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Abstract: In this paper, relative orbit and attitude adaptive controllers are integrated to perform
roto-translational maneuvers for CubeSats equipped with a Drag Maneuvering Device (DMD).
The DMD enables the host CubeSat with modulation of aerodynamic forces/torques and gravity
gradient torque. Adaptive controllers for independent orbital and attitude maneuvers are revisited
to account for traslational-attitude coupling while compensating for uncertainty in parameters such
as atmospheric density, drag/lift coefficients, location of the Center of Mass (CoM) and inertia
matrix. Uniformly ultimately bounded convergence of the attitude error and relative orbit states is
guaranteed by Lyapunov-based stability analysis for the integrated roto-translational maneuver. A
simulation example of an along-track formation maneuver between two CubeSats with simultaneous
attitude control using only environmental forces and torques is presented to validate the controller.

Keywords: adaptive control; CubeSat; drag; lift; attitude; uncertainty; gravity gradient; low Earth orbit

1. Introduction

CubeSats have seen an increase of popularity in recent years. Born as an educational
platform inside university courses [1], in the last decade they became a low-cost high
reward platform to perform in-orbit technology development [2], scientific missions [3],
and interplanetary exploration [4]. The increasing popularity of this kind of platform has
generated interest on developing miniaturized technologies to extend their capabilities.

One of the key areas of interest is providing them with maneuverability, momentum
control, and orbit adjustment. Traditionally, propulsion systems have been utilized for atti-
tude control and for delta-V maneuvers; however, most CubeSats do not include on-board
propulsion systems due to volume, mass and safety limitations. For this reason, alternative
solutions are under investigation for orbital and re-entry applications, among others. One
of the possible solutions is based on the concept of exploiting forces and torques that are
usually considered disturbances. Similar to the idea of using the magnetic field of the Earth
for attitude control; atmospheric drag can be exploited in Low Earth Orbit (LEO) by using
variable shape devices to modify the experienced aerodynamic acceleration and torque.

Changes in orbital velocity enable the capability of performing maneuvers in the same
orbital plane, like formation flying or rendezvous and docking, without using on-board
propulsion systems. The introduction of differential drag for formation flying control
dates back to 1989, when the Clohessy–Wiltshire (CW) linear equations for relative motion
between two spacecraft were used to design an algorithm to control the relative in-plane
motion [5]. to regulate the states with a discrete input. An improved solution based
on the Schweighart–Sedwick (SS) linear equations for relative motion that include the J2
perturbation were introduced in [6]. In [7], the generation and use of lift to enable out-of-
plane maneuvering capability was implemented. A Lyapunov-based control strategy was
used in [8] to achieve spacecraft rendezvous using differential drag. In [9], the attitude
of a spacecraft was used to change the experienced drag instead of dedicated actuators
for drag surfaces. An adaptive sliding mode strategy was used in [10] to control the
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relative dynamics using a continuous differential drag input. In [11], a constrained least
squares problem is formulated to find the best achievable set of individual inputs to
control a set of spacecraft consisting of multiple chasers and a single target under mutual
constraints and actuator saturations. Drag-based algorithms and techniques have been
successfully demonstrated in orbit by the ORBCOMM constellation of satellites [12] to save
propellant in thruster-based formation keeping maneuvers, and the Planet Labs satellites
constellation [13] for propellant-less phasing maneuvers along the same orbit.

Variable shape devices consisting of several independent surfaces can be installed on
the spacecraft, locating the center of pressure at distances with respect to the Center of Mass
(CoM) such that significant torques can be applied. This feature allows exploiting aerody-
namic forces for attitude control maneuvers. In [14], a variable shape device has been used
to control the attitude for an earth observation satellite mission; while in [15], an on-line
parameter estimation procedure has been used to improve the performance in the presence
of environmental and spacecraft uncertainties. In [16], several independent surfaces have
been used to control the attitude of a spacecraft also during the re-entry phase, using a
direct force control method in substitution of the classic bank angle modulation control.

Variable shape devices can also be used to de-orbit satellites from Low Earth Orbit [17].
They can also be used to perform a controlled re-entry maneuver to target a precise location
on the ground [18], and be able to sustain the aero-thermodynamic loads [19] typical of a
deployable capsule re-entry profile [20].

The University of Florida Advanced Autonomous Multiple Spacecraft (ADAMUS) lab-
oratory has designed the Drag Maneuvering Device (DMD) [21]. The capabilities provided
by the DMD have been previously studied for controlled re-entry, as well as independent
orbital and attitude maneuvering applications. In this paper, relative orbit and attitude
adaptive controllers are integrated to perform a propellant-less roto-translational maneuver
involving DMD-equipped CubeSats. The capability of changing the aerodynamic torques
as well as the gravity gradient torque are considered in the attitude dynamics, whereas
the effect of differential drag is exploited in the spacecraft relative dynamics. The adaptive
controllers compensate for uncertainties in environmental and physical parameters such as
atmospheric density, drag/lift coefficients, location of the Center of Mass (CoM) and inertia
matrix. Uniformly ultimately bounded convergence is obtained through Lyapunov-based
stability analysis for the integrated roto-translational system.

The paper is organized as follows: Section 2 presents the translational and attitude
spacecraft dynamics, Section 3 shows the individual adaptive controllers and Lyapunov-
based stability result when considering attitude-orbit coupling. Sections 4 and 5 present
results from a simulation example of two-spacecraft along-orbit formation with simultane-
ous attitude control, and concluding remarks, respectively. The foremost contributions of
this paper are:

• Design and verification through numerical simulation of an adaptive controller capa-
ble of simultaneously achieving three-axis attitude stabilization and in-plane relative
maneuvering.

• Compensation for physical and environmental uncertainties such as drag/lift coeffi-
cients, atmospheric density and CoM location.

• Guaranteed ultimately bounded stability through Lyapunov-based analysis in the
presence of uncertainties and perturbations.

2. Spacecraft Dynamics
2.1. The Drag Maneuvering Device (DMD)

The DMD [21] is self-contained and can be mounted on standard CubeSats [22]. This
device provides the host satellite with the capability of independently modulating four
surfaces so that the experienced environmental forces and torques can be altered. Each
surface is offset 90 degrees and has a fixed inclination of 20 degrees with respect to the
anti-ram face of the spacecraft, see Figure 1. The DMD surfaces are rolled from 0.0762 mm
tick austenitic 316 stainless steel shim stock, each surface is attached to a drum that is
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driven by a brushless DC motor. The width and length of the DMD surfaces are 4 cm and
3.7 m, respectively. The DMD is capable of increasing the spacecraft cross sectional area
by up to 0.5 m2 as well as modifying the inertia matrix, resulting in modulation of the
experienced aerodynamic forces/torques and gravity gradient torque.

Figure 1. Drag Maneuvering Device schematic.

2.2. Coordinate Systems
2.2.1. Earth-Centered Inertial Reference Frame

The Earth-Centered Inertial (ECI) reference frame is centered at the CoM of the Earth,
its associated coordinate system has origin at the CoM of the Earth and is denoted by the
basis vectors

{
X̂, Ŷ , Ẑ

}
, where X̂ ∈ R3 is the unit vector aligned with the vernal equinox

direction, the unit vector Ẑ ∈ R3 is aligned with the rotation axis of the Earth and Ŷ ∈ R3

completes a right-handed Cartesian coordinate system, see Figure 2.

Figure 2. Coordinate systems.



Appl. Sci. 2021, 11, 4606 4 of 21

2.2.2. Local Vertical-Local Horizontal

The Local Vertical-Local Horizontal (LVLH) reference frame is centered at the CoM
of the spacecraft, its associated coordinate system has origin at the spacecraft CoM and is
denoted by the basis vectors {∆x̂, ∆ŷ, ∆ẑ}, where ∆x̂ ∈ R3 is the unit vector that points
from the CoM of the Earth towards the origin of the coordinate system, the unit vector
∆ẑ ∈ R3 is aligned with the orbit angular momentum vector and the unit vector ∆ŷ ∈ R3

competes a right-handed Cartesian coordinate system, see Figure 2. These unit vectors are
defined as

∆x̂ ,
r
‖r‖ , (1)

∆ŷ , ∆ẑ×∆x̂, (2)

∆ẑ ,
r× ṙ
‖r× ṙ‖ , (3)

where the vectors r , [x y z]T ∈ R3 and ṙ ∈ R3 are the spacecraft ECI position and
its time derivative, respectively. The skew symmetric matrix p× ∈ R3×3 for a vector
p , [p1 p2 p3]

T ∈ R3 is defined as

p× ,

 0 −p3 p2
p3 0 −p1
−p2 p1 0

. (4)

2.2.3. Body Reference Frame

The body reference frame is centered at the CoM of the spacecraft, its associated
coordinate system has origin at the spacecraft CoM and is denoted by the basis vectors
{b̂1, b̂2, b̂3}, where the unit vector b̂1 ∈ R3 is aligned with the longitudinal axis of the
spacecraft, the b̂2 ∈ R3 unit vector on the nadir facing side of the spacecraft, and the
b̂3 ∈ R3 unit vector is selected to complete the right-handed Cartesian coordinate system,
as depicted in Figure 2.

2.3. Translational Dynamics

Considering the gravitational influence of the Earth including J2, which captures the
largest perturbation on the orbit of the spacecraft due to the Earth’s mass distribution,
and the non-gravitational influence of atmospheric drag and lift; the acceleration of a
spacecraft in Low Earth Orbit (LEO) can be written in the ECI coordinate system as

ẍ , −GM⊕
‖r‖3 x +

3
2

(
J2GM⊕R2

⊕
‖r‖4

)(
x
‖r‖

(
5z2

‖r‖2 − 1
))

+ r̈D,x + r̈L,x, (5)

ÿ , −GM⊕
‖r‖3 y +

3
2

(
J2GM⊕R2

⊕
‖r‖4

)(
y
‖r‖

(
5z2

‖r‖2 − 1
))

+ r̈D,y + r̈L,y, (6)

z̈ , −GM⊕
‖r‖3 z +

3
2

(
J2GM⊕R2

⊕
‖r‖4

)(
z
‖r‖

(
5z2

‖r‖2 − 3
))

+ r̈D,z + r̈L,z. (7)

In (5)–(7), G ∈ R is the universal gravitational constant, and M⊕, R⊕ ∈ R are
the mass and radius of the Earth, respectively. Vectors r̈D , [r̈D,x r̈D,y r̈D,z]

T ∈ R3 and
r̈L , [r̈L,x r̈L,y r̈L,z]

T ∈ R3 are the accelerations due to aerodynamic drag and lift expressed
in the ECI coordinate system, respectively.

Assumption 1. Each CubeSat is assumed to be in circular LEO, and the inter-spacecraft distance
is small as compared with their orbit radius.
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The Schweighart–Sedwick equations [23], which include influence of the J2 pertur-
bation, can be used to express the motion of a target spacecraft with respect to the LVLH
frame centered at the CoM of the chaser as

∆ẍ , 2(Ωc)∆ẏ + (5c2 − 2)Ω2∆x + ux, (8)

∆ÿ , −2(Ωc)∆ẋ + uy, (9)

∆z̈ , −q2∆z + 2lq cos(qt +∅) + uz, (10)

where ∆r , [∆x ∆y ∆z]T ∈ R3 is the LVLH position of the target, the vector u ,
[ux uy uz]T ∈ R3 is the control input (i.e., experienced differential aerodynamic ac-
celeration). Ω ∈ R is the constant angular velocity of the orbit of the chaser; c ,(

1 + 3J2R2
⊕

8r2
re f

(
1 + 3 cos(2ire f )

))1/2
∈ R; rre f , ire f ∈ R are the radius and inclination of

the orbit of the chaser. Parameters l, q, ∅ ∈ R in the decoupled out-of-plane component
are defined in [23].

2.4. Attitude Dynamics

Using Euler’s law, the attitude dynamics of a DMD-equipped spacecraft can be
expressed as

J̇ω + Jω̇ + ω× Jω = τD + τL + τGG + δa, (11)

where ω ∈ R3 is the angular velocity of the body with respect to the ECI frame, J ∈ R3×3 is
the inertia matrix of the spacecraft, τGG, τD, τL ∈ R3 are the gravity gradient, aerodynamic
drag and lift torques, respectively. The vector δa ∈ R3 denotes disturbances torques.

To represent the orientation of the spacecraft with respect to the ECI frame, the quater-
nion q ∈ R4 is used. In the body coordinate system, q is defined as [24]

q , [q0 qv
T ]T , (12)

where q0 ∈ R and qv , [q1 q2 q3]
T ∈ R3, and the property qv

Tqv + q2
0 = 1 is satisfied.

A desired attitude trajectory is specified using the desired quaternion qd , [q0d q0v
T]T ∈

R4, and the mismatch between q and qd is expressed using the error quaternion e ,
[e0 ev

T]T ∈ R4, which satisfies the property ev
Tev + e2

0 = 1 and obeys the error quaternion
kinematics [24]

ėv ,
1
2
(
e×v + e0I3

)
ω̃, (13)

ė0 , −1
2

ev
Tω̃. (14)

In (13) and (14), I3 ∈ R3×3 is the identity matrix, and ω̃ denotes the error in the
angular velocity of the spacecraft

ω̃ , ω− R̃ωd, (15)

where ωd ∈ R3 is the desired angular velocity with respect to the ECI frame, and R̃ ∈ R3×3

is the rotation matrix used to express ωd in the body coordinate system.
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2.5. Aerodynamic Forces and Torques

A spacecraft in LEO experiences aerodynamic drag and lift forces due to the interaction
with the atmosphere. The DMD surfaces, which are significantly larger than the faces of
the CubeSat, contribute to the total aerodynamic drag and lift forces as

FD,j , −
ρwbLjCD,j

2
V⊥,j

2 Vr

‖Vr‖
, (16)

FL,j , −
ρwbLjCL,j

2
V⊥,j

2
(

Vr

‖Vr‖
× nj ×

Vr

‖Vr‖

)
, (17)

where the subscript j indicates the jth DMD surface, ρ ∈ R is the atmospheric density,
CD,j, CL,j, wb, Lj ∈ R are the drag, lift coefficients, width and length of the jth DMD
surface, respectively. The vector Vr ∈ R3 represents the spacecraft-atmosphere relative
velocity vector, nj ∈ R3 is the unit vector that represents the direction normal to the jth
DMD surface and V⊥,j , Vr · nj ∈ R.

Assumption 2. The spacecraft are assumed to be flying with the DMD surfaces installed on the
anti-ram face. Other attitude configurations are considered beyond the scope of this paper.

The torques produced by aerodynamic drag and lift are given by

τk ,
4

∑
j=1

R×j Fk,j, k = D, L, (18)

where Rj , rc + rj ∈ R3, rc , [c1 c2 c3]
T ∈ R3 is the vector that goes from the spacecraft

CoM to the geometric center of the anti-ram face of the CubeSat (O′), and rj ∈ R3 is the
vector that goes from O′ to the center of pressure of the jth DMD surface, see Figure 3.

Figure 3. CoM location and model for obtaining approximated inertia matrix as functions the
DMD lenghts.

2.6. Gravity Gradient Torque

The spacecraft experiences a gradient of gravitational forces along the body. This
effect produces the gravity gradient torque, which depends on the spacecraft attitude and
inertia properties and is given by [25]

τGG ,
3GM⊕
‖r‖5 r× Jr. (19)
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3. Controller Design
3.1. Control Objective

The objective is to develop a control approach able to perform full control of the space-
craft exclusively using the DMD system. Uncertainties in the spacecraft physical parameters
as well as in the environmental parameters are considered. Specifically, the attitude and
relative orbit controllers are required to compensate for uncertainties in the atmospheric
density ρ, the magnitude of Vr opposite to the direction of motion ∆ŷ, the spacecraft inertia
matrix J, CoM location rc, drag CD,j and lift CL,j coefficients.

Several models for estimating the atmospheric density are available; however, even
the more complex ones (e.g., NRLMSISE-00 [26]) have significant level of uncertainty [27],
and may be difficult to compute on-board due to the need of solar and geomagnetic indices
forecasts. The use of simpler linearly parameterizable models to represent the behavior
of this parameter in the short term (i.e., few days) has demonstrated to be sufficient for
completing attitude and relative orbit maneuvers and even estimating the time-varying
behavior of the atmospheric density online.

Assumption 3. The atmospheric density can be modeled using linearly parameterizable models
such as those proposed in [28–30], which can be generalized in the form

ρ , YρΘρ (20)

where the Yρ
T ∈ Rn is a measurable regression vector containing all the known parameters and

states, and the vector Θρ ∈ Rn contains n uncertain calibration constants.

An approximate model to represent the variation of the inertia matrix J and CoM
location rc can be obtained by representing the spacecraft as a collection of multiple
geometric shapes. The CubeSat body can be represented as a rectangular box, while
the deployed and rolled portions of the DMD surfaces can be represented as flat plates
and thick walled cylinders, respectively, see Figure 3. However, such approximations
introduce uncertainties in J and rc, which are critical quantities to determine the applied
environmental torques. In this work, the components of rc are considered uncertain and
the inertia matrix is assumed partially known.

Assumption 4. The spacecraft is capable of computing an approximate Jm ∈ R3×3 of its time-
varying inertia matrix, provided an on-board simplified analytical model. The real inertia matrix J
can be expressed as

J , Jm + ∆J, (21)

where ∆J ∈ R3×3 is the mismatch between Jm and J, the parameters in ∆J, ∆ J̇ and J̇ are assumed
bounded by known constants.

The differential drag acceleration is the control input considered for the relative
maneuver and is defined as

u =
Ft

D
mt
−

Fi
D

mi
, (22)

where t, and i denotes the target and ith chaser, respectively. From (22), the direction
of the differential drag is approximately opposite to the direction of motion ∆ŷ, but not
entirely, due to the rotation of the atmosphere. Therefore, for control design purposes,
the differential drag is assumed to act opposite to ∆ŷ and the time-varying magnitudes of
Vr,t and Vr,i are included among the uncertain parameters. The purpose for considering
uncertainties in ‖Vr,t‖ and ‖Vr,i‖ is to account for the deviations of Vr with respect to ∆ŷ
due to the rotation of the atmosphere and winds.

Assumption 5. The influence of differential lift and residual misalignment of Vr with respect to
∆ŷ are considered to have negligible influence in the spacecraft translational dynamics.
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Provided that the spacecraft is capable of measuring its orientation q and angular
rates ω, as well as the relative states ∆r and ∆ṙ, and considering that the differential drag
can only affect the relative dynamics in the orbital plane, the control objectives can be
established as follows

R̃→ I3 as t→ ∞, (23)

and
‖X‖ → 0 as t→ ∞, (24)

where X , [∆x ∆ẋ ∆y ∆ẏ]T ∈ R4.

3.2. Control Development

The attitude controller developed in [30] ensures ultimately bounded convergence
of ‖ω̃‖ and ‖ev‖, which results in R̃ → I3 as t → ∞. The controller compensates for
uncertainties in ρ, CD,j, CL,j and rc, as well as the availability of only an approximation of
the inertia matrix, namely Jm. The proposed control law (25) computes the torques ūd ∈ R3,
expressed in the body coordinate system, required for achieving attitude tracking

ūd , −K1µ− β1ev, (25)

where µ , ω̃ + βev ∈ R3, K1, β ∈ R3×3 are symmetric, positive-definite control gains,
and β1 ∈ R>0 is a control constant. However, the desired control torques are generated by
varying the DMD surfaces lengths. The relationship between the DMD lengths and the
applied environmental torques can be expressed as

ū , Y1Θ̂1, (26)

where Y1 ,
[
YAT

3GM⊕
‖r‖5 r× Jmr − J̇mω−ω× Jmω + Jmω×R̃ωd − JmR̃ω̇d + Jmβėv

]
∈ R3×65

is a measurable regression matrix, and the vector Θ̂1 ∈ R65 is the estimate of Θ1 ,[
ΘAT

T 1
]T
∈ R65, which contains the uncertain parameters CD,j, CL,j, ρ, and rc. The mea-

surable regression matrix YAT ∈ R3×64 and vector of uncertainties ΘAT ∈ R64, associated
with the aerodynamic torques, are explicitly defined in [30].

The goal is to vary the DMD surfaces lengths such that the difference between (25)
and (26) is as small as possible. In order to achieve this objective, and provided the
expressions inside the regression matrix Y1, a numerical algorithm is used to minimize
χ , ū− ūd ∈ R3 by modifying the DMD lengths L1, L2, L3, and L4. The minimization
problem is formulated as

min
L1,L2,L3,L4

‖ū− ūd‖ subject to
{

0 ≤ Lj ≤ 3.7, j = 1, 2, 3, 4, (27)

and the estimates Θ̂1 required to compute ū are updated by

˙̂
Θ1 , proj

(
Γ1YT

1 µ
)

, (28)

where Γ1 ∈ R65×65 is a constant, positive-definite adaptation matrix, and proj(·) denotes
the continuous projection algorithm presented in [31], which ensures that Θ̂1 remains
within known bounds.

The relative maneuvering controller in [29], guaranteed asymptotic stability of the
in-plane relative states between a chaser and the target. However, the control development
assumed attitude stabilized spacecraft and the possibility of accurately computing the re-
quired DMD lengths for achieving the desired control input (i.e., cross-sectional area of the
chaser Si ∈ R>0). In the case of a roto-translational maneuver, the total cross-sectional area
is a function of both the attitude states and the DMD lengths. Moreover, the DMD lengths
must be computed to satisfy attitude and relative orbit requirements simultaneously.
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The magnitude of the differential drag acting along ∆ŷ (i.e., uy), can be expressed as

uy , ρiCi
D‖Vr,i‖2 Si

2mi
− ρt‖Vr,t‖2 Ct

DSt

2mt
, (29)

where i denotes the ith chaser. The expression in (29) can be linearly parameterized as

uy = Y2Θ2, (30)

with the regression vector Y2
T ∈ R6 and the vector of uncertain parameters Θ2 ∈ R6

defined as

Y2 ,
[

Si Si sin(Ωt) Si cos(Ωt) − St

2mt
− St

2mt
sin(Ωt) − St

2mt cos(Ωt)
]

, (31)

Θ2 ,



D1,iCi
D‖Vr,i‖2

D2,iCi
D‖Vr,i‖2

D3,iCi
D‖Vr,i‖2

D1,iCt
D‖Vr,t‖2

D2,iCt
D‖Vr,t‖2

D3,iCt
D‖Vr,t‖2

. (32)

In (32), the parameters D1,k, D2,k, D3,k ∈ R with k = i, t, are uncertain constants used
under Assumption 3 to calibrate the atmospheric density at the position of the ith chaser
and target, respectively, see [29] for details.

The control and adaptive update laws, assuming that the target broadcasts its own
area to mass ratio St/mt to all chasers, are proposed as

Sd,i , 2mi

[(
ρ̂iĈi

D ‖̂Vr,i‖2
)−1

(
Ĉt

DSt

2mt
ρ̂t‖̂Vr,t‖2 − KLQRX

)]
, (33)

˙̂
Θ2 , proj

(
2Γ2Y2

T BT PTX
)

, (34)

where (̂·) represents the estimate of the uncertain parameter (·), KT
LQR ∈ R4 is a constant

control gain vector, P ∈ R4×4 is a symmetric positive-definite matrix, Γ2 ∈ R6×6 is a
symmetric positive-definite adaptation gain, B , [0 0 0 1]T ∈ R4 and Ck

D , ∑4
j=1 CD,j,

with k = t, i.
To integrate the attitude and relative orbit controllers, the minimization problem

in (27) is modified to account for relative maneuvering requirements by introducing the
additional constraint of a required total cross-sectional area, which is the parameter that
can be varied to modify the differential drag. The minimization problem is modified for
each spacecraft as

min
{L1,L2,L3,L4}

{
Watt‖ū− ūd‖+ Worb(S− Sd)

2
}

subject to
{

0 ≤ Lj ≤ 3.7m j = 1, 2, 3, 4,
(35)

where S ∈ R>0 is the total cross-sectional area of the spacecraft, and Sd ∈ R>0 is the
desired cross-sectional area. Note that the parameters ū and S depend on the spacecraft
attitude and orbital states as well as the DMD lengths, while ūd and Sd are computed from
the corresponding adaptive control laws.

By using (35), a set of DMD lengths can be computed accounting for both control
requirements; however, residual errors due to the use of a numerical algorithm must be
considered in the stability analysis. In addition to the residual error, the drag coefficients of
the DMD surfaces may change over time due to the spacecraft changing orientation.
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Assumption 6. The time derivative of the vector of uncertain parameters (i.e., Θ̇2), can be bounded
by a known constant.

3.3. Stability Analysis

Stability of the relative orbit and attitude subsystems when applying the adaptive
control and update laws in (25), (28), (33) and (34) has been verified by Lyapunov-based
stability analysis in [29,30], respectively. In this section, the requirement of performing
simultaneous attitude and relative orbit maneuver is included, and the modified stability
result is presented.

The attitude control law computes the required torques for achieving the attitude
tracking objective, and an intermediate step where the a suitable set of DMD surfaces
lengths are computed to generate such torques was proposed using a numerical algorithm
to solve (27). Considering that the proposed strategy to integrate the attitude and orbit
controllers is to modify the minimization problem as in (35), and that the influence of the
residual mismatch χ between the desired and obtained torques was explicitly included,
the stability proof of the attitude controller does not change. The ultimately bounded
attitude tracking result is presented for completeness in Theorem 1.

Theorem 1. Consider the spacecraft attitude dynamics governed by the non-linear system in (11).
The auxiliary controller in (25) and the adaptive update law in (28) ensure uniformly ultimately
bounded attitude tracking in the sense that

‖ev‖ ≤ ε1exp{−ε2}+ ε3, (36)

where ε1, ε2, ε3 ∈ R>0 are known bounding constants and provided that η(0) ∈ S , with η ,
[ev

T µT ]T ∈ R6. The set S , and the constants ε1, ε2, and ε3 are explicitly defined in [30].

The relative maneuvering control law computes the required cross-sectional area
required by the chaser spacecraft to achieve regulation of the in-plane relative states in X.
In [29], the cross-sectional area could be computed analytically under the assumption of
attitude stabilized spacecraft. For the roto-translational maneuver, variation of the drag
coefficient due to time-varying attitude, and the use of (35) as an intermediate step for
obtaining the total cross-sectional area must be considered.

To facilitate the stability analysis of the relative maneuvering controller accounting for
the influence of a simultaneous attitude maneuver, some definitions are introduced. Let the

constants ε4, ε5, ε6 ∈ R>0 be defined as ε4 ,

√
λ‖X(0)‖2+γ

λ , ε5 , λ1
2λ

, ε6 ,
√

γ−γ

λ + λζ4
λ1λ ,

where ζ4, λ, λ, γ, γ ∈ R>0 are known bounding constants.

Theorem 2. Given the spacecraft in-plane relative dynamics in (8) and (9), the controller in (33)
and the adaptive update law in (34) ensure uniformly ultimately bounded regulation of the relative
state X in the sense that

‖X‖ ≤ ε4exp{−ε5t}+ ε6. (37)

Proof. Let V be a candidate Lyapunov function defined as

V(t) , XT PX +
1
2

Θ̃2
T

Γ−1
2 Θ̃2, (38)

where
Θ̃2 , Θ2 − Θ̂2. (39)

The candidate Lyapunov function can be bounded by

λ‖X‖2 + γ ≤ V(t) ≤ λ‖X‖2 + γ, (40)
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where λ, λ, γ, γ ∈ R>0 are known bounding constants.
Let Ẋ , AX + Buy ∈ R4 be the state space representation of (8) and (9), where

A ∈ R4×4 is a known constant matrix. In the roto-translational maneuver, the set of DMD
surfaces that simultaneously generate the required cross-sectional area and environmental
torques are computed using (35), producing a residual mismatch χ1 , Si − Sd,i ∈ R.

Assumption 7. A numerical optimization algorithm can be used to find a suitable set of DMD
surface lengths (i.e., L1, L2, L3, and L4) provided (25), (28), (33) and (34). The residual χ1 can be
upper bounded by a constant for the entire maneuver such that |χ1| < ζ1.

Taking the time derivative of (38), using (39), substituting (33) and rearranging
terms yields

V̇(t) = XT
(

PA∗ + A∗T P
)
+ 2XT PBY2Θ̃2 + XT PB

(
ρ̂iĈi

DV̂2
r,i

)
χ1

mi
+

+Θ̃2
T

Γ−1
2 Θ̇− Θ̃2

T
Γ−1

2
˙̂

Θ2,

(41)

where A∗ , A− BKLQR. Since the gain KLQR is obtained by solving a Linear Quadratic
Regulator (LQR) problem, then A∗ is Hurwitz and a symmetric positive-definite matrix
Q1 ∈ R4×4 can be determined so that PA∗ + A∗T P = −Q1.

Using (34) and Assumptions 6 and 7, (41) can be upper bounded as

V̇(t) ≤ −λ1‖X‖2 + ζ4, (42)

where λ1 , λmin

{
Q1 − 1

2

}
∈ R, λmin{·} denotes the minimum eigenvalue of {·}, ζ4 ,

ζ2 +
ζ2

3
2 ∈ R>0, and Young’s inequality as well as the upper bounds Θ̃

T
2 Γ−1

2 Θ̇2 ≤ ζ2 and∥∥∥PB
((

ρ̂iĈi
DV̂2

r,i

)
χ1/mi

)∥∥∥ ≤ ζ3 were used.
Provided that the control gains are selected such that λ1 > 0 and using (40), then (42)

can be rewritten as
V̇ ≤ −λ1

λ
V(t) +

λ1γ

λ
+ ζ4. (43)

By invoking the Comparison Lemma from [32], the solution to (43) can be obtained as

V ≤ V(0)exp
{
−λ1

λ
t
}
+

λ

λ1

(
λ1γ

λ
+ ζ4

)(
1− exp

{
−λ1

λ
t
})

. (44)

From (38), (40) and (44), then X ∈ L∞. Since Θ̂ ∈ L∞ by (34), then Sd,i ∈ L∞; therefore,
Si ∈ L∞ from Assumption 7. Using (44) and (40) yields

‖X‖2 ≤
(

λ‖X(0)‖2 + γ

λ

)
exp

{
−λ1

λ
t
}
+

(
γ− γ

λ
+

λζ4

λ1λ

)
. (45)

From (45) the result in (37) can be directly obtained.

4. Simulation Results and Discussion

The simulation scenario for this maneuver considered a set of two identical DMD-
equipped CubeSats (i.e., one chaser and one target) with their physical parameters shown
in Table 1. The translational states were propagated for each spacecraft independently us-
ing Equations (5)–(7) and transforming to the LVLH relative states to compute (35) and (36).
The atmospheric density used for attitude and orbit propagation, and considered unknown
for the controllers, was obtained by using the NRLMSISE-00 model. The nonlinear attitude
dynamics (i.e., Equation (12)) were simultaneously propagated and coupling with the trans-
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lational dynamics was explicitly included in the computation of the attitude-dependent
cross-sectional area, and the analytical models for the drag and lift coefficients [33].

The spacecraft were required to perform a phasing maneuver while controlling their
attitude to achieve the desired orientation. The desired orientation (i.e., qd and ωd) was
computed to be equivalent to a regulation maneuver with respect to the LVLH frame.
For visualization purposes, the initial and desired orientations were expressed in 3-2-1
Euler angle representation with respect to the LVLH frame and are shown in Tables 2 and 3
for both spacecraft, where φ, θ, ψ ∈ R are rotations with respect to ∆ŷ, ∆ẑ and ∆x̂,
respectively. The initial orbit was identical for both spacecraft and its orbital elements are
shown in Table 4. The objective for the relative controller was to perform an along-orbit
formation maneuver where the desired inter-spacecraft separation was 4 km. To achieve the
along-orbit maneuver, a modified reference frame that had a position offset with respect
to the LVLH with origin at the CoM of the chaser spacecraft is considered. A desired
user-defined along-orbit distance ∆d ∈ R was specified, which can be expressed as an
offset in true anomaly ∆ν ∈ R with respect to that of the chaser spacecraft as

∆ν ,
∆d
a

, (46)

where a ∈ R>0 is the true anomaly of chaser’s orbit, then the orbital elements for the
origin of the new reference frame are the same as those of the chaser but adding ∆ν to the
true anomaly and the control objective remains to regulate X to zero.

The control and adaptation laws in (27), (30), (35) and (36) could be computed every
time step by each spacecraft since they did not require any iterative algorithm. The function
minimization problem in (37) was solved every 30 s by each spacecraft to produce a new set
of DMD lengths that considered the required total cross-sectional areas and environmental
torques. This update rate for the DMD lengths could be reduced; however, 30 s provided a
practical balance between the transient response and the computational demands. In the
numerical simulation, the function minimization algorithm was implemented using the
fmincon command in MATLAB and the average time required to obtain a solution was
0.3152 s using a Windows laptop, 2.7 GHz quad core Intel Core i7 processor, and 16 GB
RAM. Since the relative maneuvering control law computed the cross-sectional required
by the chaser, the target spacecraft was tasked with the only objective of attitude control
and to broadcast its ECI states and cross-sectional area. The control gains are presented in
Table 5 along with the weights Watt and Worb, where α ∈ R>0 is defined as

α ,
{ 10

3 ‖ev‖, 10
3 ‖ev‖ ≤ 1,

1, 10
3 ‖ev‖ > 1

. (47)

Table 1. Spacecraft physical parameters, subscripts 1 and t denote chaser 1 and target, respectively.

St, S1 [m2] mt, m1 [kg] St,max, S1,max [m2] St,min, S1,min [m2]

0.2 3 0.5 0.01

Table 2. Initial Euler angles and angle rates for the roto-translational maneuver, subscript k = 1, t
denotes chaser 1 and target, respectively.

Parameter Value

φ0,k [deg] 13.5
θ0,k [deg] −12
ψ0,k [deg] 10

φ̇0,k [deg/s] 5× 10−3

θ̇0,k [deg/s] −1.5× 10−2

ψ̇0,k [deg/s] 1.8× 10−2
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Table 3. Desired Euler angles and angle rates for the roto-translational maneuver, subscripts 1 and t
denote chaser 1 and target, respectively.

Parameter Value

φ0,t [deg] −25
θ0,t [deg] 0
ψ0,t [deg] 15
φ0,1 [deg] 30
θ0,1 [deg] 0
ψ0,1 [deg] −10

Table 4. Initial orbital parameters for the roto-translational maneuver.

Parameter Value

Semi-Major Axis [km] 6778
Eccentricity 0

Inclination [deg] 51.94
RAAN [deg] 206.26

Arg. of perigee [deg] 201.07
True Anomaly [deg] 108.08

Table 5. Control parameters for the roto-translational maneuver.

Parameter Value

Watt 1
Worb 5× 10−5(1− α)

K1 (×10−3) diag(3, 3, 3)
β (×10−3) diag(1.5, 5, 5)
β1 (×10−6) 3.2

Γ2 diag(Γb, Γb, Γb, Γb, 6Γb, 6Γb, Γa, Γa, 10−20)
Γa (×10−19) diag(1, 1011, 1, 1011, 1, 1011, 1, 1011)
Γb (×10−22) diag(2, 211, 2, 211, 2, 211, 2, 211, 2, 211)

Q diag(180, 1, 1.8, 1)
R (×10−16) 6
Γ1 (×10−20) diag(45, 15, 15, 45, 15, 15)

Figure 4 presents the relative states of the target expressed in the LVLH frame with
origin at the CoM of the chaser spacecraft. In this simulation, the chaser required approxi-
mately 55 h to enter the ultimate bounds of ±10 and ±60 meters along the directions ∆x̂
and ∆ŷ, respectively, as compared to the convergence to a circle of 10 m radius around the
desired position obtained with the individual, decoupled counterpart in [29]. The resulting
residual error was expected due to the ultimately bounded stability result obtained in the
coupled attitude-orbit case. The uncertain parameters for the relative maneuvering con-
troller are presented in Figure 5, where dynamic variation of the estimates to compensate
for the uncertainties can be observed.
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Figure 4. Relative states for the roto-translational maneuver.

Figure 5. Parameter estimates from the relative maneuvering controller.

Figure 6 shows the actual and desired quaternion and Figure 7 presents the actual
and desired angular velocities. Note that although the required orientation was fixed
with respect to LVLH, the desired qd was time-varying and ωd was different from zero;
therefore, the controller was really performing a tracking maneuver. Figure 8 shows the
resulting orientations in Euler angle representation for the target and chaser. Although the
orientation of both spacecraft had the same initial conditions, and the control parameters
were also the same, the resulting orientation had different transients and ultimate bounds.
This behavior can be explained by the fact that the chaser spacecraft was the only one
in charge of satisfying the required cross-sectional area for the relative orbit maneuver.
The only goal of the target was to regulate its attitude and to broadcast its cross-sectional
area and ECI states to the chaser so that it could compute (33). While the target required
4.8 h to enter the ultimate bounds of ±2, ± 3 and ±2 degrees of error in roll, pitch and
yaw, respectively, the chaser required 43 h to enter the ultimate bounds of ±2, ± 6.5
and ±5.5 degrees of error in roll, pitch and yaw, respectively. The resulting ultimate
bounds showed an increase with respect to the individual, decoupled counterpart in [30]
of ±3, ± 1.5 and ±3 in roll, pitch and yaw, respectively. The observed increase was
expected due to the additional requirement of achieving a specific cross-sectional areas for
the relative orbit maneuver.

The required control inputs are presented in Figure 9 for the target and chaser. Satu-
ration due to the physical limitations of the DMD lengths was applied in the simulation.
The DMD lengths reach saturation levels at the beginning of the maneuver where com-
pensation for the initially large errors was required. Significant differences in the DMD
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length profiles could be observed between target and chaser. The chaser spacecraft required
changing the total cross-sectional and simultaneously generate the required torques using
only the DMD surfaces, which can be observed in Figure 9. The DMD surfaces, in the
case of the chaser spacecraft, were significantly more active than those of the target. This
behavior was especially noticeable when the requirements of the relative orbit controller
were demanding (i.e., required cross-sectional area at or near saturation levels), the changes
between maximum and minimum area could be observed during the first 40 h. To avoid
instantaneous and fast changes of the DMD lengths due to the 30 s interval between com-
putations, the points were joined with splines and passed through a low-pass filter with
cut-off frequency ωc ∈ R>0 of 0.017 Hz. The maximum resulting deployment rate required
from an actuator during the peak of control demand was 2.5 m per minute, as illustrated
in Figure 10.

Figure 6. Quaternions q and qd for the target (left) and chaser (right), first 20 h of simulation.

Figure 7. Angular velocities ω and ωd for the target (left) and chaser (right), last 20 h of simulation.
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Figure 8. Attitude of the target (left) and chaser (right) spacecraft expressed in Euler angle representation.

Figure 9. Required DMD surfaces lengths of the target (left) and chaser (right) for the roto-
translational maneuver.

Figure 10. Zoomed-in view of the DMD lengths applied to the chaser spacecraft. Interval between 16
and 17 h.

The parameter estimates for the attitude controller of the target are presented in Figure 11
the parameters associated with the aerodynamic drag, and Figure 12 those associated with
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the aerodynamic lift, respectively. Similarly, in the case of the chaser, Figure 13 shows
the estimated parameters associated with aerodynamic drag and Figure 14 presents those
associated with aerodynamic lift, respectively. The estimates were adjusted by the adaptive
update law to compensate for the uncertainties. Some estimates exhibited a diverging trend
as compared to others, this behavior can be explained by the fact that the ultimately bounded
results obtained from both controllers ensured convergence of the states but not necessarily of
the estimates. Inside the ultimate bound, an increase of the Lyapunov function could indicate
that the norm of the estimates was increasing, generating the behavior observed in some
estimates. Although this behavior did not affect the stability result, in case the estimates kept
growing, the continuous projection algorithm used in the adaptive update laws would keep
them bounded. However, during the 70 h of simulation, these bounds were never reached.

Figure 11. Parameter estimates from the attitude controller associated with the aerodynamic drag of
the target. Components B̂1ĈD,j of Θ̂1,t with j = 1, 2, 3, 4 (left), remaining components of Θ̂1,t (right).

Figure 12. Parameter estimates from the attitude controller associated with the aerodynamic lift of
the target. Components B̂1ĈL,j of Θ̂1,t with j = 1, 2, 3, 4 (left), remaining components of Θ̂1,t (right).
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Figure 13. Parameter estimates from the attitude controller associated with the aerodynamic drag of
the chaser. Components B̂1ĈD,j of Θ̂1,1 with j = 1, 2, 3, 4 (left), remaining components of Θ̂1,1 (right).

Figure 14. Parameter estimates from the attitude controller associated with the aerodynamic lift of
the chaser. Components B̂1ĈL,j of Θ̂1,1 with j = 1, 2, 3, 4 (left), remaining components of Θ̂1,1 (right).

To evaluate the influence that the applied inputs may have on the flexible DMD
surfaces, the first natural frequencies of a fully deployed DMD surface, modeled as a
catilevered beam, were computed using SolidWorks and are presented in Table 6. Since
the attitude dynamics were faster than the translational dynamics, the Fast Fourier Trans-
form (FFT) of the applied torques were computed for both spacecraft and are presented
in Figure 15. The range of frequencies of the applied torques were reasonably below the
first natural frequency of the DMD surface.

Table 6. First natural frequencies of a fully deployed DMD surface.

Freq. Mode 1 Freq. Mode 2 Freq. Mode 3 Freq. Mode 4 Freq. Mode 5

0.1396 Hz 0.1624 Hz 0.2310 Hz 0.4040 Hz 0.6597Hz
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Figure 15. FFT of the torques applied to the target (left) and chaser (right) spacecraft.

5. Conclusions

The obtained results have shown that it is feasible to perform simultaneous orbital
and attitude maneuvers by using the Drag Maneuvering Device as the only control means
in conditions where physical and environmental parameters are uncertain.

In particular, adaptive controllers for orbital and attitude maneuvers were integrated
to perform roto-translational maneuvers in the presence of uncertainty in atmospheric
density, drag/lift coefficients, location of the Center of Mass and inertia matrix. The uni-
formly ultimately bounded convergence of the attitude error and relative orbit states is
guaranteed by the Lyapunov-based stability analysis. Validation through numerical simu-
lation of a phasing maneuver with simultaneous attitude control requirement results in
ultimate errors below 60 m and 6.5 degrees for the translational and attitude maneuvers,
respectively.

The algorithms developed together with the Drag Maneuvering Device could be
particularly useful for providing small platforms, such as CubeSats, with propellant-less
translational and attitude maneuverability. In-orbit inspection and servicing are envisioned
as future applications for this technology.

Future work will explicitly include the influence of flexible bodies on the spacecraft
dynamics and will be considered in the controller design. Studies on how to incorporate
compensation for time-varying uncertain parameters, as well as efforts on relaxing the
requirement of using numerical algorithms to solve for the DMD lengths, are considered of
great importance to improve the obtained stability result. Opportunities for improving the
distribution of the control effort between chaser and target without necessarily centralizing
the control algorithm have also been identified as topic of interest for future research efforts.
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