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Featured Application: This work can used in location privacy preservation in internet of vehicles.

Abstract: During the procedure, a location-based service (LBS) query, the real location provided by the
vehicle user may results in the disclosure of vehicle location privacy. Moreover, the point of interest
retrieval service requires high accuracy of location information. However, some privacy preservation
methods based on anonymity or obfuscation will affect the service quality. Hence, we study the
location privacy-preserving method based on dummy locations in this paper. We propose a vehicle
location privacy-preservation method based on dummy locations under road restriction in Internet
of vehicles (IoV). In order to improve the validity of selected dummy locations under road restriction,
entropy is used to represent the degree of anonymity, and the effective distance is introduced to
represent the characteristics of location distribution. We present a dummy location selection algorithm
to maximize the anonymous entropy and the effective distance of candidate location set consisting of
vehicle user’s location and dummy locations, which ensures the uncertainty and dispersion of selected
dummy locations. The proposed location privacy-preservation method does not need a trustable
third-party server, and it protects the location privacy of vehicles as well as guaranteeing the LBS
quality. The performance analysis and simulation results show that the proposed location privacy-
preservation method can improve the validity of dummy locations and enhance the preservation of
location privacy compared with other methods based on dummy locations.

Keywords: privacy preservation; Internet of vehicles (IoV); location-based services (LBS); location
privacy; dummy location; effective distance

1. Introduction

With the development and application of wireless networks, the vehicular ad hoc
network (VANET) is becoming an important part of future intelligent transport system.
It is expected to play an important role in the road safety [1], traffic management [2],
information dissemination to drivers and passengers [3], and so on. With increasing
number of vehicles being connected to the Internet of things, the conventional VANET is
changing into the Internet of vehicles (IoV).

Moreover, the use of location-based services (LBS) application from mobile devices
and applications (apps) is rapidly increasing [4]. When a user acquires the LBS, it needs to
provide its location, which results in the disclosure of the location privacy. In addition, a
vehicle may act as a provider of location services. For example, when a vehicle participates
in a task based on swarm intelligence perception, it should expose the location privacy.
Hence, the problem of privacy preservation in the LBS should be resolved [5].
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To address the privacy-preserving issue, many approaches have been proposed over
the past few years. Most of them are based on the location perturbation and obfuscation
adopt well-known privacy metrics such as K-anonymity [6] and rely on a trusted third-
party server [7,8]. However, K-anonymity privacy-preserving scheme is suitable for high
vehicle density. When there are fewer vehicles, spatial anonymity may not be realized, or
the anonymous area formed is too large [9]. On the other hand, for the point of interest
(POI) retrieval service in IoV, the accuracy of retrieval results is related to the precision of
provided location information. However, the location privacy-preservation schemes based
on anonymity or obfuscation cannot guarantee the accuracy of location information, which
affects the quality of LBS [10–13].

In the location privacy-preservation method based on dummy locations, a location
set containing (or implied) the user’s real location is provide to the LBS server. Hence,
this method can ensure the accuracy of POI retrieval results [14]. At the same time, the
generation of dummy locations does not need a trustable third-party server. In recent
years, many location privacy-preservation methods based on dummy locations have been
proposed [15–23]. However, due to the characteristics of vehicles, the location of vehicles is
subject to the road distribution, many methods cannot be directly adopted in IoV.

In IoV, road information can be used to preprocess dummy locations by the LBS server.
Since the enhanced dummy location selection (E-DLS) [18] algorithm does not take the road
information into consideration, the validity of dummy locations cannot be guaranteed. In
addition, due to the restriction of roads and roadside buildings, the distribution of dummy
locations is constrained. Although dummy locations are generated combining with location
semantic information [24], the required location distribution is difficult to be achieved
under road constraints. Considering the geographical constraint, a method is proposed
to generate and arrange dummy objects around users in a grid form [25]. However, the
method ignores the history request information. Due to the shortcomings in the existing
location privacy-preserving methods in IoV, we investigate the problem of location privacy
preservation under road constraints in this paper.

In this paper, we propose a vehicle location privacy-preservation method based on
dummy locations. In the proposed method, the dummy location selection algorithm is
modified based on vehicle location features. The main contributions of this paper as follows:

• We investigate the problem of vehicle location privacy preservation in IoV and propose
a vehicle location privacy-preservation method based on dummy locations.

• We define the concept of effective distance to represent the characteristics of vehicle
location distribution. Moreover, we improve the dummy location selection algorithm
by using anonymous entropy and effective distance.

• We analyze the performance of the proposed method in terms of security, computa-
tion overhead, and communication overhead, and conduct extensive simulations to
evaluate the proposed method.

The rest of the paper is organized as follows. The related work about location privacy-
preservation methods is overviewed in Section 2. In Section 3, we give some preliminaries
and the problem aiming to be solved in this paper. In Section 4, we propose a vehicle loca-
tion privacy-preservation method based on dummy locations. Performance analysis and
simulation results are given to verify the proposed method in Sections 5 and 6, respectively.
Finally, we conclude the paper in Section 7.

2. Related Work

The location privacy-preserving problem has been attracting wide attention from both
academia and industry. This problem draws even more attention due to the booming
of LBSs. Many location privacy-preservation methods have been proposed, such as K-
anonymity [7–10], obfuscation [11–13], differential privacy [26,27], mixed zone [28,29],
homomorphic encryption [30–32], and dummy locations [15–23]. In this work, we focus on
the location privacy preservation-method based on dummy locations in IoV.
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The privacy-preservation method based on dummy locations can work without a third-
party server, and provides a location set containing the user’s real location to guarantee
the quality of LBS. Hence, this method can achieve a good tradeoff between location
privacy-preservation and service quality. Sun et al. [15] proposes a privacy-preservation
method based on dummy locations, where a query is submitted to an LBS provider with
the actual location of a user and other dummy locations. The LBS provider searches for all
the related POI locations and returns them to the user. Hence, the generation of dummy
locations is the key issue in the privacy-preservation method based on dummy locations.
Grid-based and circle-based algorithms for generating dummy locations are proposed
to satisfy regional privacy requirements in [16]. A distributed dummy client generation
method is proposed to make clients control over their privacy protection [17]. The method
selects clients with movement patterns be close to user’s movement pattern according to
the privacy requirements. However, many dummy location generation algorithms assume
that an attacker has no other background information and select locations randomly. To
solve this problem, an E-DLS algorithm is proposed in [18]. In the E-DLS algorithm,
dummy locations are selected to optimize the privacy-preserving effect in terms of the
maximum entropy and cloaking region (CR). Based on E-DLS, Liao et al. [19] considers that
when the attacker can obtain the type of service, the greedy algorithm based on entropy
measurement is proposed to select the dummy locations to construct the anonymous area.

Recently, the trajectory privacy-preserving issue for continuous LBS has been becom-
ing a hot research topic. A method named Dummy-Q is proposed for query privacy-
preservation in the continuous LBS scenarios [20], where the query privacy is protected
by generating dummy queries. In [21], the problem of privacy leakage under continuous
LBS is studied, and a frequency-aware dummy-based method (FADBM) is proposed to
ensure that dummy locations are generated around frequent areas and the time accessibility.
In [22], a dummy filtering algorithm is proposed, where the spatiotemporal correlation
of time-sensitive side information is used to select and generate dummy locations, and
spatiotemporal correlation between locations is truncated with time accessibility and access
constraints to ensure trajectory similarity. In [23], a location privacy method is proposed
to prevent privacy disclosure in LBS constrained in incomplete data collection, where the
anonymous candidate set is constructed with compressing sensing technology. Moreover,
the differential privacy mechanism is adopted to construct the anonymous candidate set
for continuous LBS.

Since the trajectory of vehicles is subject to the road distributions, the influence of road
information should be considered for designing location privacy-preservation methods in
IoV. Considering the geographical constraint, a method is proposed to generate and arrange
dummy objects around users in a grid form [25]. However, the service request probability
of locations is not considered when generating dummy locations, the effect of privacy
protection is poor. Lina et al. [33] proposes a location privacy-preservation scheme based
on anonymous entropy, where anonymous entropy based on location distance and request
content is considered. Moreover, two algorithms are presented to select dummy users
to build anonymous regions for the dense region and the sparse region, respectively. In
combination with the characteristics of vehicle network, a privacy preservation algorithm
converts road map into edge cluster diagram in order to hide road information and vehicle
information, and constructs invisible areas based on K-anonymity and L-diversity [34]. A
region-of-interest division-based algorithm is proposed to preserve the location privacy of
mobile device users in location-based cyber services [24]. In this method, dummy locations
are generated considering the semantic information of those locations.

We will study the location privacy-preservation based on dummy locations in IoV, in
which road constraints and vehicle location characteristics are taken into consideration.



Appl. Sci. 2021, 11, 4594 4 of 15

3. Preliminaries and Problem Formulation

In this section, we introduce some preliminaries including the system model, LBS
query, service semantics, anonymous entropy, and adversary model. Then, the problem to
be solved in this paper is formulated.

3.1. System Model

Figure 1 illustrates the system architecture of IoV that consists of a number of intelli-
gent vehicles with onboard unit (OBU), several roadside units (RSUs), a trusted authority
(TA), and an LBS server. OBU can acquire the perceived driving information of on-board
sensors, calculate, process, and store the sensed data. The communication modes in IoV,
namely vehicle-to-vehicle (V2V) and vehicle-to-RSU (V2R), adopt dedicated short range
communication (DSRC) technology. Through V2V communication, intelligent vehicles can
not only obtain driving state information through sensors and exchange messages, but also
receive and forward messages broadcasted by other vehicles. Through V2R communication,
vehicles can exchange information with the RSU and access the Internet.
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3.2. LBS Query

An LBS query Lq is defined as Lq = (uid, {(x, y), C, V}), where uid denotes a user’s
identity; (x, y) represents the user’s location information, x and y represent latitude and
longitude, respectively; C denotes the user’s query content; V is the user’s privacy preser-
vation level.

However, since the LBS provider may be malicious, the user’s location will be dis-
closed if the user directly sends Lq to the LBS provider. To preserve the location privacy,
dummy locations method is used to preprocess Lq. Hence, Lq is transformed to Lq′ as
Lq′ = (uid, {( x, y), (x1, y1), . . . , (xk−1, yk−1), C, C1, . . . , Ck−1, V}), where (x1, y1), . . . , (xk−1,
yk−1) are k − 1 dummy locations, Ci represents the query content sent at dummy location
(xi, yi), i = 1, 2, . . . , k−1.

From Lq’, the adversary cannot determine the user’s real location from k − 1 dummy
locations. By this way, the vehicle location privacy can be protected.

3.3. Service Semantics

In each location, users may request entertainment, medical treatment, transportation,
or other services. The service requests sent by users are closely related to their locations,
and the probabilities of various services in different locations are different. Therefore,
service semantics is used to represent the relationship between location and service.

Let U be the number of services, ei,u represents the request probability of service u in

location (xi, yi), 0 ≤ ei ,u ≤ 1, i = 0, 1, . . . , k – 1, u = 1, 2, . . . , U, and
U
∑

u=1
ei,u = 1. In this paper,

the LBS server is responsible for the collection and establishment of service semantics.
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3.4. Anonymous Entropy

It is pointed out in [17] that entropy can measure the uncertainty of target location in
the location set. In this paper, we use entropy to evaluate the degree of anonymity.

Here, we consider set G including k locations, G = {(x0, y0), (x1, y1), . . . , (xk−1, yk−1)}.
The service request probability at location (xi, yi) is qi, the candidate probability of location
(xi, yi) is pi. If the vehicle user at location (xi, yi) request service u, the service semantics
at location (xi, yi) is ei,u, and the request probability of service u at location (xi, yi) is
q′ i,q

′
i = qiei,u, i = 0, 1, . . . , k – 1, u = 1, 2, . . . , U. Hence, the anonymous entropy is

defined as

H = −
k−1

∑
i=0

pilog2 pi, (1)

where

pi =
q′ i

k−1
∑

i=0
q′ i

. (2)

According to the mathematical property of entropy, it is required that the candidate
probabilities of k locations be the same to achieve the maximum entropy. That is, if pi = 1/k,
i = 0, 1, . . . , k – 1, the maximum of anonymous entropy of set G is log2k.

3.5. Adversary Model

The goal of the adversary is to obtain sensitive information about a particular user.
There are two types of adversary model, passive adversary, and active adversary.

A passive adversary can monitor and eavesdrop on wireless channels or compromise
users to obtain other users’ sensitive information. A passive adversary can perform
eavesdropping attack to learn extra information about a user.

An active adversary can compromise the LBS server and obtain all the information
known by the server.

In this work, we assume that the LBS server and RSUs are honest-but-curious, as
active adversaries. Hence, the adversary can obtain global information and monitor all the
LBS queries from users. In addition, the adversary knows the location privacy-preservation
scheme adopted in the system. Based on the known information, the adversary tries to
infer and learn other sensitive information.

3.6. Problem Formulation

The LBS server divides the area covered by an RSU into I×J cells as shown in Figure 2.
celli,j denotes the cell of row i and column j, i = 1, 2, . . . , I, j = 1, 2, . . . , J. The location of
celli,j is denoted as ri,j, and ri,j = (xi,j, yi,j). The request probability of celli,j is qi,j, the service
semantics of celli,j is e(i,j),u, and the information matrix Q(r, q, e) for each RSU can be set up.

Figure 2 shows service request probability distribution, the area is divided into
10 × 10 cells. The star represents the user’s real location, and the triangle represents
the dummy location, and the shade in each cell represents its request probability generated
based on the Borlange data set [35]. The gray block represents the road, and R represents
the location area accessible by the road.

In Figure 2a, a vehicle user randomly generates k − 1 dummy locations in order to
protect the location privacy. Then vehicle user uses the dummy locations and real location
to send service request to the LBS server. In theory, the probability of exposing the user’s
real location can be 1/k. However, using some auxiliary information, the LBS server can
deduce the real location with a probability of 1/(k − kd), where kd is the number of dummy
locations be filtered out through the auxiliary information.
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In IoV, since the location of vehicles is restricted by the road, and the service request
probability is used as auxiliary information, the validity of dummy locations generated
with random dummy location selection algorithm in Figure 2a, E-DLS algorithm in [18]
and Dest-ex algorithm in [25] is affected. The dummy locations filtered out by the LBS
server, kd, increases. For example, in Figure 2a, k = 4, and kd = 3. Hence, the effect of
privacy protection is degraded.

Therefore, to protect the location privacy of vehicles, it is necessary to ensure the
validity of dummy locations generated. When road information, service request probability
and service semantics are used as auxiliary information, set G is set up for minimizing kd.
The optimization problem can be defined as

min
G

kd

s.t.G(r, q, e) ⊂ Q(r, q, e)
∀ri,j ∈ G, ri,j ∈ C, ri,j ∈ R

|G| = k,

(3)

where G(r, q, e) is the information matrix corresponding to set G which consists of vehicle
user’s location and k − 1 dummy locations, and set C is the set of all locations of cells in
the area covered by the RSU.

4. Algorithm Design

In this section, we present a location privacy-preservation method based on dummy
locations in IoV, where a dummy location selection algorithm is addressed to improve the
validity of dummy locations.

4.1. Effective Distance

As shown in Figure 3, due to the road restrictions and roadside buildings, the distri-
bution of vehicles is in the form of “pipeline”, and the aggregation distribution may occur.
Hence, the validity of dummy locations further decreases. To ensure the validity of dummy
locations, it is necessary to make the location distribution be uniform and dispersed, as
shown in Figure 3b.
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In order to make the distribution of generated dummy locations be uniform, we define
the effective distance between locations as the minimum distance between the current
location and other locations in a location set. That is,

d(ri) = min
rw∈W ,w 6=i

|ri, rw| = min
rw∈W ,w 6=i

√
(xi − xw)

2 + (yi − yw)
2, (4)

where W represents a location set, ri represents location i in set W , the corresponding
coordinates is (xi, yi), rw represents location w in set G, the corresponding coordinates is
(xw, yw), i = 1, 2, . . . , |W|, w = 1, 2, . . . , |W|, |W| is the number of elements in setW ,
and d(ri) is the effective distance of ri.

From Figure 4, one finds that the larger the effective distance, the greater the spacing
between vehicles, and the more dispersed the distribution.
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4.2. Parameter Settings

The location privacy protection requirement is presented by privacy protection level V,
which indicates the success rate of location privacy protection. That is, V = 1− p = 1− 1

k ,
and V∈[0,1).

Privacy parameter k is determined by privacy protection level V set by the vehicle
user. That is,

k =

⌈
1

1−V

⌉
, (5)

where d·e denotes the upper integer operation.

4.3. Dummy Location Selection Algorithm under Road Restriction

In order to ensure the validity of dummy locations, two conditions should be consid-
ered simultaneously for selecting the dummy locations. One is to maximize the anonymous
entropy of the candidate set. The other is to maximize the effective distance of the candi-
date set.
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Hence, the optimization problem formulated in (3) can convert to a multiple object
optimization problem as

max
G

− ∑
ri,j∈G

pi,j log2 pi,j, ∑
ri,j∈G

d
(
ri,j)


s.t.G(r, q, e) ⊂ Q(r, q, e)
∀ri,j ∈ G, ri,j ∈ C, ri,j ∈ R

|G| = k,

(6)

where candidate set G consists of the vehicle user’s location and k− 1 selected dummy locations.
Obviously, the problem formulated in (6) is difficult to resolve. Hence, we decouple the

problem in (6) into two sub-problems, the anonymous entropy maximization sub-problem
and the effective distance maximization sub-problem.

According to the background knowledge of the LBS server and the purpose of the
dummy location selection algorithm, we give priority to the sub-problem of anonymous
entropy maximization. That is,

max
G ′

{
− ∑

ri,j∈G ′
pi,j log2 pi,j

}
s.t.G′(r, q, e) ⊂ Q(r, q, e)
∀ri,j ∈ G ′, ri,j ∈ C, ri,j ∈ R

|G ′| = k′,

(7)

where set G ′ including the vehicle user’s location and k’ − 1 selected dummy locations is
set up to resolve the sub-problem formulated in (7), k’ is the number of locations in set G’,
and k’ > k.

According to Q(r, q, e), the vehicle user calculates the probability of service request at
each location in R, q′(i,j),u, i = 1, 2, . . . , I, j = 1, 2, . . . , J, u = 1, 2, . . . , U, celli,j∈R. According
to service request probability of content C0, the vehicle user selects other k’ − 1 locations
whose service request probabilities are close to that of the vehicle user.

Hence, a candidate set G ′ is constructed with the vehicle user’s location and k′ − 1
selected dummy locations.

Then, the sub-problem for maximizing the effective distance of the candidate set is to
resolve. That is,

max
G ′′

 ∑
ri,j∈G

′′
d(ri,j)


s.t.G′′ (r, q, e) ⊂ G′(r, q, e)
∀ri,j ∈ G ′′ , ri,j ∈ G ′
|G ′′ | = k,

(8)

where set G ′′ including the vehicle user’s location and k − 1 selected dummy locations is
set up to resolve the sub-problem formulated in (8).

To solve the sub-problem formulated in (8), the vehicle user selects k − 1 dummy
locations in a greedy manner.

Let r0,0 denote the location of the vehicle user. G ′′= {r0,0} and G ′′ = G ′′ \{r0,0}. The vehi-
cle user chooses k − 1 locations with the maximum effective distance through k − 1 rounds.

In the ith round, i = 1, 2, . . . , k−1, the vehicle user calculates the effective distance

of the location(s) in G ′ to the location(s) in G ′′ . If ri∗,j∗ = arg max
ri,j∈G ′

(
min

ri′ ,j′∈G ′′

∣∣∣ri,j, ri′ ,j′
∣∣∣), the

vehicle user puts ri∗,j∗ into set G ′′ and deletes it from G ′′ .
Hence, set G ′′ is constructed with the vehicle user’s location and k − 1 selected

dummy locations.
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4.4. A Location Privacy-Preservation Method Based on Dummy Locations under Road Restriction

The specific procedure of a location privacy-preservation method based on dummy
location under road restriction can be follows:

(1) Based on the historical data of service requests, the LBS server counts the number
of service requests initiated by vehicle users in each cell, and the service request
probability of celli,j, i = 1, 2, . . . , I, j = 1, 2, . . . , J, qi,j = fi,j/F, where fi,j is the number
of service requests initiated by vehicle users in celli,j, and F is the number of service
requests in the area. The service semantics of service u is qi,j = f(i,j),u/ fi,j, where
f (i,j),u is the number of requests of service u initiated by vehicle users in celli,j, u = 1, 2,
. . . , U.

(2) The LBS server constructs and distributes the information matrix Q(r, q, e) within the
RSU’s jurisdiction to each RSU.

(3) RSU broadcasts Q(r, q, e) and R to users in its covered area.
(4) According to the privacy preservation level V, the vehicle user calculates its privacy

parameter k by (5).
(5) The vehicle user generates k − 1 dummy locations using dummy location selection

algorithm under road restriction. The details are as follows:

(5-a) Let k’ = 2k. Within the locations in R, other k′ − 1 locations apart from the
vehicle user’s location are selected as dummy locations by solving the problem
formulated in (7). Hence, a candidate set G’ is constructed with the vehicle
user’s location and k′ − 1 selected dummy locations.

(5-b) Within set G ′, other k − 1 locations apart from the vehicle user’s location
are selected as dummy locations by solving the problem formulated in (8).
Hence, set G ′′ is constructed with the vehicle user’s location and k − 1 selected
dummy locations.

(6) The vehicle user generates service query Lq’ including locations in G ′′ , their corre-
sponding service contents, and the privacy preservation level, and then, Lq’ is sent to
the LBS server via RSU.

(7) Receiving service query Lq’, the LBS server retrieves service results according to k
locations and the corresponding service contents, and then, the LBS server returns
service results to the vehicle user through RSU.

(8) The vehicle user selects the required result from service results according to its location.

5. Performance Analysis

In this section, the performance of the proposed location privacy-preservation method
using dummy location selection algorithm under road restriction, abbreviated as RR-DLS,
is analyzed.

5.1. Security Analysis

Since encrypt-based technologies can be easily applied to the proposed RR-DLS
method, eavesdropping attack on wireless channels between users and other entities
can be ignored. We focus on collusion attack and inference attack from passive and
active attackers.

5.1.1. Collusion Attack

Passive attackers may collude with some users to get additional information about
other users or collude with the LBS server to predict sensitive information about legitimate
users. If the probability of successfully guessing the real location of a vehicle user among
k locations in the service query does not increase with the number of collusion users, the
proposed method can resist collusion attack.

We consider a situation that collusion occurs between a group of users aiming to ac-
quire the user’s real location from k locations. In RR-DLS method, each user can only know
the service request probability and road condition collected by itself. When eavesdropping
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the service query sent to the LBS server, the attacker cannot filter out some invalid locations
through additional information since k locations in the service query have the same or
similar service request probability and are on the road.

One extreme case for the passive adversary is that it can acquire the global information
by compromising the LBS server as well as RSUs. In this case, it becomes an active adversary
and can perform inference attack as discussed in the following.

5.1.2. Inference Attack

The LBS server and RSUs have global information, such as information matrix Q(r,
q, e), road information R and k locations in the service query, and so on. Based on this
information, the LBS server or the RSU can act as an active attacker to launch reasoning
attack and acquire some sensitive information of users.

Suppose pG(event) be the probability that an attacker successfully guesses that event
is true. The proposed method should satisfy (9) to resist inference attack.

pG(ri,j ∈ B
∣∣∣B ∩ G ′′ 6= ∅) = pG(ri′ ,j′ ∈ B

∣∣∣B ∩ G ′′ 6= ∅), ri,j ∈ G ′′ , ri′ ,j′ ∈ G ′′ , ri,j 6= ri′ ,j′ , (9)

where set B consists of the locations obtained by an attacker.
For any dummy location ri,j generated by RR-DLS algorithm, the probability of ri,j

being guessed as the real location is

pG(ri,j ∈ B
∣∣∣∣B ∩ G ′′ 6= ∅) =

pG(ri,j ∈ B, B ∩ G ′′ 6= ∅)

pG(B ∩ G ′′ 6= ∅)
=

pi,j

pG(B ∩ G ′′ 6= ∅)
, ri,j ∈ G ′′ . (10)

Substituting (10) into (9), we have

pi,j ' pi′ ,j′ , ri,j ∈ G ′′ , ri′ ,j′ ∈ G ′′ , ri,j 6= ri′ ,j′ . (11)

The proposed dummy location selection algorithm under road restriction selects
locations with the same or similar probability of service requests and service semantics.
Hence, the proposed RR-DLS method satisfies the condition in (11), which means that the
method can effectively resist inference attack.

5.2. Computation Overhead

If RSU jurisdiction is divided into I × J cells, the number of services is U and the
number of results returned by the LBS server is n.

In the procedure of an LBS query, the vehicle user needs to generate k dummy locations.
First, as the vehicle user selects 2k − 1 locations based on service request probability, the
computation overhead is O(IJU). As the vehicle user selects dummy locations by effective
distance through k− 1 rounds. In the ith round, i = 1, 2, . . . , k− 1, the vehicle user calculates
the effective distance of 2k − 1 − i locations in G ′ to i locations in G ′′ to update the effective
distance of each location, and the location with maximum effective distance of locations
in G ′ is selected. Hence, the computation overhead is O(k2). Therefore, the computation
overhead of dummy location selection algorithm at the vehicle user is O(k2 + IJU).

Since RSU does not need additional computation, the computation overhead at RSU
is O(1).

The LBS server needs to perform service retrieval for k − 1 dummy locations and a
real location. Hence, the computation overhead at the LBS server is O(kn).

5.3. Communication Overhead

In the procedure of an LBS query, the vehicle user sends service query to the LBS
server through RSU. The communication overhead at the vehicle user is O(k).

RSU needs to broadcast the service request probability, the service semantics and
other information. The communication overhead is O(IJU). At the same time, RSU needs
to forward the service query to the LBS server and return kn service query results to the
vehicle user. Therefore, the communication overhead at the RUS is O(IJU + kn + k).
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The LBS server needs to send the service request probability, service semantics and
other information to RSU. The communication overhead is O(IJU). Receiving the service
query, the corresponding service results are returned to RSU. The communication cost is
O(kn). Therefore, the communication overhead at LBS server is O(IJU + kn).

The performance of proposed RR-DLS method in terms of computation overhead and
communication overhead is listed in Table 1.

Table 1. Performance of proposed RR-DLS method.

Entity Computation Overhead Communication Overhead

Vehicle user O(k2 + IJU) O(k)

RSU O(1) O(IJU + kn + k)

LBS Server O(kn) O(IJU + kn)

6. Performance Evaluation and Discussion

In this section, the performance of proposed RR-DLS method is valuated. Moreover,
we compare the performance of proposed RR-DLS algorithm with some existing dummy
location selection algorithms, such as random dummy location selection algorithm, E-DLS
algorithm in [18], Dest-ex algorithm in [25].

The simulation area and the corresponding service request probability distribution are
illustrated in Figure 5, which is a region in Hangzhou with an area of 500 m × 500 m. This
region is divided into 10 × 10 cells, the number of service types U = 4, the service request
probability and service semantics are generated randomly, and orange cells represent
locations that are inaccessible to the vehicle.
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The simulation environment is Windows10, with 8 GB memory and AMD Ryzen
5 3550 H processor.

6.1. Computation Overhead

Figure 6 shows the impact of privacy parameter k on computation overhead in terms
of execution time. From Figure 6, we observe that the computation overhead of proposed
RR-DLS method is concentrated on the vehicle user side, and the execution time increases
rapidly along with the increase of privacy parameter k. The computation overhead at RSU
and the LBS server side is small. The execution time of RSU is independent of privacy
parameter k, and the execution time of the LBS server increases linearly along with the
increase of privacy parameter k.
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6.2. Communication Overhead

Figure 7 shows the impact of privacy parameter k on communication overhead in terms
of data traffic. From Figure 7, we observe that the communication overhead of proposed RR-
DLS method is concentrated on RSU and the LBS server, and the communication overhead
at the vehicle user side is small. As privacy parameter k increases, the communication
overhead in terms of data traffic increases.
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6.3. Anonymous Entropy

Figure 8 shows the anonymous entropy of four different dummy location selection
algorithms, the proposed RR-DLS algorithm, random dummy location selection algorithm,
E-DLS algorithm in [18], and Dest-ex algorithm in [25]. From Figure 8, we observe that
the anonymous entropy of proposed RR-DLS algorithm is the largest. This is because
the proposed RR-DLS algorithm can ensure the validity of dummy locations. Since Dest-
ex algorithm only considers the road information, the anonymous entropy of Dest-ex
algorithm is smaller than that of proposed RR-DLS algorithm, and larger than that of
random dummy location selection algorithm and E-DLS algorithm. Since E-DLS algorithm
selects dummy locations according to service request probability and CR, some dummy
locations can be filtered using auxiliary knowledge. The anonymous entropy of E-DLS
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algorithm is low. Since random selection algorithm selects dummy locations randomly, the
anonymous entropy of random dummy location selection algorithm is the lowest.
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6.4. Effective Distance

Figure 9 shows the effective distance of two different dummy location selection
algorithms, the proposed RR-DLS algorithm and E-DLS algorithm in [18]. For E-DLS
algorithm, the anonymous area is maximized considering the query probability. From
Figure 9a, the means of effective distance of two algorithms are close. Moreover, from
Figure 9b, we observe that the variance of effective distance of proposed RR-DLS algorithm
is much smaller than that of E-DLS algorithm. The proposed RR-DLS algorithm can
guarantee the distributed and uniform distribution of dummy locations to ensure the
validity of dummy locations.
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7. Conclusions

In this paper, we investigated the vehicle location privacy-preserving problem in IoV
and proposed a location privacy-preservation method based on dummy locations under
road restriction. In the proposed RR-DLS method, the effective distance is introduced
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to represent the characteristics of location distribution in order to improve the validity
of dummy locations. A dummy location selection algorithm under road restriction was
addressed according to anonymous entropy and effective distance. Security analysis results
show that the proposed RR-DLS method can resist collusion attack and inference attack
effectively. Performance analysis and simulation results show that the proposed RR-DLS
method can effectively protect the vehicle location privacy and ensure the accuracy of LBS
service. Furthermore, the proposed RR-DLS method increases the computation overhead
at the vehicle user and communication overhead at RSU and the LBS server.

In the future, we will study the problem of vehicle trajectory privacy preservation in
continuous LBS scenario.
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