regions with low probability,
OMEN outperforms both the standard Markov model and the dynamic Markov model. In
addition, the dynamic Markov model always works better than the standard Markov in
any region.

Regarding this experimental phenomenon, we have two explanations. First, in the
random sampling method, the appearance of a password is directly related to its prob-
ability value. When the number of generations is high enough, passwords with high
probability will almost certainly arise, but the enumeration method generates passwords
in approximately descending order of probability, which inevitably leads to neglect, so the
cover number is not as good for high-probability passwords as in the sampling method.
Second, based on the appropriate parameter selection, the degree of adjustment is not large,
so the dynamic Markov model can not only hit high-probability passwords very well, but
also tries more low-probability passwords.
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4.4. Comparison of Method Determinism

Finally, we compare the three models from the perspective of algorithm determinism.
After training on the RockYou training set, we ran these three generative models five times,
generating 109 passwords each time, then compared the change of total cover rate with the
number of times. The experimental result is shown in Table 3.

Table 3. Change of cover rate with generation time.

Times Dynamic Markov Standard Markov OMEN

1 43.49% 37.65% 57.10%
2 49.29% (plus 5.80%) 39.11% (plus 1.46%) 57.10% (plus 0%)
3 52.59% (plus 3.30%) 39.98% (plus 0.87%) 57.10% (plus 0%)
4 54.90% (plus 2.31%) 42.18% (plus 2.20%) 57.10% (plus 0%)
5 56.88% (plus 1.98%) 43.42% (plus 1.24%) 57.10% (plus 0%)

When the dynamic Markov model was run five times, the cover rate increases by
13.39% (from 43.49 to 56.88%), which basically reaches the level of OMEN. The standard
Markov model also show an improved cover rate when run more times. As for OMEN, it
always generates the same password in the same order, in which there is no randomness,
so the cover rate remains unchanged.

OMEN is a deterministic algorithm, so increasing the number of run times has no
effect on the cover rate. However, the dynamic Markov model and standard Markov model
both are stochastic algorithms, and new passwords are generated each time, so the number
running of times improves the cover rate. This result also indicates that the dynamic
Markov model and OMEN have the same probabilistic model regarding the passwords,
but the difference lies in the order and efficiency of password generation.

5. Discussion

In the task of password guessing, the core is to build a generative model that can
generate real passwords. The Markov model based on the statistical method is still widely
used due to its good generation effect and high efficiency. The standard Markov model
uses the random sampling method to generate passwords, which leads to a high repetition
rate, thus affecting the cover rate of generated passwords. The Markov model based on
enumeration is a deterministic algorithm. It always generates the same passwords in the
same order and can be attacked easily in some specific cases. In addition, the cover rate
of high-probability passwords by the enumeration method is not as good as the random
sampling algorithm.

To address the above problems, we first design a dynamic distribution mechanism
for use in the process of password generation. This mechanism continuously decreases
the probability value of high-probability passwords , then the distribution of passwords
continues to tend to be uniform distribution strictly, so as to achieve the effect of reducing
the repetition rate and improving the cover rate. The dynamic distribution mechanism
is designed based on the random sampling method, so it can avoid the shortcomings of
the deterministic algorithm and enhance the cover effect of high-probability passwords.
In addition, considering practical difficulties and generation efficiency, we fine-tune the
dynamic distribution mechanism. We successfully apply it to the Markov model, and
propose the dynamic Markov model. These changes mainly include the following: (1)
randomly choose an n-gram fragment responded distribution to adjust; (2) just verify
whether the probability of the n-gram fragment is greater than α; and (3) the adjustment
range of probability distribution is limited to some passwords of the support set.

In the dynamic Markov model, the selection of parameter α has a significant impact
on the performance. A larger parameter setting may not only significantly reduce the
repetition rate, but also reduce the cover rate, and a smaller parameter setting may not be
able to exert the effect of the dynamic distribution mechanism. By comparing the results of
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a series of experiments, we selected the optimal α value so that it would take into account
both the repetition rate and the cover rate. Compared with the standard Markov model, the
dynamic Markov model reduced the repetition rate from 75.88 to 66.50% and increased the
cover rate from 37.65 to 43.49%. However, the cover rate still had a gap of 13.61% compared
to OMEN. Through the analysis of the cover number of high-probability passwords, we find
that the generation algorithm based on random sampling has better results than the method
based on enumeration (OMEN), and the dynamic Markov model performed better than the
standard Markov model every time. The dynamic Markov model is a random algorithm,
and every password is generated randomly, while the deterministic algorithm (OMEN)
does not contain any randomness and can be attacked easily. In addition, considering the
effects of multiple password generation, the dynamic Markov model could achieve almost
the same cover rate as OMEN.

6. Conclusions

In this work, we propose a dynamic distribution mechanism to control the repetition
rate of password generation, and apply it to the Markov model based on random sampling.
This model can reduce the repetition rate and improve the cover rate. Compared with
the enumeration method, the algorithm keeps the advantage of randomness, and further
improves the cover of high-probability passwords.

This work inspires us to improve the effectiveness of the password generative model
from the perspective of reducing the repetition rate, that is, to optimize the generation
efficiency as much as possible by adjusting the password probability distribution close
to uniform distribution. This general idea may play a role in other password generative
models. In the next research, in order to further improve the cover rate, we will consider
other types of dynamic distribution mechanisms, and conduct statistical research on them,
and we will also study some methods to speed up the dynamic Markov model.
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